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Appendix

This document provided at
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples
contains supplementary material for

Self, Gilbert, Heiner:
Derivation of a biomass proxy for dynamic analysis of whole genome metabolic models;
In Proc. CMSB 2018, Brno, Springer, LNCS/LNBI 11095, pp. 39-58, September 2018
https: // doi. org/ 10. 1007/ 978-3-319-99429-1_ 3 (open access)

Please note, all references given below relate to the reference list in the main paper.

Table 4. FBA biomass function for E. coli core model K12 [21]

metabolite stoichiometry metabolite stoichiometry

substrates M_3pg_c 1.496 M_accoa_c 3.7478
M_atp_c 59.81 M_e4p_c 0.361
M_f6p_c 0.0709 M_g3p_c 0.129
M_g6p_c 0.205 M_gln_L_c 0.2557
M_glu_L_c 4.9414 M_h2o_c 59.81
M_nad_c 3.547 M_nadph_c 13.0279
M_oaa_c 1.7867 M_pep_c 0.5191
M_pyr_c 2.8328 M_r5p_c 0.8977

products M_adp_c 59.81 M_akg_c 4.1182
M_coa_c 3.7478 M_h_c 59.81
M_nadh_c 3.547 M_nadp_c 13.0279
M_pi_c 59.81

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples
https://doi.org/10.1007/978-3-319-99429-1_3


