The Manual for $QPN^c/SPN^c/CPN^c$
- DRAFT -

Fei Liu and Monika Heiner

Data Structures and Software Dependability
Department of Computer Science
Brandenburg University of Technology at Cottbus
http://www-dssz.informatik.tu-cottbus.de/DSSZ
Please direct any comments for this manual to
snoopy@informatik.tu-cottbus.de.

July 29, 2011
Contents

1 Introduction

1.1 Colored Petri nets ... 1
1.2 Some notes ... 3
1.3 Features - overview ... 3
 1.3.1 Features for modeling 3
 1.3.2 Features for animation (for QPNc/SPNC) 3
 1.3.3 Features for simulation (for SPNC/CPNC) 4
 1.3.4 Other features ... 4

2 Modeling

2.1 General modeling procedure - an introductory example 5
 2.1.1 Transform a standard Petri net into a colored Petri net . 5
 2.1.2 Define similar subnets in the Petri net 5
 2.1.3 Define declarations 7
 2.1.4 Assign color sets to places and define initial markings . 9
 2.1.5 Define arc expressions 10
 2.1.6 Define guards for transitions 10
 2.1.7 Define rate functions for transitions (for SPNC/CPNC) . 11
 2.2 Constructing colored Petri nets 12
 2.2.1 Basic colored Petri net components 12
 2.2.2 Modeling branch and conflict reactions 14
 2.2.3 Modeling nets with logical nodes 15
 2.3 Automatic colorizing 15
 2.3.1 Coloring any subset 15
 2.3.2 Coloring twin nets 18
 2.3.3 Modeling T-invariants 18
 2.4 Some other key modeling problems 18
 2.4.1 Specifying initial markings 18
 2.4.2 Specifying rate functions 19
 2.4.3 Extended arc types 21
 2.4.4 Consistency checks 21

3 Annotation Language

3.1 Declarations .. 24
 3.1.1 Color sets ... 24
 3.1.2 Subsets of color sets 27
 3.1.3 Variables ... 27
 3.1.4 Constants ... 28
A Annotation Language

A.1 Introduction to BNF ... 49
A.2 BNF for the data type definition 50
A.3 BNF for the annotation language 51
Chapter 1

Introduction

Petri nets provide a formal and clear representation of systems based on their firm mathematical foundation for the analysis of system properties. However, standard Petri nets do not scale. So attempts to simulate systems by standard Petri nets have been mainly restricted so far to relatively small models. They tend to grow quickly for modeling complex systems, which makes it more difficult to manage and understand the nets, thus increasing the risk of modeling errors. Two known modeling concepts improving the situation are hierarchy and color. Hierarchical structuring has been discussed a lot, while the color has gained little attention so far. Thus, we investigate how to apply colored Petri nets to modeling and analyzing biological systems. To do so, we not only provide compact and readable representations of complex systems, but also do not lose the analysis capabilities of standard Petri nets, which can still be supported by automatic unfolding. Moreover, another attractive advantage of colored Petri nets for a modeler is that they provide the possibility to easily increase the size of a model consisting of many similar subnets just by adding colors.

In Snoopy, we have implemented QPNC / SPNC / CPNC prototypes for editing, and animating/simulating colored qualitative Petri nets (QPNC), colored stochastic Petri nets (SPNC) and colored continuous Petri nets (CPNC). In this manual, we will give relevant materials for understanding, constructing, simulating and analyzing colored qualitative/stochastic/continuous Petri nets, so that the user will have no difficulties in using colored Petri nets. In this manual, we concentrate on color-specific features. For a general introduction into Snoopy, see [HRR+08] and [RMH10].

1.1 Colored Petri nets

Colored Petri nets [GL79], [GL81], [Jen81], combine Petri nets with capabilities of programming languages to describe data types and operations, thus providing a flexible way to create compact and parameterizable models. In colored Petri nets, tokens are distinguished by the "color", rather than having only the "black" one. Additionally, arc expressions, an extended version of arc weights, specify which tokens can flow over the arcs, and guards that are in fact Boolean expressions define additional constraints on the enabling of transitions [JKW07].

For example, Figure 1.1 gives a colored Petri net, modeling dinning philoso-
phers. Around a round table sit some philosophers. Between each pair of philosophers there is one folk on the table. These philosophers either think or eat. In order to eat, they have to take the following steps: (1) take the left folk, (2) take the right folk and then start eating, (3) put the right folk back, and (4) put the left folk back. In the colored Petri net model, to change the number of philosophers means to change the number of colors in the net.

Figure 1.1: A colored Petri net, modeling dining philosophers. All the declarations have been given on the top side (see Section 3 for how to read them). all() is a marking specification function, which means that all the colors in one color set are set to the same coefficient (here it is 1).

In our implementation, QPN^C is a colored extension of extended qualitative place/transition net (extended by different kinds of arcs, e.g. inhibitor arc, read arc, reset arc and equal arc [HRR+08]), SPN^C is a colored extension of biochemically interpreted stochastic Petri nets introduced in [GHL07] and extended in [HLG+09] and CPN^C is a colored extension of continuous Petri nets introduced in [GHL07].
1.2 Some notes
In Snoopy, we provide a similar editing environment for QPN^C, SPN^C and CPN^C; therefore the following descriptions will equally apply to QPN^C, SPN^C and CPN^C, except those concerning animation, simulation and analysis, but all these differences will be noted clearly.

1.3 Features - overview
Before exploring all features in detail in the following chapters, we give a brief overview for the expected features here:

1.3.1 Features for modeling
- Drawing of the Petri net graph as usual.
- Rich data types for color set definition (See Section 3.1.1.):
 - Simple types: dot, int, string, bool, enum, index,
 - Compound types: product, union.
- User-defined functions.
- Concise specification of initial marking for larger color sets (See Section 2.4.1.).
- Rate function definition for each transition instance (only for SPN^C/CPN^C) (See Section 2.4.2).
- Several extended arc types, such as inhibitor arc, read arc (often also called test arcs), equal arc, reset arc, and modifier arc, which are popular add-ons enhancing modeling comfort [HRR+08] (See Section 2.4.3).
- Several special transitions. Snoopy supports stochastic transitions with freestyle rate functions as well as three deterministically timed transition types: immediate firing, deterministic firing delay, and scheduled firing (see [HLG+09] for details.).
- Automatically colorizing some special subnets:
 - Colorizing any selected subnet,
 - Colorizing twin nets,
 - Colorizing T-invariants/master nets.

1.3.2 Features for animation (for QPN^C)
- The user can run animation automatically or control the animation manually:
 - Automatic animation,
 - Single-step animation by manually choosing a binding.
1.3.3 Features for simulation (for $\text{SPN}^C/\text{CPN}^C$)

- Simulation is done on an automatically unfolded Petri net.
- Show or export simulation results for colored or uncolored places/transitions separately or together.
- Several simulation algorithms to simulate SPN^C, including the Gielespie stochastic simulation algorithm (SSA) [Gil77].
- Several simulation algorithms to simulate CPN^C, including the Euler algorithm, Runge-Kutta algorithm etc.

