Semi-quantitative modelling of biological systems with Fuzzy Petri nets

Jure Bordon,
Dr. Miha Moškon, Prof. Miha Mraz

University of Ljubljana
Faculty of Computer and Information Science

BioPPN’13, Milano, Italy
Synthetic biology

Design and construction

in vivo implementation

Desired behaviour

New biological system

Measured data

Verification

June 24, 2013, Milano, Italy

BioPPN'13 | Jure Bordon
Synthetic biology

Design and construction

Model

Desired behaviour ↔ New biological system

Measured data

Verification

in silico ↔ in vivo

BioPPN’13 | Jure Bordon

June 24, 2013, Milano, Italy
Modelling approaches

Quantitative

Qualitative
Modelling approaches

Quantitative

Qualitative

Concentration

Time

June 24, 2013, Milano, Italy

BioPPN’13 | Jure Bordon
Modelling approaches

Quantitative
- Deterministic (ODEs)
- Accurate kinetic rates?!

Qualitative
- Stochastic (CME)

Concentration [X] vs. Time [s]
Modelling approaches

Quantitative
 - Deterministic (ODEs)
 - Stochastic (CME)
 - Accurate kinetic rates?!?

Semi-quantitative

Qualitative
 - Less accurate than quantitative
 - Quantitatively significantly more relevant than qualitative
 - More forgiving when we lack accurate knowledge
Petri nets

<table>
<thead>
<tr>
<th>Qualitative PNs</th>
<th>Fuzzy PNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Qualitative description</td>
<td>- Qualitative description</td>
</tr>
<tr>
<td>- Behavioural properties</td>
<td></td>
</tr>
</tbody>
</table>

Time-free

<table>
<thead>
<tr>
<th>Stochastic PNs</th>
<th>Continuous PNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Molecules</td>
<td>- Concentrations</td>
</tr>
<tr>
<td>- Stochastic rates</td>
<td>- ODEs</td>
</tr>
<tr>
<td></td>
<td>- Deterministic rates</td>
</tr>
</tbody>
</table>

Timed, Quantitative

Discrete State Space Continuous State Space

Elowitz repressilator

June 24, 2013, Milano, Italy
Elowitz repressilator

mRNA: \[
\frac{dm_i}{dt} = -k_{dm} m_i + \frac{\alpha}{1 + p_j} + \alpha_0
\]

Protein: \[
\frac{dp_i}{dt} = \beta m_i - k_{dp} p_i
\]

i = lacI, tetR, cl
j = cl, lacI, tetR
Elowitz repressilator
Timed, continuous Petri nets

\[
\frac{dP}{dt} = \sum_{i=1}^{n} r_i - \sum_{j=1}^{m} r_j
\]

Elowitz: \(r_{\text{Translation}} = \beta \times mRNA_P \)
\(r_{\text{Degradation}} = k_d \times P \)

Gilbert et al, From Petri nets to Differential Equations – an Integrative approach for Biochemical Network Analysis, 2006

June 24, 2013, Milano, Italy
BioPPN’13 | Jure Bordon
Fuzzy logic approach

- Computing with words (IF-THEN rules)
- From an equation to “intuitive description”
Fuzzy logic approach

- Computing with words (IF-THEN rules)
Fuzzy logic approach

- Computing with words (IF-THEN rules)

*IF (ProteinConc) is High THEN (Change) is High*Change
*IF (ProteinConc) is Med THEN (Change) is Med*Change
*IF (ProteinConc) is Low THEN (Change) is Low*Change
Fuzzy logic approach

- Computing with words (IF-THEN rules)
Fuzzy logic approach

- Computing with words (IF-THEN rules)
Fuzzy logic approach

- Computing with words (IF-THEN rules)
- Fuzzification

June 24, 2013, Milano, Italy
Fuzzy logic approach

- Computing with words (IF-THEN rules)
- Fuzzification
 - Defining fuzzification for different abstraction levels
 - Different membership functions to achieve desired description
 - Using the knowledge about the system we have to gain more accurate description
Fuzzy logic approach

• General (Elowitz)
 – The system/cell can contain up to approximately 2000 molecules of each protein
 – One protein molecule equals about 1nM in concentration

• Dynamical
 – Approximate protein, mRNA half-life
 – Approximate binding/disassociation affinity

June 24, 2013, Milano, Italy
Fuzzy logic approach

- Semi-quantitative representation

June 24, 2013, Milano, Italy
Fuzzy logic and Petri nets

Degradation (Fuzzy)
P -> 0

IF (f[P] is High) THEN (f[C] is HighChange)
IF (f[P] is Med) THEN (f[C] is MedChange)
IF (f[P] is Low) THEN (f[C] is LowChange)
Fuzzy logic and Petri nets

Degradation:
P => 0

[Diagram of Petri net showing Degradation (Fuzzy) and P transition]
Results

- Degradation - Elowitz, 2000
- Degradation - FL approach

Protein Concentration

Time [s]
Fuzzy logic and Petri nets

Translation:
mRNAP \rightarrow P

Degradation:
P \rightarrow 0

Constant Translation

$r_{\text{Translation}} = \beta \times mRNA_P$

Degradation (Fuzzy $k^d \times P$)
Results

![Graph showing protein concentration over time with two lines representing Elowitz, 2000 and FL approach.](Image)

- Elowitz, 2000
- FL approach
Conclusions and future work

- Proposed fuzzy Petri net approach can be used to semi-quantitatively model biological processes as demonstrated on degradation
- Can be used to augment existing methods where kinetic data or parameters are missing

- Formal definition of fuzzy Petri nets used for our approach and building more complex FPN models
- Fuzzy description of other basic biological processes
- Simulation result evaluation and verification
- Color for different fuzzy abstractions
- Stochastic fuzzy modelling