60 Self, Gilbert, Heiner

M_13dpg_c

M_2pg_c

M_3pg_c
M_6pgc_c

M_6pgl_c

M_ac_c

M_ac_e

M_acald_c

M_acald_e

M_acon_C_c

M_actp_c

M_akg_c

M_akg_e

M_cit_c

M_co2_c

M_co2_e

M_dhap_c M_e4p_c

M_etoh_c

M_etoh_e

M_f6p_cM_fdp_c

M_for_c

M_for_e

M_fru_e

M_fum_c

M_fum_e

M_g3p_c

M_g6p_c
M_glc_D_e

M_gln_L_c

M_gln_L_e

M_glu_L_c

M_glu_L_e

M_glx_c

M_h2o_c

M_h2o_e

M_h_c

M_h_e

M_icit_c

M_lac_D_c

M_lac_D_e

M_mal_L_c

M_mal_L_e

M_nh4_c

M_nh4_e

M_o2_c

M_o2_e

M_oaa_c

M_pep_c

M_pi_c

M_pi_e

M_pyr_c

M_pyr_e

M_r5p_c

M_ru5p_D_c

M_s7p_c

M_succ_c

M_succ_e

M_xu5p_D_c

M_ac_b

M_acald_b

M_akg_b

M_co2_b

M_etoh_b

M_for_b

M_fru_b

M_fum_b

M_glc_D_b

M_gln_L_b

M_glu_L_b

M_h2o_b

M_h_b

M_lac_D_b

M_mal_L_b

M_nh4_b

M_o2_b

M_pi_b

M_pyr_b

M_succ_b

M_adp_c
INIT

M_amp_c
INIT

M_atp_c
INIT

M_nad_c
INIT
M_nadh_c
INIT

M_accoa_c
INIT
M_coa_c
INIT

M_succoa_c
INIT

M_q8_c
INIT
M_q8h2_c
INIT

M_nadp_c
INIT
M_nadph_c
INIT

in_M_ac_b

in_M_acald_b

in_M_akg_b

in_M_co2_b

in_M_etoh_b

in_M_for_b

in_M_fru_b

in_M_fum_b

in_M_glc_D_b

in_M_gln_L_b

in_M_glu_L_b

in_M_h2o_b

in_M_h_b

in_M_lac_D_b

in_M_mal_L_b

in_M_nh4_b

in_M_o2_b

in_M_pi_b

in_M_pyr_b

in_M_succ_b
out_M_ac_b

out_M_acald_b

out_M_akg_b

out_M_co2_b

out_M_etoh_b

out_M_for_b

out_M_fru_b

out_M_fum_b

out_M_glc_D_b

out_M_gln_L_b

out_M_glu_L_b

out_M_h2o_b

out_M_h_b

out_M_lac_D_b

out_M_mal_L_b

out_M_nh4_b

out_M_o2_b

out_M_pi_b

out_M_pyr_b

out_M_succ_b

R_ACALDre_R_ACALD

R_ACALDt
re_R_ACALDt

R_ACKrre_R_ACKr

R_ACONTare_R_ACONTa

R_ACONTbre_R_ACONTb

R_ACt2rre_R_ACt2r

R_ADK1
re_R_ADK1

R_AKGDH

R_AKGt2rre_R_AKGt2r

R_ALCD2xre_R_ALCD2x

R_ATPM
R_ATPS4rre_R_ATPS4r

R_CO2t
re_R_CO2t

R_CS
R_CYTBD

R_D_LACt2re_R_D_LACt2

R_ENOre_R_ENO

R_ETOHt2rre_R_ETOHt2r

R_EX_ac_e

R_EX_acald_e

R_EX_akg_e

R_EX_co2_e

re_R_EX_co2_e

R_EX_etoh_e

R_EX_for_e

R_EX_fru_e

R_EX_fum_e

R_EX_glc_e

re_R_EX_glc_e

R_EX_gln_L_e

R_EX_glu_L_e

R_EX_h_e_fix

re_R_EX_h_e_fix

R_EX_h2o_e_fix
re_R_EX_h2o_e_fix

R_EX_lac_D_e

R_EX_mal_L_e

R_EX_nh4_e
re_R_EX_nh4_e

R_EX_o2_e

re_R_EX_o2_e

R_EX_pi_e

re_R_EX_pi_e

R_EX_pyr_e

R_EX_succ_e

R_FBA
re_R_FBA R_FBP

R_FORt2

R_FORti

R_FRD7

R_FUMre_R_FUM

R_FUMt2_2

R_G6PDH2rre_R_G6PDH2r
R_GAPDre_R_GAPD

R_GLNS
R_GLNabc

R_GLUDyre_R_GLUDy

R_GLUN

R_GLUSy

R_GLUt2rre_R_GLUt2r

R_GND R_H2Otre_R_H2Ot

R_ICDHyrre_R_ICDHyr

R_ICL

R_LDH_Dre_R_LDH_D

R_MALS

R_MALt2_2

R_MDHre_R_MDH

R_ME1R_ME2

R_NADH16

R_NADTRHD

R_NH4tre_R_NH4t

R_O2t

re_R_O2t

R_PDH
R_PFK

R_PFL

R_PGI
re_R_PGI R_PGKre_R_PGK R_PGL

R_PGMre_R_PGM

R_PIt2rre_R_PIt2r

R_PPCK

R_PTArre_R_PTAr

R_PYK

R_PYRt2rre_R_PYRt2r

R_RPEre_R_RPE

R_RPIre_R_RPI

R_SUCCt2_2R_SUCCt3

R_SUCDi

R_SUCOASre_R_SUCOAS

R_TALAre_R_TALA

R_THD2

R_TKT1re_R_TKT1
R_TKT2re_R_TKT2

R_TPI
re_R_TPI

R_Biomass_Ecoli_core_w_GAM

R_PPSre_R_PPS

R_FRUpts2re_R_FRUpts2
R_GLCptsre_R_GLCpts

R_PPCre_R_PPC

re_R_EX_ac_e

re_R_EX_acald_e

re_R_EX_akg_e

re_R_EX_etoh_e

re_R_EX_for_e

re_R_EX_fru_e

re_R_EX_fum_e

re_R_EX_gln_L_e

re_R_EX_glu_L_e

re_R_EX_lac_D_e

re_R_EX_mal_L_e
re_R_EX_pyr_e

re_R_EX_succ_e

42

60

2

460
4

5 2
60

3

60
2

2
2

4

2

2

23
2

4 2

2
2

3

2

24

44

1313

2603

Fig. 6. Stochastic Petri net representation of reduced E. coli K-12 GEM [21]; SBML read and
layout generated with Snoopy [10]. Colour code: green: boundary conditions and generated
boundary transitions (mimicking the FBA assumption of appropriate in/outflow), orange:
reversible exchange reactions for transport between boundary condition and extracellular
compartment (the reversible directions of which are used to configure specific growth con-
ditions), blue: transport reactions between extracellular compartment and cytosol, yellow:
P-invariants, computed with Charlie [12]; see [7] for more details.
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Workflow protocol

1 Define growth conditions

2 Generate biochemical data under stochastic simulation.