1.3.4 Other features

- Highlighting the markings, color sets, guards, and expressions.
- QPN^C, SPN^C and CPN^C are exported to different net formalisms within Snoopy, see Figure 1.2 (See Chapter 5 for details).
- Export QPN^C and SPN^C to APNN.
- Export/import beyond Snoopy, e.g., export to CPN tools(See Chapter 5 for details).

![Diagram](image)

Figure 1.2: Export relationships among different net formalisms.
Chapter 2

Modeling

In this chapter, we will first demonstrate how to construct a colored Petri net ($QPN^C/SPN^C/CPN^C$) and consider several key modeling problems afterwards.

2.1 General modeling procedure - an introductory example

This section will present a general step-by-step procedure of how to construct a $QPN^C/SPN^C/CPN^C$ on the basis of a standard Petri net. A simple example will be used for the illustration of the procedure.

2.1.1 Transform a standard Petri net into a colored Petri net

One possibility to construct a colored Petri net is the transformation of an existing standard Petri net into a $QPN^C/SPN^C/CPN^C$. The following sections will concentrate on SPN^C, but all steps can be applied to QPN^C and CPN^C. We start with the following steps:

- Open a standard SPN (in our example 'Copynet.spstochpn', see Figure 2.1) that should be transformed into a colored SPN^C.

- Go to the menu bar, select File/Export and choose “Export to colored stochastic Petri net” (see Figure 2.2). Define the path where you want to save the transformed Petri net. All Petri net elements (places, transitions, arcs) and their properties (markings, rate functions, arc weights) will be used for the construction of the corresponding colored Petri net.

2.1.2 Define similar subnets in the Petri net

We now need to subdivide the Petri net and fold it. We proceed as follows:
Figure 2.1: Open a stochastic Petri net.

Figure 2.2: Export to colored stochastic Petri net.
• Open the transformed Petri net (shown in Figure 2.3). Please note that the transformed Petri net is now opened in the QPNC/SPNC environment. The transformation of the Petri net can be recognized by the assigned default color set Dot to all places of the original Petri net.

• Define similar subnets contained in the Petri nets. The Petri net shown in Figure 2.3 can obviously be divided into two subnets. Therefore, the color set that we will assign to the Petri net consists of two colors. For example: colorset Copy = int with 1-2. See Section 3.1.1 for how to define color sets.

![Figure 2.3: The transformed colored Petri net.](image)

2.1.3 Define declarations

We have to declare and define the color sets, variables, constants and functions that he wants to apply to his SPNC model. In the first step we define the color set according to the following procedure (see also section 5.1.1 for more information about color sets):

- Click on the tab "Colorsets" in declarations menu (left sidebar) and the color set definition dialogue will appear (shown in Figure 2.4).
- Define name, type (choose one in the drop down list) and colors of your color set.
- Check the syntax to proof your expressions.

For our running examples we will define the color set named "Copy" of the type integer (int) with the colors 1 and 2 (see Figure 2.4)

In the next step we define the variables (shown in Figure 2.5) that we want to use (see also section 5.1.2 for more information about variables). The procedure is analogous to the definition of the color set.
In our running examples we define the variable 'x', whose color set is 'Copy' that can be chosen in the drop down list.

If you want to add any functions and constants, proceed according to the mentioned points (for more information about the declaration of functions and constants see section 5.1.3 and 5.1.4)

Following the same procedure to declare constants and functions.
2.1.4 Assign color sets to places and define initial markings

Now we need to apply the defined color set to the places of the colored Petri net.

- Open the "Edit Properties dialog" of a certain place.
- In the General tab, specify the name of a place.
- In the Marking tab, specify the color set in the "Colorset" box and edit the initial marking in the 'MarkingList' (see Figure 2.6). You can always check the defined color sets with a click on the button "Colorset". If you want to apply the same marking for every color of this place use the function "all()", which means that all the colors in this color set are set to the same coefficient (here it is 1). (See Section 2.4.1 for more details on how to define initial markings.)

![Image of Edit Properties dialog](image_url)

Figure 2.6: Specify initial marking.

It is also possible to edit a group of places and set their color set and marking at once. Just select the places you want to edit and proceed like above.

- Select a group of places.
- Click Edit/Edit selected elements, and then a dialogue to specify the properties appear, e.g. see Figure 2.7.
In the Marking tab, specify the color set in the "Colorset" box and edit the initial marking in the "MarkingList".

Figure 2.7: Specify initial markings for a group of places.

2.1.5 Define arc expressions

In the next step, we define the expression of every arc. (See Section for how to write arc expressions.)

- Open the 'Edit Properties dialog' of a certain arc.

- In the Expression tab, write the expression, which can be aided by the expression assistant (Figure 2.8). Please note that this field should not be empty.

In our example, we will use the arc weight separated with "*" from the variable x.

You can also edit multiple arcs by selecting a group of arcs and edit them like above.

2.1.6 Define guards for transitions

The guards of a transition can be edited as follows, if they are needed (see also section Section 3.2.3).

- Open the 'Edit Properties dialog' of a transition.

- Write the guard expression in the 'Guard' tab (see Figure 2.9). You have also the possibility to use the guard assistant to define the guard functions.

Again, you can edit multiple transitions by selecting a group of transitions.
2.1.7 Define rate functions for transitions (for SPN^C/CPN^C)

You can also edit the rate functions for transitions if they are needed, which follows the following procedure. You have also the possibility to use the rate function assistant to define the rate functions.

- Open the "Edit Properties dialog" of a transition.

- Write the rate function expression in the "Function" tab (see Figure 2.10).

See Section 2.4.2 for how to write rate functions. Rate functions are only available for SPN^C and CPN^C.

For every mentioned step above exist a check of the syntax. With the help of the check function you can find and avoid mistakes. You can find this function in each dialogue.

After applying all the steps to our running example, we obtain the following colored Petri net model (see Figure 2.11). We don’t need the right subnetwork anymore, because we established this copy by assigning a color set consisting of two colors to the left one. This Petri net is equivalent to the original Petri net of Figure 2.1. With the help of high-level (colored) Petri nets we can easily increase the number of copies by changing the declaration of the color set instead of creating multiple graphical copies of one and the same subnet.
2.2 Constructing colored Petri nets

Colored Petri nets allow a more compact and parametric representation of a system by folding similar subnets. So it is possible to represent very concisely systems that would have required a huge uncoloured net. In this section, we will demonstrate how to construct basic colored Petri net components, so that we can build the whole model based on these components.

2.2.1 Basic colored Petri net components

The key step in the design of a colored Petri net is to construct basic colored Petri net units, through which we can obtain the whole colored Petri net model step by step. This process is also called folding. In the following we will introduce some folding ways to construct basic colored Petri net components, which are illustrated in Figure 2.12.

Figure 2.12 (a) shows the folding of two isolated subnets with the same structure. For this simple case, we only need to assign the color set "CS" to the place. We write the arc expression as x, where x is a variable of the type "CS". Thus, we get a basic colored Petri net component, illustrated on the right hand of Figure 2.12 (a).

