REDUCED STATE SPACE CONSTRUCTION
- COVERABILITY GRAPH

QUALITATIVE ANALYSIS
METHODS, OVERVIEW

- NET REDUCTION
- STRUCTURAL PROPERTIES
- LINEAR PROGRAMMING
 - place / transition invariants
 - state equation
 - trap equation
- REACHABILITY ANALYSIS
 - (complete) reachability graph
 - compressed state spaces
 - BDDs, NDDs, ..., XDDs
 - Kronecker products
 - reduced state spaces
 - coverability graph
 - symmetry
 - stubborn sets
 - branching process

static analysis
(dynamic analysis
(model checking)
REACHABILITY GRAPH, CONSTRUCTION ALGORITHM

PROCEDURE `rg` (**IN** Net `pn`, **IN** Marking `m0`, **OUT** MSet `nodes`, **OUT** ArcSet `arcs`);

MSet `U` = `{m0}`, // unprocessed markings
`N` = `∅`; // rg nodes
ArcSet `E` = `∅`; // rg arcs (pre, post, t)
Marking `m'`; // successor marking
Transition `t`;

WHILE `U` ≠ `∅` DO
 choose one `m` ∈ `U`;
 `U` = `U` - `{m}`; `N` = `N` ∪ `{m}`;

 FOR ALL `t` enabled at `m` DO
 `m'` = `m` + `Δt`;
 IF `m'` ∉ `N` ∪ `U` // new marking
 THEN `U` = `U` ∪ `{m'}`
 ENDIF;
 `E` = `E` ∪ `{(m, m', t)}`
 ENDFOR

ENDWHILE;

`nodes` = `N`; `arcs` = `E`;

ENDPROC `rg`.

COVERABILITY GRAPH, CONSTRUCTION ALGORITHM

-> TWO CHANGES IN PROCEDURE RG

- **PROCEDURE** `cg` (**IN** Net `pn`, **IN** Marking `m0`, **OUT** OmegaMSet `nodes`, **OUT** ArcSet `arcs`);

 OmegaMSet // omega for infinite
 `U` = `{m0}`, // unprocessed markings
 `N` = `∅`; // rg nodes

- **FOR ALL** `t` enabled at `m` DO
 `m'` = `m` + `Δt`;

 IF `m'` covers some `mOld` ∈ `N` ∪ `U` with path `(mOld, m')` in `E`
 THEN
 FOR ALL `p` ∈ `P` DO
 IF `mOld(p) < m'(p)`
 THEN `m'(p)` = `ω`
 ENDIF
 ENDFOR
 ENDIF

ENDFOR
COVERABILITY GRAPH

- finite also for unbounded nets

- omega-marking
 - generalization of marking
 - omega stands for infinite token numbers

- for bounded nets pn:
 \(rg(pn) = cg(pn) \)

- decidable properties
 - place unboundedness
 - simultaneous unboundedness of places
 - \(m_0 \)-dead transitions

- semi-decidable property
 - non-reachability of states

- non-decidable properties
 - deadlock freedom,
 - liveness
 - reversibility

the result of this Karp-Miller algorithm
- depends on the order markings are considered
- is, generally, not minimal

Finkel algorithm constructs always the minimal \(cg \)
- but much more expensive

BUT

- All basic Petri net properties are known to be generally decidable!
- What we do not know is whether there is a primitive recursive algorithm to decide it practically.

Examples:
\(cg1 .. cg8.spped \)