Modelling gradients using Petri nets

LMF Bertens, HCM Kleijn, M Koutny and FJ Verbeek
Imaging and Bioinformatics group, LIACS, Leiden University
School of Computing Science, Newcastle University
New focus:

using Petri nets for higher level developmental processes, e.g. on tissue and organ level, taking cells as central elements

Case study:

embryonic development of the AP-axis formation in *Xenopus laevis*
Anterior posterior axis formation

Wolpert, 2002
Modelling the case study

- several sub-processes
- generic use of the building blocks

first theoretical model: gradient formation in planar signalling

- generic for gradients in early development
- main aim: staying close to biological process, both in end result and intermittent steps, thereby making the model generally applicable and robust
Petri nets with activator arcs and maximal concurrency

- a PN is defined by places and transitions, connected by weighted and activator arcs, with token distributions, markings:
 PTA-net is tuple $N = (P, T, Act, m_0)$
- activator arcs allow a priori testing
- enables auto-concurrency
- maximal concurrency
Biological background

- gradient: gradual and directed change in concentration of a morphogen through a group of cells
- morphogens: signalling molecules that cause cells in different places in the body to adopt different fates and establish embryonic axes
- transient and hard to detect
- slope determined by ρ

Yu et al. 2009
Mechanisms of gradient formation

a) diffusion through extracellular matrix
b) endocytosis: sequential internalisation and re-emission
c) cytonemes

here we focus on diffusion and endocytosis (both concerning neighbouring cells)
Biological modelling decisions

- cells as elementary units
 - advantage as intermediate level between tissue and sub-cellular levels

- tokens as concentration levels: qualitative and quantitative
 - neither on/off nor exact numbers of molecules
 - possibility of quantification (Fgf8, Yu et al. 2009)

- realistic modelling of transport between neighbouring cells => diffusion and endocytosis
 - molecular mechanisms possible in sub-nets
Implementation

- separation of the biological front (including cells) and the computational background (calculating transport of tokens)
- marking is consistent with biology at all times
- realistic use of maximal concurrency
- ratio $\rho = N/M$, $M > N \geq 1$; ρ is flexible
Implementation

Given are \(k \geq 1 \) places \(x_1, \ldots, x_k \) representing cells. In initial marking \(x_1 \) contains \(K \) tokens, other places are empty. Tokens get shifted from \(x_1 \) to \(x_k \) in such a way that:

1. The number of tokens in the \(x_i \)'s remain constant
 \[m(x_1) + \ldots + m(x_k) = K \]
 token preservation

2. The tokens are distributed monotonically along the sequence of \(k \) places, i.e.
 \[m(x_1) \geq \ldots \geq m(x_k) \]
 monotonicity

3. The ratio of the numbers of tokens in two neighbouring places does not exceed \(\rho \), i.e. for every \(1 \leq i < k \) with \(m(x_i) \geq 1 \):
 \[\frac{m(x_{i+1})}{m(x_i)} \leq \rho \]
 ratio

4. Shifting continues untill moving even one token violates the above, i.e. for every \(1 \leq i < k \) with \(m(x_i) > 1 \):
 \[\frac{m(x_{i+1}) + 1}{m(x_i) - 1} > \rho \]
 termination
ratio ρ dictates the no. of tokens to be moved: β_i
for each marking m and each $1 \leq i < k$, β_i tokens are moved from x_i to x_{i+1}
tokens keep on been being transferred until $\beta = 0$ for all places => stable marking
ratio $\rho = N/M$ dictates the no. of tokens to be moved: β_i
for each marking m and each $1 \leq i < k$, β_i tokens are moved from x_i to x_{i+1}
tokens keep on being transferred until $\beta = 0$ for all places => stable marking
Leiden University. The university to discover.
N=1, M=2
N=1, M=2
N=1, M=2
N=1, M=2
Important biological features

- consistency (through monotonicity and ratio)
- stable markings (through monotonicity and termination)
- focussed on local events; insensitive to specific values of k and K and therefore scalable
- possibility of local(ly different) use of auxiliary net and local use of ρ
- maximal concurrency, but sequential solution is also possible
Conclusions

- a generally applicable net on higher developmental level
- consistency with biological process, in end result as well as intermittent stages
- possibilities of linking to
 - sub- and supernets
 - other sub-processes in AP-axis formation on same biological level
Future work

- implementation using biological data
- extension to 2- and 3-dimensional gradients
- adding hierarchy through molecular subnets and tissue-level supernets
- linking sub-process to other sub-processes in AP-axis development of *Xenopus laevis*, e.g. vertical signalling
Laura M.F. Bertens
Jetty C.M. Kleijn
Maciej Koutny
Fons J. Verbeek

Hans J. Jansen
Nabila Bardina
Tony J. Durston

lbertens@liacs.nl
www.bio-imaging.liacs.nl
\[\rho = \frac{N}{M} \quad M > N \]

for every \(1 \leq i < k \):

\[\frac{m(x_{i+1})}{m(x_i)} \leq \rho \quad (\text{monotonicity}), \text{ where } m(x_i) \geq 1 \]

\[\rho \cdot m(x_i) \geq m(x_{i+1}) \]

\[\frac{N}{M} \cdot m(x_i) \geq m(x_{i+1}) \]

\[N \cdot m(x_i) \geq M \cdot m(x_{i+1}) \]

\[N \cdot m(x_i) - M \cdot m(x_{i+1}) \geq 0 \]

\[N \cdot m(x_i) - M \cdot m(x_{i+1}) = \alpha_i \]

\[\beta_i \leq \left\lfloor \frac{\alpha_i}{M + N} \right\rfloor \]
Leiden University. The university to discover.