In Figure 2.12 (b), the net to be folded is extended by two extra arcs from p_2 (p_1) to t_1 (t_2), respectively. To fold it, we use the same color set, and just modify the arc expression to $x + (+x)$, where the "+" in the $(+x)$ is the successor operator, which returns the successor of x in an ordered finite color
Figure 2.10: Write rate functions.

Figure 2.11: The colored Petri net model.
Declarations:

\[
\text{colorset CS = int with 1,2;}
\]
\[
\text{variable x : CS ;}
\]

Figure 2.12: Basic colored Petri net components. For all these three cases, we define the color set as 'CS' with two integer colors: 1 and 2. We use color '1' to represent the subnet containing p1 and t1, and color '2' to represent the subnet containing p2 and t2.

In Figure 2.12 (c), the net to be folded gets one extra arc from p2 to t1. To fold it, we use the same color set, and just modify the arc expression to \([x=1](x+x++(x))++[x=2]x\), meaning: if \(x = 1\), then there are two arcs connecting p with t, while if \(x = 2\), then there is only one arc connecting p with t.

In summary, the following rules apply when folding two similar nets to a colored Petri net. If the two subnets share the same structure, we just have to define a color set and set arc expressions without predicates. If the subnets are similar, but do not have the same structure, we may need to use guards or arc expressions with predicates. However, in either case, if we want to continue to add other similar nets, what we should do is usually to add new colors, and slightly change arc expressions or guards. Using these basic colored Petri net components, we can construct the whole colored Petri net model step by step.

2.2.2 Modeling branch and conflict reactions

In this section, we demonstrate how to construct colored models for two special situations: a branching reaction (One reaction produces several products from reactants.) and conflicting reactions (Several reactions use the same reactants and produce their products independently or concurrently.) Figure 2.13 and Figure 2.14 illustrate how to model these two situations, respectively.

Figure 2.13 shows how to fold a branching reaction into a colored component. For this case, we define two color sets: Dot with one color dot, and CS with two colors b and c. We then assign the color set "Dot" to the place A, and "CS" to the place P. We define the expression dot for the arc from A to T and b++c for the arc from T to P, which means that when T fires two tokens with colors b and c will be added to P. Please note that the "++" is the multiset addition operator.
Figure 2.14 shows how to fold conflicting reactions into a colored component. For this case, we use the same color sets. We assign the color set 'Dot' to the place A, and CS to the place P. We define the expression dot for the arc from A to T and x for the arc from T to P, where x is a variable of the type 'CS'.

$$r: A \rightarrow B + C$$

Figure 2.13: Petri net representation (on the left hand) and colored Petri net representation (on the right hand) of a branching reaction with reactant A and products B and C.

$$\text{Declarations:}$$

- colorset Dot = dot;
- colorset CS = enum with b, c;

Figure 2.14: Petri net representation (on the left hand) and colored Petri net representation (on the right hand) of two conflicting reactions with reactant A producing B or C.

$$r1: A \rightarrow B$$
$$r2: A \rightarrow C$$

$$\text{Declarations:}$$

- colorset Dot = dot;
- colorset CS = enum with b, c;
- variable $x : CS$;

2.2.3 Modeling nets with logical nodes

In this section we will discuss how to deal with nets with logical nodes, illustrated in Figure 2.15 to Figure 2.19.

2.3 Automatic colorizing

Now, three ways are allowed to automatically colorize selected subnets.

2.3.1 Colorizing any subset

Go to the menu bar, select Extras/Folding/Colorize and then the user can colorize a selected subnet. During this process, the user can set a new color set.
Figure 2.15: Case 1. In this case, we fold Subnet1 and Subnet2 (on the left hand) to a colored component (on the right hand). Each logical node has a unique copy in each subset.

Figure 2.16: Case 2. In this case, either the transition t_2 or place p_2 only have one unique copy in both subnets.
Figure 2.17: Case 3. Each logical node has a unique copy in each subset.

Declarations:
colorset Dot = dot;
colorset CS = enum with c1,c2;
colorSet CT = enum with T1,T2;
colorSet P1 = product with CT,CS;
colorSet P2 = product with CT,Dot;
variable x : CS;
variable y : CT

Figure 2.18: Colored Petri net model for Figure 2.17. Each logical node has a unique copy in each subset. Each subnet has the same structure and uses the same color set CS.
Figure 2.19: Colored Petri net model for Figure 2.17. Each logical node has a unique copy in each subnet. Each subnet allows a different structure and uses a different color set. Here Subnet 1 uses the color set CS1, and Subnet 2 uses the color set CS2.

(for places) and variable name (for edges). After this is done, all places have the same color set and all edges the same expression.

2.3.2 Colorizing twin nets
Go to the menu bar, select Extras/Folding/Generate twin nets and then the user can create twin nets for a given net.

2.3.3 Modeling T-invariants
Go to the menu bar, select Extras/Folding/Generate master nets and then the user can create a color Petri net model for the given T-invariant file. The user then can demonstrate T-invariants on this colored net.

2.4 Some other key modeling problems
2.4.1 Specifying initial markings
We provide several ways for specifying initial markings:

- Specifying colors and their corresponding tokens as usual,
- Specifying a set of colors with the same number of tokens,
Table 2.1: Specification of initial markings. Colorset $CS = \mathbb{Z} / 1 - 100$.

<table>
<thead>
<tr>
<th>Color/Predicate/Function marking</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,5,7</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x > 10$</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>all()</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

- Using a predicate to choose a set of colors and then specifying the same number of tokens,
- Using the `all()` function to specify for all colors a specified number of tokens.

Table 2.1 gives some examples for specifying initial markings.

2.4.2 Specifying rate functions

As there are four kinds of transitions (stochastic, immediate, deterministic and scheduled), we have to choose a suitable kind. Then we have to define the rate functions for the stochastic transitions, the weights for the immediate transition, the delays for the deterministic transitions, and the periodic for the scheduled transitions. But their specification has a similar procedure.

We start with the specification of predicates of rate functions. When writing predicates, there are some notes you should notice:

- For a same binding, only one predicate is allowed to be evaluated to true in the situation of more than one predicates. For example, in Table 2.2, we have two predicates, $x = 1$ and $x = 2$. For each binding, only one of these is evaluated to true. However, we are not allowed to write the predicates like this, $x = 1$ and $x \geq 1$, as these two predicates are evaluated to true for the binding $x = 1$.

- If the predicates of a transition do not cover all the instances of this transition, then the rate functions of these instances that are not covered are set to 0. For example, if we only use a predicate $x = 1$, this predicate will not cover the transition instance when x equals 2. During the syntax checking, there is a warning in the log window like this, "15:01:12: Notice: Transition: t1: predicates are not fully covered, where the rates are set to 0".

There are three ways for the specification of rate functions: at the colored level or at the instance level (Here we call each unfolded transition corresponding to a colored transition a transition instance of this colored transition.) or a combination of both of them. For any way, we should first use predicates to choose a or a set of transition instances and then specify rate functions.
Table 2.2: Specifying rate functions.