a) Generate biochemical time series data containing relative concentrations of

metabolites and rates of reactions under dynamic stochastic simulation.

b) To date, this data has been generated using the StageCD biochemical model
for the reduced genome metabolic E. coli Core model for the K12 strain.

c) To date, data for each condition has been provided in separate files as was the
information pertaining to metabolites and reactions. Any automated consoli-
dation of these files at this stage will help to improve efficiency.

d) Each file to contain simulated data over 1,000 time points and each data point
is the average of 10,000 iterations.

3 Summarise biochemical data
a) Consolidate any data provided in separate files and store in a single file, so

that it can analysed further.

b) Generate average values for each condition, for each variable (metabolite of
reaction) and for each pentile for each variable. This procedure would need to
be modified in order to undertake time series regression.

c) Review and modify variables.
i) Remove any redundant variables, such as malfunctioning biomass func-

tions. If there is any doubt as to whether to include a variable it is recom-
mended to do so, as it could potentially give rise to unexpected insights
at a later date.

ii) Derive new variables to reflect the net output from reversible reactions, as
the data for the forward and reverse component of the reversible reaction
was contained in separate fields. Again, there is scope for more automation
here.

iii) Create dichotomous variables to distinguish between aerobic and anaero-
bic conditions and paired conditions and single conditions. This step can
always be incorporated at a later stage.

4 Generate a vector of biomass values using FBA steady state analysis.
a) Generate gold standard target data for biomass by applying steady state anal-

ysis using FBA with Cobra software.

b) Ensure that this analysis is undertaken on the same model as step 2 above.

5 Consolidate data generated in steps 3 and 4 in order that the information is
contained in a single file.
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6 Conduct preliminary data analysis to ascertain whether any new insights can be
derived about the data. This is especially important in the event that new kinds
of data have been generated under stochastic simulation, such as data based on
trios of conditions.

7 De-dimensionalise the data and undertake variable clustering. It is expected that
this process can be fully automated in future. This can be undertaken by applying:
a) Clustering analysis on the variables.

b) Principle component analysis.

c) Employing algorithms such as the one used within the automated regression
process to remove collinearity.

8 Conduct regression analysis using fully automated procedures developed in R.
This involves using variable selection algorithms to select variables together with
an automated process to iterate through all the different combinations of the
variables. The number of subsets that can be used to build and analyse linear
regression models is limited by the computational resources available. Though
additional computing power and the scheduling of jobs over the weekend should
substantially increase the number of different models that can be explored.

9 Undertake a process of traditional statistical stepwise regression incorporating
any new insights identified in the preliminary data analysis step.

10 Review models developed in steps 8 and 9 and make modifications to improve the
quality and robustness of the model.

11 Conduct model validation
a) Validation the model for prediction by applying the following

i) Akaike’s information criterion (AIC)

ii) Bayesian information criterion (BIC)

iii) 10-fold cross-validation

iv) Boot-strapping also recommended.

b) Validation for statistical inference by reviewing;
i) Assumption of linearity

ii) Assumption of homoscedasticity

iii) Assumption no collinearity

iv) Assumption of multivariate normality


