
User manual
http://www-dssz.informatik.tu-cottbus.de/DSSZ/

High-level simulation for coloured stochastic Petri nets in Snoopy
August 5, 2023

George Assaf, Monika Heiner and Fei Liu
Snoopy@informatik.tu-cottbus.de

http://www-dssz.informatik.tu-cottbus.de

Data Structures and Software Dependability
Computer Science Department
Brandenburg University of Technology Cottbus-Senftenberg

http://www-dssz.informatik.tu-cottbus.de/DSSZ/
http://www-dssz.informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

Contents

1 Introduction 5

2 Coloured stochastic Petri nets 7
2.1 Creating a new model . 7
2.2 Model construction . 8

3 High-level simulation of coloured stochastic Petri nets 13

2

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

List of Figures

1 Export relation between some of Snoopy ’s Petri net classes. . . . 6
2 Snoopy ’s main graphical user interface. 6
3 Petri net classes offered by Snoopy 7
4 Default view of a newly created stochastic Petri net file. One

discrete place and one stochastic transition are drawn on the
canvas. The coloured place is assigned the name attribute with
the value p1, whereas the stochastic transition is assigned the
name t1. 8

5 Coloured stochastic Petri net for the repressilator 9
6 Constant definition window. 10
7 Colour set definitions window. 10
8 Coloured discrete place - configuration 11
9 Colour stochastic transition properties. 12
10 Coloured discrete place - configuration 13
11 Places selection for output traces 14
12 High-level simulation dialogue. 15
13 High-level simulation traces of protein places. 16

3

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

List of Tables

1 Rate functions of the system’s reactions 9

4

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

1 Introduction

This document aims at introducing interested readers into coloured stochastic
Petri nets (SPN C) as they are implemented in our Petri nets framework Snoopy.
In this context, Snoopy [2] supports both modeling and simulation of different
kinds of systems using a bunch of Petri net classes, qualitative and quantitative,
alike.

Figure 1 sketches the quantitative (coloured) Petri net classes for exploring
model behaviour over time. Modelling covers basically the stochastic (SPN),
continuous (CPN), and hybrid (HPN) paradigms. The coloured extensions of
these net classes are coloured stochastic Petri nets (SPN C), coloured continuous
Petri nets (CPN C) and coloured hybrid Petri nets (HPN C). Moreover, a fuzzy
modelling approach has been combined with all these mentioned net classes, e.g.
FSPN C for fuzzy coloured stochastic Petri nets. It is possible to obtain one net
class from an other one by Snoopy’s export feature. It is worth noting that
moving from the coloured world to the uncoloured one involves net unfolding,
whereas moving from the uncoloured world to the coloured one requires net
folding.

Figure 2 presents Snoopy ’s main graphical user interface (GUI). The main
GUI comprises the following parts as referred to by numbers.

1. Tool Bar: offers a direct access to the frequently used commands, e.g.
save.

2. Menu Bar: offers a set of commands; for example, the File menu provides
commands to create, open, save, save as . . . etc.

3. Graph elements: this sub-window gives access to all graph elements, i.e.
the modelling elements that belong to the currently opened Petri net file.

4. Hierarchy: this sub-window shows the model hierarchy. Each level in the
model is represented using either coarse places or coarse transitions. By
clicking a coarse node (double-click), the corresponding view will be shown
for further editing.

5. Declaration: this sub-window displays the corresponding Petri net dec-
larations including constants, colour sets, colour functions, and observers.

6. View space: this sub-window displays the active Petri net view compris-
ing the canvas, in which the model is graphically constructed.

5

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

FSPN C

FSPN

FCPN C

FCPN

SPN C CPN C

HPN C

FHPN C

FHPN

HPN

SPN CPN

unfolding

folding

direct export

Figure 1: Export relation between some of Snoopy ’s Petri net classes. Please
note that for clarity, three folding/unfolding relations are not shown in this
figure (SPN– SPN C , CPN– CPN C , HPN– HPN C).

21

3

4

5

6

Figure 2: Snoopy ’s main graphical user interface.

6

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

2 Coloured stochastic Petri nets

2.1 Creating a new model

To create a new coloured stochastic Petri net, you must click the new file com-
mand either from the tool bar or from the File Menu. Then, you must choose the
coloured stochastic Petri net class from the list of document templates shown
in Figure 3. Once you click on the button Ok, an empty SPN C template will
be created with the default view.