<table>
<thead>
<tr>
<th>#</th>
<th>Predicate</th>
<th>Rate function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>true</td>
<td>$P_2 \ast P_3$</td>
</tr>
<tr>
<td>2</td>
<td>$x = 1$</td>
<td>$P_2 \ast P_3$</td>
</tr>
<tr>
<td></td>
<td>$x = 2$</td>
<td>$5 \ast P_2 \ast P_3$</td>
</tr>
<tr>
<td>3</td>
<td>true</td>
<td>$P_1[1] \ast P_1[2]$</td>
</tr>
<tr>
<td>4</td>
<td>true</td>
<td>$P_1[1] \ast P_1[2] \ast P_2 \ast P_3$</td>
</tr>
<tr>
<td>5</td>
<td>$x = 1$</td>
<td>$P_1[1] \ast P_1[2] \ast P_2 \ast P_3$</td>
</tr>
<tr>
<td></td>
<td>$x = 2$</td>
<td>$5 \ast P_1[1] \ast P_1[2] \ast P_2 \ast P_3$</td>
</tr>
</tbody>
</table>

1) Specifying rate functions at the colored level

We can specify rate functions by referencing names of colored places, just like specifying rate functions for stochastic Petri nets. For instance, in Figure 2.20 we can do it at the colored level like shown in the #1 and #2 of Table 2.2.

2) Specifying rate functions at the instance level

We can also specify rate functions at the instance level. To do this, in a rate function, we reference a colored place, followed by [color/variable], which denotes the place instance by the specified “color” or “variable”. For instance, in Figure 2.20 we can do it at the instance level as shown in the #3 of Table 2.2.

In addition, we can also combine the above ways to specify rate functions, like shown in the #4 and #5 of Table 2.2.

Declarations:

```
colorset CS=int with 1,2;
variable x:CS;
```

Figure 2.20: An example to demonstrate how to specify rate functions. The operator ++ in the arc expression 1++2 is the multiset addition operator.
2.4.3 Extended arc types

We support the following extended arc types, which are popular add-ons enhancing modeling comfort (see Figure 2.21 for graphical representation in Snoopy):

- inhibitor arc,
- read arc,
- equal arc,
- reset arc, and
- modifier arc.

![Special arcs in Snoopy](image)

Figure 2.21: Special arcs in Snoopy.

Figure 2.22 gives an example for demonstrating the folding involving extended arcs, which contains two cases: 1) two special arcs are the same kind, and 2) two arcs are different kinds.

2.4.4 Consistency checks

In the rate function of a transition, only preplaces of this transition are allowed. However sometimes we may omit some preplaces in writing rate functions for different reasons. Therefore, we support to automatically check unused preplaces in rate functions, so that we can reexamine the rate functions. Consistency check is a part of syntax check. The principles we consider are as follows:

- If a rate function is constant, then we only check unused preplaces connected by modifier arcs,
- If a rate function contains places, then we check all unused preplaces.

The following is a consistency check result, which is taken from the Halo model.

- 11:08:35: Warning: The rate function for r31 has unused modifier places: SRI510

July 29, 2011
Figure 2.22: An example for demonstrating the folding involving extended arcs.

Declarations:
Colorset CS=int with 1,2;
Variable x:CS;

\[\begin{align*}
\text{dm}_1 & \rightarrow \text{p}_1 \quad 30 \\
\text{m}_1 & \rightarrow \text{t}_1 \\
\text{r}_1 & \rightarrow \text{dr}_1 \\
\text{gr}_1 & \rightarrow \text{gm}_1 \\
\text{gm}_1 & \rightarrow \text{p}_1 \\
\text{dr}_1 & \rightarrow \text{dm}_1 \\
\text{dm}_2 & \rightarrow \text{p}_2 \quad 50 \\
\text{m}_2 & \rightarrow \text{t}_2 \\
\text{r}_2 & \rightarrow \text{dr}_2 \\
\text{gr}_2 & \rightarrow \text{gm}_2 \\
\text{gm}_2 & \rightarrow \text{p}_2 \\
\text{dr}_2 & \rightarrow \text{dm}_2
\end{align*} \]
• 11:08:35: Warning: The rate function for r32 has unused modifier places: SRI510

• 11:08:35: Warning: The rate function for r36 has unused places: CheB

• 11:08:35: Warning: The rate function for r37 has unused places: CheB
Chapter 3

Annotation Language

In this chapter, we will describe the annotation language developed for colored Petri nets.

3.1 Declarations

3.1.1 Color sets

We provide two groups of data types to define color sets of colored Petri nets. The simple types can be directly used, but the compound ones must be based on defined color sets. The BNF form for the data type definition is given in Appendix A.2.

- Simple types: dot, int, string, bool, enum, index,
- Compound types: product, union.

Compared with CPN tools [CPN11], we do not support the list and record data types. The reason for not providing the record type is that the record type can be replaced by the product type. For the list type, the reason is that we only want to support finite color sets so as to get an unfolding Petri net from any color Petri net. In the following, we will describe each data type in detail.

1. dot

We define a dot data type to declare a color set "Dot" with only one black color "dot".

2. int

Integers are numerals without a decimal point. Here only non-negative integers are supported.

- Declaration Syntax:

 Integers separated by "," or "-". Here some legal definitions:
 - 1,2,3
For example, "1,3,5-7" defines the color set that has the following colors: "1,3,5,6,7". We can also support a constant in the integer color set definition, for example, in the '1-n', n is a integer constant (See Section 3.1.4 for constant declarations).

- Operations:
 - $i_1 + i_2$ addition
 - $i_1 - i_2$ subtraction
 - $i_1 * i_2$ multiplication
 - i_1 / i_2 division, quotient
 - $i_1 \% i_2$ modulus, remainder

(3) string
Strings are specified by sequences of printable ASCII characters surrounded with double quotes.

- Declaration Syntax:
 Strings separated by ',', or '-'. We also support regular expressions to define string, but they will be separated by ' [] '. Here some legal definitions:
 - a,b,c
 - a-c
 - a,c,e-g
 - [a][e,f,g]

For example, a,c,e-g defines the color set that has the following colors: a,c,e,f,g. [a][e,f,g] defines the colors: ae,a,f,ag.

- Operations:
 - s1 + s2 concatenate the strings s1 and s2.

(4) bool
The boolean values are true and false.

- Declaration Syntax:
 false, true.

- Operations:
 - ! b negation of the boolean value b,
 - b1 & b2 boolean conjunction, and,
 - b1 | b2 boolean disjunction, inclusive or.
(5) enum

Enumerated values are explicitly named as identifiers in the declaration.

- Declaration Syntax:

 Strings separated by "," or "-". We also support regular expressions to define enum, but they will be separated by "[]". Here some legal definitions:

 - a, b, c
 - a-c
 - a, c, e-g
 - [a][e, f, g]

 For example, a, c, e-g defines the color set that has the following colors: a, c, e, f, g. [a][e, f, g] defines the colors: ae, af, ag.

