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This document explains the procedure of modelling and simulating FPN
[1] and FPN C in Snoopy ; please compare Figure 1 . Please note that the same
steps for one net class can be equally applied to the other classes, just differen-
tiate between uncoloured Petri nets (PN ) and coloured Petri nets (PN C) [3].
Furthermore, we give more details about Latin Hybercube Sampling strategies
used by Snoopy’s FPN .

FSPN C

FSPN

FCPN C

FCPN

SPN C CPN C

HPN C

FHPN C

FHPN

HPN

SPN CPN

unfolding

folding

direct export

Figure 1: Export relation between some of Snoopy ’s Petri net classes. Fuzzy
nets differ from their crisp counterparts by additional pre-defined data types,
supporting fuzzy numbers, which can be used as kinetic parameters. The exten-
sions presented in [1] are coloured in blue, while the latest addition of net classes
supported by Snoopy and their export relation are coloured in red. Please note
that for clarity there are three folding/unfolding relations not shown in the fig-
ure (SPN– SPN C , CPN– CPN C , HPN– HPN C).
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1 Fuzzy Petri nets (uncoloured )

There are three uncoloured FPN net classes, comprising FSPN , FCPN and
FHPN . The modelling procedure of these classes can equally be applied. Please
note that each net class has its own modelling elements; these elements are listed
in the elements tree of that class.

1.1 Modelling

Creating an FPN model starts off with creating a new (empty) net file by
choosing file menu and then clicking new command; the list of Snoopy net
classes will appear as a result; compare Figure 3. The second way is to use the
Export feature; compare Figure 2.

Figure 4 shows the fuzzy continuous Petri net model Decay dimerzation
model which is adopted from [4] in which the transition r3 has k3 as a fuzzy
kinetic parameter in its rate function; the Table 1 shows the rate functions
associated with each transition.

Figure 2: Creating an FCPN net by exporting a Continuous Petri Networks.
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Figure 3: Creating a new (empty) FCPN model by selecting the appropriate
template.

Table 1: Decay dimerisation FCPN - rate functions of transitions, all following
mass/action kinetics.

Transition ri Rate function Kinetic constant ki

r1 k1 · S1 0.2
r2 k2 · S1 · S1 0.04
r3 k3 · S2 (0.45,0.5,0.55)
r4 k4 · S2 (4.9,5.0,5.4)
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Figure 4: decay dimerisation model (FCPN ). The fuzzy kinetic parameters k3
and k4 are used in the highlighted transitions r3 and r4, respectively. It consists
of a degradation reaction r1, two reversible dimerization reactions (r2 and r3)
and a conversion reaction r4; this model is adopted from [5]

1.2 Constant definitions

Constant Definitions window allows users to create constants by specifying con-
stants name, the group to witch the constant it belongs, the type and the cor-
responding value. T FN data type can be specified for defining a constant as a
triangular fuzzy number; compare Figure 5.
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Figure 5: Constant definitions window.

1.3 Fuzzy Petri nets simulation

Simulation of FPN models starts off with switching to simulation mode (choose
view Start simulation-mode from Snoopy ‘s view menu). Once simulation con-
figuration window appears, a user can configure the experiment as usual. For
FPN simulation settings, a user can specify number of alpha level, number of
sampling points and the sampling strategy; compare FIgure 6. Then a user can
start the simulation by clicking on start simulation button. Once simulation
finishes, fuzzy band and membership functions of the selected variables can be
viewed using viewer window; compare Figure 7.

1.4 Fuzzy Continuous PN Test Cases

Besides to decay dimerzation, we give another FCPN test case; It is called
Heat Shock Response [10]. It is an ancient, evolutionary conserved regulatory
mechanism that allows the cell to quickly react to elevated temperatures and
other forms of physiological and environmental stress. The transition r7 has a
fuzzy kinetic parameter. Figure 8 gives the FCPN model in Snoopy and the
value of the fuzzy kinetic parameter. Figure 9 gives the fuzzy configuration and
simulation results (fuzzy band and timed-membership function) of the variable
hsp (heat shock protein)
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Figure 6: FCPN simulation configuration window. The simulation dialog con-
sists of the same settings as the standard CPN simulation dialog.
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(a) Fuzzy band of the variable S2.

(b) Membership function of the variable S2
at t = 16.

Figure 7: Fuzzy band and membership function of the variable S2 at the time
pointt = 16. (a) Fuzzy band . (b) Membership function.
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MassAction(k4)

(a) The FCPN model for eukaryotic heat
shock response model which is adopted
from [10]

(b) TFN drawing sub-window of the con-
stant definitions window, showing the fuzzy
kinetic parameter k4.