To load an existing Petri net file kept on disk, you can choose the command
open from the tool bar or from the File menu.

Figure 3: Petri net classes offered by Snoopy .

Figure 4 gives the default view of a newly created SPN C with a coloured
discrete place and a stochastic transition connected by a standard arc. Compare
Figure 2, explaining the parts of the window.

7

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

Figure 4: Default view of a newly created stochastic Petri net file. One discrete
place and one stochastic transition are drawn on the canvas. The coloured place
is assigned the name attribute with the value p1, whereas the stochastic transi-
tion is assigned the name t1.

2.2 Model construction

In the following, we use the Repressilator as a running example to demonstrate
how to construct an SPN C model step by step. Figure 5 shows an SPN C of
the repressilator.

The repressilator [1, 4] is a synthetic genetic network serving as a model
to study gene regulatory networks and the dynamics of genetic oscillations.
Furthermore, the repressilator is scaleable by the number of genes involved in
the genetic network. Each gene produces a repressor protein that inhibits the
expression of the next gene in a cyclic way. The produced protein can also be
degraded. Note that the occurrence of each reaction in the system is governed
by a Mass-Action kinetics rate function, see Table 1. For teaching yourself about
colour expressions, e.g. -x and their interpretations, please check [3].

8

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

Table 1: Rate functions of the system’s reactions

reaction Rate function Kinetic parameter
generate k gen× gene k gen

block k block × protein× gene k block
degrade k deg × protein k deg
unblock k unblock × blocked k unblock

Figure 5: Coloured stochastic Petri net for the repressilator. This model is loaded
into Snoopy’s environment via the open command.

2.2.1 Constant definition

Figure 6 shows the constant definition window in Snoopy. This window com-
prises the constant grid (referred to by the number 1), displaying the list of
defined constants. Each constant has a name, type and value as known from
programming languages. Additionally, constants belong to groups. Each group
defines a set of constants that have the same usage, for example, constants that
are used as kinetic parameters are assigned to the group parameter, compare
Table 1. Moreover, each group defines a set of values called value set. This has a
big advantage of running, e.g., simulations with different constant values with-
out having to assign the constants new values. In this window, there are a set
of buttons (referred to by the number 2) that permits to add a new constant,
deleting existing constants, adding and removing of value sets.

9

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

Figure 6: Constant definition window.

2.2.2 Colour set definitions

Figure 7 presents the colour set definitions window, each colour set has a name,
type and set of colours. The colour set type can be a simple type such as enum
and int or can be compound colour set. A compound colour sets are defined
based on previously defined simple colour sets. For the repressilator, we need
only a simple colour set, Genes with enum type and three colours a, b, c. This
window comprises a set of buttons for adding/ removing colour sets.

Figure 7: Colour set definitions window.

2.2.3 Coloured places - settings

Figure 8 shows the necessary settings that need to be set. These settings are the
following: the colour set of the place (refereed to by number 1). Multi-set colour
expression representing the initial marking of the place (referred to by number
2). To define the intial marking of the place, the marking grid of the place has to

10

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

be set. the first column of the grid allows to define a colour and the third colour
defines the number of tokens of the corresponding colour. The second column
is not used for the simple repressilator, as it is used for compound colours, i.e.
tuple colours. However, to initialise the net with three genes, we assign the
colour function all() to the column Colors, which will return all the colours of
the colour set GeneSet and we assign 1 as a token number. This means this
place will be intialised with one token of each colour of the colour set GeneSet.
This window allows us to add a row to the grid (representing marking)/delete
a row from the grid. The name of the place can be set in the name attribute
given in the General tap.

Figure 8: Coloured discrete place - configuration

2.2.4 Coloured stochastic transition - settings

Figure 9 presents the coloured transition properties window. A colour transi-
tion is assigned a rate function in the Functions tap. in the functions grid. Each
function is associated with a predicate (Boolean expression) to define colour-
dependent rates. Thsi tap contains a set of assistant functions that help check
rate functions syntax, add or remove new functions. The name of the transi-
tion is assigned using the name attribute in the General tap. A transition can

11

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

be assigned a guard using the guard attribute given in the Guard tap of the
properties window.

Figure 9: Colour stochastic transition properties.