 The color set definition for enum is like that of string. The difference is that the initial character of an enum color is a letter or "-".

- Operations:

 There are no standard operations.

(6) index

Indexed values are sequences of values composed of an identifier and an index-specifier

- Declaration Syntax:

 index id with [intexp1 - intexp2]. For example, we can define an index color set as: colorset Philosopher with index phil[1-5].

- Operations:

 There are no standard operations.

(7) product

A product color set is a tuple of previously declared color sets.

- Declaration Syntax:

 Defined color sets separated by ";". For example, we can define a product color set as: colorset Philosopher with product H2O × Level, where H2O and Level are two previously defined color sets.

- Operations:

 There are no standard operations.
(8) union

A union color set is a disjoint union of previously declared color sets.

- Declaration Syntax:

 Defined color sets separated by ','. For example, we can define a union color set as: `colorset Salad with union Fruit, Dish`, where `Fruit` and `Dish` are two previously defined color sets.

- Operations:

 There are no standard operations.

3.1.2 Subsets of color sets

We can also define subsets for a defined color set in the following two ways:

- Enumerate the colors that will appear in a subset, separated by ',',

- Using a logic expression (predicate) to select a group of colors, see Section 3.2.3 for how to define a predicate.

For example, suppose `Colorset CS = int with 1 − 10, Variable x : CS` and then we can define a subset `CS_sub` for the color set `CS` using the logic expression `x <> 10`, which selects the colors, 1-9, for the subset `CS_sub`.

3.1.3 Variables

A variable is an identifier whose value can be changed during the execution of the model. They have the following characteristics:

- They are declared with a previously declared color set.

- They are bound to the variety of different values from their color set by the simulator as it attempts to determine if a transition is enabled.

- There can be multiple bindings simultaneously active on different transitions. These bindings can exist simultaneously because they have different scopes.

- They allow arc expressions with the ability to reference different values.

Variables can be used in the following situations (Suppose `Colorset CS = int with 1 − 10; Variable x : CS`):

- arc expressions, e.g., `x + 1`,

- guard, e.g., `x < 5`,

- marking predicate definition, e.g., `x < 6`,

- rate function predicate definition, e.g., `x < 7`.
3.1.4 Constants
A constant has a value and corresponding data type or color set. For example, we can define a constant as follows: \(\text{constant } n = \text{int with } 5 \). Constants can be used in the arc expressions, guards, predicates and integer color set definition.

Constants can be used in the following cases (Suppose Colorset \(CS = \text{int with } 1 - 10 \); \(\text{Variable } x : CS \); \(\text{Constant } n : CS \text{ with } 5 \)):

- arc expressions, e.g., \(x + n \),
- guard, e.g., \(x < n \),
- integer colorset definition, e.g., \(x < n \),
- marking predicate definition, e.g., \(x < n \),
- marking definition, e.g., we can set a color having a number of \(n \),
- rate function predicate definition, e.g., \(x < n \).

3.1.5 Functions
We can also define functions that are used in the whole net. A user-defined function contains the following components:

- Function name, which is an identifier,
- Parameter list, separated by ‘,’,
- Function body, which is an expression, and
- Return type, which is the type of the return value.

When we write a function body, we can use all the defined constants and all the operators in Table 3.1. A function body should comply with the BNF forms in Appendix A.3. However, please be careful when using the operator ++ and make sure that this will return only one single value or empty as we at present do not support that the user-defined function returns more than one values (colors).

Specifically speaking, a user-defined function can be used in the following situations:

- expressions on arcs,
- guards on transitions,
- predicates in rate functions of transitions, and
- predicates in marking definitions of places.

In Figure 1.1, we use two user-defined functions. For example,

\[
\text{Forks Left(Phils } x \text{) } \{ x \}.
\]
In this function, *Forks* is the type of the return value, which is an integer color set. *Left* is the function name. *Phils x* defines the parameter of this function. *x* is the function body, which returns the left folk.

\[
Forks \ Left(\text{Phils } x) \ { (x \% N) + 1 }.
\]

This function returns the right fork. \% is the modulus operator.

In Figure 6.5, we also use user-defined functions (See Table 6.1 for details.).

For example, the function *Fun1* is defined as follows:

\[
P \ Fun1(\text{HbO2 } x, \text{Level } y) \ { [y = L] \L'(x + 1, y) + [+y = H] \L'(x, y) }.
\]

In this function, *P* is the type of the return value, which is a product color set. *Fun1* is the function name. *HbO2 x, Level y* define two parameters of this function, where *x* is of the type *HbO2* and *y* of *Level*. \[y = L] \L'(x + 1, y) + [+y = H] \L'(x, y)\] is the function body, which means when *y* equals *L* it will return one token with the color \((x + 1, y)\) and when *y* equals *H* it will return one token with the color \((x, y)\). See Section 3.2.2 for more details about how to read function bodies.

3.2 Expressions

3.2.1 Operators

We support the operators summarized in Table 3.1.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Operator</th>
<th>Executed operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>+</td>
<td>Successor, which returns the successor of the current color in an ordered finite color set. If the current color is the last color, then it returns the first color.</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>Predecessor, which returns the predecessor of the current color in an ordered finite color set. If the current color is the first color, then it returns the last color.</td>
</tr>
<tr>
<td></td>
<td>@</td>
<td>Index extracting, which returns the index of an index color.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>Extracting a component from a product color.</td>
</tr>
<tr>
<td></td>
<td>!</td>
<td>Logical not.</td>
</tr>
<tr>
<td>9</td>
<td>*, /, %</td>
<td>Arithmetic multiplicity, division, and modulus.</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>Arithmetic addition, or string concatenation.</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>Arithmetic subtraction.</td>
</tr>
<tr>
<td>7</td>
<td><, <=</td>
<td>Less than, or less than or equal to.</td>
</tr>
<tr>
<td></td>
<td>>, >=</td>
<td>Greater than, or greater than or equal to.</td>
</tr>
<tr>
<td>6</td>
<td>=, <></td>
<td>Equal, or unequal.</td>
</tr>
<tr>
<td>5</td>
<td>&</td>
<td>Logical and.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>,</td>
<td>Used in a tuple expression.</td>
</tr>
<tr>
<td>2</td>
<td>`</td>
<td>Separating the coefficient and the color.</td>
</tr>
<tr>
<td>1</td>
<td>++</td>
<td>Multiset addition, connecting two multiset expressions.</td>
</tr>
</tbody>
</table>
3.2.2 Arc expressions

Arc expressions can be defined according to the BNF forms illustrated in Appendix A.3. Arc expressions can use all the constants, variables and user-defined functions and all the operators in Table 3.1. For example, in Figure 6.3 (see Table 6.1 for its declarations), we use three different expressions: dot e.g. on the arc from transition t1 to place O2, x e.g. from t1 to HbO2L and x + 1 e.g. from HbO2L to t1. Among these, dot is a constant, x is a variable and x + 1 is an addition expression.

In Figure 6.4, we will see more complex expressions. For example, \([y = L]dot\) on the arc from place O2 to transition t1 means that if \(y\) equals \(L\) it will return a token with the color dot, otherwise an empty value. In fact, \(y = L\) is a predicate of this expression.

3.2.3 Predicates/guards

Predicates/guards are in fact boolean expressions, which should be evaluated as boolean values. Guards are used for transitions, which decide which transition instances exist, while predicates are used in other situations. Predicates/guards can contain user-defined functions. Specifically speaking, we use the predicates in the following situations:

- Subset definition of color sets, where a predicate is used to select a group of colors to form a subset.
- Initial marking specification, where a predicate is used to select a group of colors.
- Rate function specification, where a predicate is used to select a group of transition instances.
- Arc expression specification, where a predicate is used to decide if the current arc is used or not.

For example, in Figure 6.3 (see Table 6.1 for its declarations), in the expression \([y = L]dot\), \(y = L\) is a predicate of this expression, where when \(y\) equals \(L\) is evaluated to true, this expression will return one token dot, otherwise it will return empty. In addition, there is a guard \(x <> 4\) e.g. on transitions t1, which means when this guard is evaluated to true, there exists a transition instance of t1.
Chapter 4

Animation, Simulation and Analysis

In this chapter, we will demonstrate how to animate/simulate/analyze \mathcal{QPN}^C, \mathcal{SPN}^C and \mathcal{CPN}^C.

4.1 Animation (for \mathcal{QPN}^C and \mathcal{SPN}^C)

When the Petri net model is opened, then the user can click the View/Start Anim-Mode to prepare animation. Before opening the animation dialogue, the syntax will be checked automatically for this model. The user can choose automatic animation or a manual one, in which case the user can select a binding. In the following, we will in detail describe it. Figure 4.1 shows the animation interface.

![Animation Interface](image)

Figure 4.1: Animation interface.
4.1.1 Automatic animation

When the user clicks the Play forward/Pause button, the automatic animation will begin/pause. Figure 4.2 shows one animation snapshot.

![Automatic animation snapshot](image)

Figure 4.2: One animation snapshot.

4.1.2 Manual animation

When the user just clicks the transition to fire, then the binding selection dialogue will appear if this transition is enabled. For example, when we click the transition t1, we will get Figure 4.3. Then the user can select manual binding.

![Manual animation snapshot](image)

Figure 4.3: Manual animation snapshot.

4.2 Simulation (for SPN^C and CPN^C)

When the user clicks the Play forward/Pause button, and then clicks stochastic simulation button, the simulation dialogue will appear. During this process, an
implicit unfolding is done, which unfolds a colored Petri net to a standard Petri net.

4.2.1 Run simulation

In the simulation dialogue (Figure 4.4), the user can first set simulation parameters, and then click the Start simulation button to start simulation. The settings include:

- Setting a marking set,
- Setting a rate function/weight/delay/schedule set,
- Setting a parameter set,
- Setting a simulation run interval, output step count, and simulation run number, and
- Choosing a simulation algorithm.

![Simulation interface](image)

Figure 4.4: Simulation interface.

4.2.2 Show simulation results

The user can choose to show simulation results as a table or plot. Further, in a table or plot, the user can choose which information to be shown: colored, unfolded or both. For example, Figure 4.5 gives the plot show of colored places.

Plus, the user can edit the table or plot to change settings of the information to be shown (Figure 4.6).
Figure 4.5: Plot for simulation results.

Figure 4.6: Edit plot.
4.2.3 Export simulation results

The user can choose which information to be exported to a file: colored, unfolded or both.

4.3 Analysis

4.3.1 Analysis using Charlie

We can export a colored Petri net to an uncolored Petri net, and then use Charlie [Cha11], [Fra09] to analyze its properties, e.g., P invariants and T invariants, or generate its reachability graph.

4.3.2 Analysis using Marcie

We can also export a colored stochastic Petri net to a stochastic Petri net, and then use the Marcie tool [Mar11], [SH09] to model check it.

4.3.3 Analysis using the MC2 tool

The MC2 tool [MC210] is used to analyze simulation traces of a stochastic model, so we can use MC2 to directly analyze simulation traces of a colored stochastic/continuous Petri net.

4.3.4 Analysis using CPN tools

We can export a colored Petri net produced by Snoopy to another colored Petri net readable by the CPN tools [CPN11]. So we can make use of the analysis tool of CPN tools [CPN11], [ASAP11] to analyze colored Petri nets at the colored level.
Chapter 5

Export/Import

5.1 \(\mathcal{QPN}^C \) export/import

5.1.1 Export to colored extended Petri nets

For an extended Petri net, the user can export it to a colored extended Petri net \(\mathcal{QPN}^C \) by defining a color set \(Dot \). After this transformation, the new net has the following features:

- All the places are set to the same color set, \(Dot \).
- All the arcs are set to the same expression, \(dot \).

5.1.2 Export to extended Petri nets

For a colored extended Petri net, the user can unfold it to an extended Petri net just by exporting it to an extended Petri net. During this process, all isolated nodes (places or transitions) are removed.

5.1.3 Export to colored stochastic Petri nets

For a colored extended Petri net \(\mathcal{QPN}^C \), the user can transform it to a colored stochastic Petri net. All the information has been kept during this process, and all the rate functions for the transformed \(SPN^C \) are set to MassAction(1).

5.1.4 Export to CPN tools

For a colored extended Petri net \(\mathcal{QPN}^C \), the user can transform it to a file read by CPN tools [CPN11]. After this transformation, sometimes we have to modify the arc or guard expressions to let them comply with the syntax of CPN tools. In summary, the following points should be noted:

- Modify user-defined functions in the declaration part,
- Change the syntax of predicates to the if-then-else syntax supported by CPN tools,
• Replace the operators of successor, predecessor etc. with user-defined functions,
• Modify arc expressions that belong to the union type.

5.1.5 Export declarations to a CSV file

We can export declarations of a colored Petri net to a csv file, which can be used for publication purposes or imported by other nets, i.e., when we creates a new colored net, we can import declarations from a CSV file for this new net.

5.1.6 Import declarations from a CSV file

Before defining a new colored Petri net, we can import declarations from a CSV file to reuse the declaration information which is defined before.

5.2 SPNC export/import

5.2.1 Export to colored stochastic Petri nets

For a stochastic Petri net, the user can export it to a colored stochastic Petri net by defining a color set \textit{Dot}. After this transformation, the new net has the following features:

• All the places are set to the same color set, \textit{Dot}.
• All the arcs are set to the same expression, \textit{dot}.

5.2.2 Export to stochastic Petri nets

For a colored stochastic Petri net, the user can unfold it to a stochastic Petri net just by exporting it to a stochastic Petri net. During this process, all isolated nodes (places or transitions) are removed.

5.2.3 Export to colored extented Petri nets

For a colored stochastic Petri net, the user can transform it to a colored extented Petri net. After this transformation, all the information about rate functions is lost.

5.2.4 Export to CPN tools

For a colored extented Petri net (QPNC), the user can transform it to a file read by CPN tools [CPN11]. After this transformation, sometimes we have to modify the arc or guard expressions to let them comply with the syntax of CPN tools.