12

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

3 High-level simulation of coloured stochastic
Petri nets

After having an SPN C model constructed, the high-level simulation mode can
be started by selecting the command Start High-level Simulation/Animation
Mode or by pressing F5 button from the View menu, see Figure 10.

Figure 10: View of the high-level simulation dialogue.

Once High-level simulation mode is toggled, the high-level simulation dialog
will be loaded, compare Figure 12. This window is shared between Snoopy’s
coloured animator and the high-level simulation. The configuration section con-
sists of the following configuration sections, as they are labeled by numbers in
the taken screenshot:

1. Animator: this section comprises a set of buttons that are only used
by the user in animation mode. As long as the Color Simulation Mode
check box is not selected, this set of buttons will be enabled to control the
animator, e.g., to start automatic animation of the model.

2. Step counter: It is an integer label that is shared between the Animator
and high-level simulation, which indicates the current number of steps
performed by either the simulator or the animator.

3. Model configuration: This section is also shared between the colour ani-
mator and the high-level simulation. This section comprises a set of groups
of the markings, rate functions, and constants. To explore the model be-
haviour using different constant values of the model parameters, one can
change the value set of the group parameters so that there is no need to
destroy the simulation window to redefine constant values, see Figure 6.

13

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

4. High-level simulation configuration: this section is the most impor-
tant section of the high-level simulation. Note that the following configura-
tions are included within a collapsed window. To view the configurations,
you need to expand this window.

� Color Simulation Mode: This option is used to enable high-level
simulation, if it is disabled, then the animator is enabled by default.

� Interval start: It is a double value that determines the start time
value that the traces will be recorded. Please note that simulation
always starts from 0, but this value is to determine the output traces
start time.

� interval end: specifies the end simulation time. This value by default
is 100 time units.

� Interval splitting: an integer value determines the number of steps
that will be recorded. The default value is 100.

� Seed Value: a long integer value that represents the seed value of
the random number generator utilised by the high-level simulation
algorithm. It is used for reproducing simulation traces using the same
settings. Note that the default value will be generated randomly, in
case the user does not give an explicit seed value. If the random
value is chosen, then the seed value will be shown once, the user
starts model simulation (by clicking the start button).

� Choose Places: this button is used to choose which palce instances
and/or coloured places that are of interest to be recorded in the
output trace file that has previously specified, See Figure 11.

� Plot Viewer: It permits viewing simulation traces by double-clicking
the Plot Viewer. Consequently, the Viewer window will be displayed
as shown. Currently, It is possible to choose which place to plot as
well as to export the simulation traces into CSV format.

Figure 11: Places selection for output traces. The left sub-window contains the
entire place instances and coloured places. The right-hand sub-window contains
the selected places that are chosen by the user.

14

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

Figure 12: High-level simulation dialogue.

After having the high-level simulation settings configured, the simulation can
be started by clicking the start button. The simulation progress will be shown as
the simulation proceeds in the progress bar as well as the simulation run time.
Figure 13 gives the simulation traces of the place instances of the place protein
as well as the coloured place protein.

15

Snoopy@informatik.tu-cottbus.de

Snoopy@informatik.tu-cottbus.de August 5, 2023

Figure 13: High-level simulation traces of protein places including the coloured
place protein. Simulation settings: End time: 100,000; interval splitting: 100,
seed value: 1895243956.

References

[1] Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network of
transcriptional regulators. Nature, 403(6767):335–338, Jan 2000.

[2] Monika Heiner, Mostafa Herajy, Fei Liu, Christian Rohr, and Martin Schwar-
ick. Snoopy – a unifying Petri net tool. In Serge Haddad and Lucia Pomello,
editors, Application and Theory of Petri Nets, pages 398–407, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

[3] F Liu, M Heiner, and C Rohr. Manual for Colored Petri Nets in Snoopy.
Technical Report 02-12, Brandenburg University of Technology Cottbus, De-
partment of Computer Science, March 2012.

[4] Fei Liu and Monika Heiner. Petri Nets for Modeling and Analyzing Biochem-
ical Reaction Networks, pages 245–272. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

16

Snoopy@informatik.tu-cottbus.de

	Introduction
	Coloured stochastic Petri nets
	Creating a new model
	Model construction

	High-level simulation of coloured stochastic Petri nets