5.2.5 Export declarations to a CSV file

We can export declarations of a colored Petri net to a csv file, which can be used for publication purposes or imported by other nets, that is, when we creates a new colored net, we can import declarations from a CSV file for this new net.
5.2.6 Import declarations from a CSV file

Before defining a new colored Petri net, we can import declarations from a CSV file to reuse the declaration information which is defined before.

5.3 CPN export/import

5.3.1 Export to colored continuous Petri nets

For a continuous Petri net, the user can export it to a colored continuous Petri net by defining a color set Dot. After this transformation, the new net has the following features:

- All the places are set to the same color set, Dot.
- All the arcs are set to the same expression, dot.

5.3.2 Export to continuous Petri nets

For a colored continuous Petri net, the user can unfold it to a continuous Petri net just by exporting it to a continuous Petri net. During this process, all isolated nodes (places or transitions) are removed.

5.3.3 Export to colored stochastic Petri nets

For a colored continuous Petri net, the user can transform it to a colored stochastic Petri net. After this transformation, the equations are transformed to rate functions.

5.3.4 Export declarations to a CSV file

We can export declarations of a colored continuous Petri net to a csv file, which can be used for publication purposes or imported by other nets, that is, when we create a new colored net, we can import declarations from a CSV file for this new net.

5.3.5 Import declarations from a CSV file

Before defining a new colored Petri net, we can import declarations from a CSV file to reuse the declaration information which is defined before.
Chapter 6

Examples

6.1 Cooperative ligand binding

We consider an example of the binding of oxygen to the four subunits of a hemoglobin heterotetramer. The hemoglobin heterotetramer in the high and low affinity state binds to none, one, two, three or four oxygen molecules. Each of the ten states is represented by a place and oxygen feeds into the transitions that sequentially connect the respective places. The qualitative Petri net model is illustrated in Figure 6.1 (taken from [MWW10]).

Now we begin to construct a colored Petri net model for Figure 6.1. For this, we first partition Figure 6.1 into five subnets, each of which is embraced by a rectangle and is defined as a color. So we can use five integers, 0-5, to represent these five subnets. We then group similar places, which are marked with an identical color. The places in each group (with a specific color) are considered as a colored place. The net after partitioning and grouping is shown in Figure 6.2.

Now we obtain for Figure 6.1 a \mathcal{QPN}^C model, illustrated in Figure 6.3, and further a more compact \mathcal{QPN}^C model (Figure 6.4) by continuing folding the left and right parts. From Figure 6.3, we can see that the colored Petri net model reduces the size of the corresponding standard Petri net model. Moreover, comparing Figure 6.3 with Figure 6.4, we can also see that we can build colored Petri net model with different level of structural details, which is especially helpful for modeling complex biological systems. After automatic unfolding, these two colored models yield exactly the same Petri net model as given in Figure 6.1, i.e., the colored models and the uncolored model are equivalent. The declarations for these two \mathcal{QPN}^C models of the cooperative ligand binding are given in Table 6.1.

Besides, we give another colored model (see Figure 6.5), which uses user-defined functions and is equivalent to Figure 6.4. In this model, we define two functions $\text{Fun}1$ and $\text{Fun}2$ to replace lengthy expressions. See Table 6.1 for details about these two functions.

From these colored nets, we can also see that the folding operation does reduce the size of the net description for the prize of more complicated inscriptions. The graphic complexity is reduced, but the annotations of nodes and edges creates a new challenge. This is not unexpected since a more concise
Figure 6.1: Cooperative binding of oxygen to hemoglobin represented as a Petri net model \cite{MWW10}. For clarity, oxygen is represented in the form of multiple copies (logical places) of one place.
Figure 6.2: Cooperative binding of oxygen to hemoglobin represented as a Petri net model, which has been partitioned into subnets.
Figure 6.3: QPN^C model for the cooperative binding of oxygen to hemoglobin, given as a standard Petri net in Figure 6.1. For declarations of color sets and variables, see 6.1.

Table 6.1: Declarations for the QPN^C models of the cooperative ligand binding.

<table>
<thead>
<tr>
<th>Declarations</th>
</tr>
</thead>
<tbody>
<tr>
<td>colorset Dot = dot;</td>
</tr>
<tr>
<td>colorset HbO2 = int with 0-4;</td>
</tr>
<tr>
<td>colorset Level = enum with H,L;</td>
</tr>
<tr>
<td>colorset P = product with HbO2 x Level;</td>
</tr>
<tr>
<td>variable x: HbO2;</td>
</tr>
<tr>
<td>variable y: Level;</td>
</tr>
<tr>
<td>Function P Fun1(HbO2 x, Level y) { [y=L] l'(x+1,y)++[y=H] l'(x,y) };</td>
</tr>
<tr>
<td>Function P Fun2(HbO2 x, Level y) { [y=H] l'(x+1,y)++[y=L] l'(x,y) };</td>
</tr>
</tbody>
</table>
Figure 6.4: QPN^C model for the cooperative binding of oxygen to hemoglobin, given as a standard Petri net in Figure 6.1. For declarations of color sets and variables, see Table 6.1.

Figure 6.5: Another QPN^C model for the cooperative binding of oxygen to hemoglobin, which uses user-defined functions and is equivalent to Figure 6.4. For declarations of color sets and variables, see Table 6.1.
write-up must rely on more complex components. Therefore, it is necessary to build a colored Petri net model at a suitable level of structural details.

6.2 Repressilator

In this section, we will demonstrate the \(\mathcal{SPN} \)C using an example of a synthetic circuit - the repressilator, which is an engineered synthetic system encoded on a plasmid, and designed to exhibit oscillations [EL00]. The repressilator system is a regulatory cycle of three genes, for example, denoted by \(g_a \), \(g_b \) and \(g_c \), where each gene represses its successor, namely, \(g_a \) inhibits \(g_b \), \(g_b \) inhibits \(g_c \), and \(g_c \) inhibits \(g_a \). This negative regulation is realized by the repressors, \(p_a \), \(p_b \) and \(p_c \), generated by the genes \(g_a \), \(g_b \) and \(g_c \) respectively [LB07].

![Figure 6.6: Stochastic Petri net model for the repressilator. The highlighted transitions are logical transitions.](image)

![Figure 6.7: \(\mathcal{SPN} \)C model of the standard Petri net given in Figure 6.6, and one simulation run plot for the repressilator. For rate functions, see Table 6.2.](image)

As our purpose is to demonstrate the \(\mathcal{SPN} \)C, we only consider a relatively simple model of the repressilator, which was built as a stochastic \(\pi \)-machine in [BCP08]. Based on that model, we build a stochastic Petri net model (Figure 6.6), and further a \(\mathcal{SPN} \)C model for the repressilator (shown on the left hand of Figure 6.7). This colored model when unfolded yields the same uncolored Petri net model in Figure 6.6.

July 29, 2011
Table 6.2: Rate functions for the SPN^C model of the repressilator.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Rate function</th>
</tr>
</thead>
<tbody>
<tr>
<td>generate</td>
<td>$0.1 \ast gene$</td>
</tr>
<tr>
<td>block</td>
<td>$1.0 \ast proteine$</td>
</tr>
<tr>
<td>unblock</td>
<td>$0.0001 \ast blocked$</td>
</tr>
<tr>
<td>degrade</td>
<td>$0.001 \ast proteine$</td>
</tr>
</tbody>
</table>

For the SPN^C model in Figure 6.7, there are three colors, a, b, and c to distinguish three similar components in Figure 6.6. The predecessor operator "\" in the arc expression $-x$ returns the predecessor of x in an ordered finite color set. If x is the first color, then it returns the last color.

As described above, the SPN^C will be automatically unfolded to a stochastic Petri net, and can be simulated with different simulation algorithms. On the right hand of Figure 6.7 a snapshot of a simulation run result is given. The rate functions are given in Table 6.2 (coming from [PC07]). The SPN^C model exhibits the same behavior compared with that in [PC07].

From Figure 6.7, we can see that the SPN^C model reduces the size of the original stochastic Petri net model to one third. More importantly, when other similar subnets have to be added, the model structure does not need to be modified and what has to be done is only to add extra colors.

For example, we consider the generalized repressilator with an arbitrary number n of genes in the loop that is presented in [MHE+06]. To build its SPN^C model, we just need to modify the color set as n colors, and do not need to modify anything else. For example, Figure 6.8 gives the conceptual graph of the generalized repressilator with $n = 9$ (on the left hand), and one simulation plot (on the right hand), whose rate functions are the same as in Table 6.2. Please note, the SPN^C model for the generalized repressilator is the same as the one for the three-gene repressilator, and the only difference is that we define the color set as n colors rather than 3 colors. This demonstrates a big advantage of color Petri nets, that is, to increase the colors means to increase the size of the net.

6.3 Where to find more examples

In [GLG+11], [GLT+11], colored (both stochastic and continuous) Petri nets have been used to describe the phenomenon of Planar Cell Polarity (PCP) signaling in Drosophila wing. Two colored models (abstract and refined) has been developed, which model a group of cells on a two-dimensional grid, corresponding to a fragment of the wing tissue. Moreover each cell is partitioned into seven virtual compartments, so these two models has a two-level hierarchy. In addition, these models involves product color sets, subsets of color sets, user-defined functions and etc.
Figure 6.8: Conceptual graph and one simulation run plot for the repressilator with 9 genes.
Bibliography

Appendix A

Annotation Language

A.1 Introduction to BNF

A BNF specification is a set of derivation rules, written as [BNF11]

\[
\text{symbol ::= expression}
\]

where:

1. \textit{symbol} is a nonterminal; \textit{expression} consists of one or more sequences of symbols; more sequences are separated by the vertical bar, '|', indicating a choice, the whole being a possible substitution for the symbol on the left.

2. Symbols that never appear on a left side are terminals, which are notated by using the single quotation marks ‘‘.

3. Symbols that appear on a left side are non-terminals.

4. ::= means "is defined as".
A.2 BNF for the data type definition

\[
\begin{align*}
type & ::= \text{simple_type} \\
& \quad | \text{compound_type} \\
simple_type & ::= \text{type_identifier} \\
& \quad | \text{structured_type} \\
type_identifier & ::= \text{unsigned_integer} \\
& \quad | \text{boolean} \\
& \quad | \text{string} \\
unsigned_integer & ::= \text{’int’} \\
boolean & ::= \text{’bool’} \\
string & ::= \text{’string’} \\
structured_type & ::= \text{enumeration} \\
& \quad | \text{index} \\
enumeration & ::= \text{identifier_list} \\
identifier_list & ::= \text{identifier} \\
& \quad | \text{identifier_list’}, \text{identifier} \\
index & ::= \text{identifier}[\text{’index_specifier’}] \\
index_specifier & ::= \text{’int’} \\
compound_type & ::= \text{product} \\
& \quad | \text{union} \\
product & ::= \text{type’\times’ type} \\
& \quad | \text{product’\times’ type} \\
union & ::= \text{type} \\
& \quad | \text{union’}, \text{type}
\end{align*}
\]
A.3 BNF for the annotation language

\[
\begin{align*}
CPN_expr & ::= \text{Multiset}_expr \\
Multiset_expr & ::= \text{Predicate}_expr \\
 & | \text{Multiset}_expr MSAAdditionOp \text{Predicate}_expr \\
MSAdditionOp & ::= '++' \\
Predicate_expr & ::= \text{Separate}_expr \\
 & | '\[' Or_expr '\]' \text{Separate}_expr \\
Separate_expr & ::= \text{Tuple}_expr \\
 & | \text{Separate}_expr SeparatorOp \text{Tuple}_expr \\
SeparatorOp & ::= ',' \\
Tuple_expr & ::= \text{Or}_expr \\
 & | '(' Comma_expr ')' \\
Comma_expr & ::= \text{Comma}_expr \\
 & | \text{Comma}_expr CommaOp \text{Tuple}_expr \\
CommaOp & ::= ',' \\
Or_expr & ::= \text{And}_expr \\
 & | \text{Or}_expr OrOp \text{And}_expr \\
OrOp & ::= '|' \\
And_expr & ::= \text{Equal}_expr \\
 & | \text{And}_expr AndOp \text{Equal}_expr \\
AndOp & ::= '&' \\
Equal_expr & ::= \text{Relation}_expr \\
 & | \text{Equal}_expr EqualOp \text{Relation}_expr \\
EqualOp & ::= '=' \\
 & | '<>' \\
Relation_expr & ::= \text{Add}_expr \\
 & | \text{Relation}_expr RelationOp \text{Add}_expr \\
RelationOp & ::= '<' \\
 & | '<=' \\
 & | '>=' \\
 & | '>'
\end{align*}
\]
Add_expr ::= Multiplicity_expr
| Add_expr AddOp Multiplicity_expr
AddOp ::= '+'
| '-'
Multiplicity_expr ::= Unary_expr
| Multiplicity_expr MultiplicityOp Unary_expr
MultiplicityOp ::= '*'
| '/'
| '%'
Unary_expr ::= Postfix_expr
| UnaryOp Postfix_expr
UnaryOp ::= '+'
| '-'
| '@'
| '!' Postfix_expr ::= Atom_expr
| Postfix_expr '\[Atom_expr \]'
| Postfix_expr DotOp Atom_expr
DotOp ::= '.'
Atom_expr ::= Constant
| Variable
| Function
| '(' CPN_expr ')' Constants ::= Integer
| String
Variable ::= Identifier
Function ::= Identifier(' ArgumentList ') '{ Function_body }'
ArgumentList ::= Or_expr
| ArgumentList CommaOp Or_expr
Function_body ::= Multiset_expr
Integer ::= Digit
| Integer Digit
String ::= LetterOrDigit
| String LetterOrDigit
Identifier ::= Letter
| Identifier LetterOrDigit
LetterOrDigit ::= Letter
| Digit
Digit ::= "0 − 9"
| "A − Za − z"