Figure 8: The FCPN model for eukaryotic heat shock response model which
is adopted from [10]. The fuzzy kinetic parameter is set in the transition r7
(marked with blue). (a) FCPN model. (b) k4 defined as TFN .
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(a) Fuzzy band of the variable hsp

(b) Membership function of the variable
hsp at the time point t = 718.

Figure 9: Fuzzy band and membership function of the variable hsp at t = 718.
(a)Fuzzy band. (b) Membership function of the variable hsp at t = 718 .
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1.5 Fuzzy Stochastic PN Test Cases

Here we present two fuzzy stochastic Petri net models. The first model is called
Yeast Polarization describing the pheromone-induced G-protein cycle in Sac-
charomyces cerevisiae; see Figure 10. It is kinetic rate parameters are given in
the Table 2. Figure 11 gives the simulation results.

Table 2: Yeast polarization FSPN - rate functions of transitions, all following
mass/action kinetics.

Transition ri Rate function Kinetic constant ki

r1 k1 · φ 0.38
r2 k2 ·R 0.04
r3 k3 · (L+R) 0.082
r4 k4 ·RL 0.12

r5 k5 · (RL+G) 0.12

r6 k6 ·Ga (0.08,0.1,0.12)

r7 k7 · (Gd +Gbg) 0.005

r8 k8 ·Ga (10,13.21,15)

The second model is called Virus Infection [8]; which describes the infection
of healthy cells by a virus. Cells grow or die. The virus may enter a healthy
cell (UCell) and infect it (ICell). Then the virus starts the replication of itself
and more viruses are released (note the arc weight of 10). Besides, infected cells
may die and viruses may degrade. Figure 12 gives the FSPN model in Snoopy
of the Virus Infection model; Table 3 gives the crisp/fuzzy kinetic parameters
used by the experiment. Figure 13 gives the simulation results in terms of fuzzy
bands and timed-membership functions.

Table 3: Virus Infection FSPN - rate functions of transitions, all following
mass/action kinetics.

Transition r Rate function Kinetic constant k

Cell growth k1 1.0
UCell death k2 · Uninfected cells 0.04
Infection k3 · Uinfected cells · V irus (0.01,0.5,1.0)
V irus release k4 · Infected cells 1.0

ICell death k5 · Infected cells 0.5

Degradation k6 · V irus 0.1
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Figure 10: The FSPN model for yeast polarisation which is adopted from [8].
The fuzzy kinetic parameters k6 = (0.08, 0.1, 0.12) and k8 = (10, 13.21, 15) are

used in the highlighted transitions r6 and r8, respectively.
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(a) Fuzzy bands of the variables G a and
G bg.

(b) Membership function of the variables
G a and G bg at the time point t = 20.

Figure 11: Fuzzy bands and membership functions of the variables G a and G bg
at t = 20. Number of stochastic runs is 200. The sampling algorithm is Random
LHS. (a)Fuzzy bands. (b) Membership functions.
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Figure 12: The FSPN model for virus infection which is adopted from [8]. The
fuzzy kinetic parameter is set in the transition Infection (marked with red)
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(a) Fuzzy bands of the variables.

(b) Membership functions of the variables
at t = 82.

Figure 13: Fuzzy bands and membership functions of the variables at the time
pointt = 82. (a) Fuzzy band . (b) Membership function.
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1.6 Fuzzy Hybrid PN Test Case

We changed the Yeast Polarisation model to be in a hybrid fashion. First we
exported the FSPN model into FHPN ; then we converted the transitions r1,
r2 and r6 to the continuous type; we also converted the places R, G a and
G d to the continuous type. All other transition/places remain as such. Please
note that we also kept values of kinetic parameter as such. Figure 14 gives the
Snoopys’ FHPN model; while Figure 15 gives the simulation results.

Figure 14: The FHPN model of yeast polarisation,
obtained by exporting the FSPN model shown in Figure 10 to an FHPN

model and converting a few nodes to continuous ones (drawn with thick grey
line style).
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(a) Fuzzy bands of the variables.

(b) Membership functions of the selected
variables at t = 57.

Figure 15: Fuzzy bands and membership functions of the variables at the time
pointt = 57. Nimber of stochastic runs is 200 and the time synchronization
algorithm is (Static exact). (a) Fuzzy bands. (b)Timed membership functions.
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2 Coloured fuzzy Petri nets

Here we provide a collection of Snoopy screenshots outlining the workflow
of modelling and simulating FPN C , comprising the FCPN C , FSPN C and
FHPN C . We demonstrate the modelling and simulating procedures using Re-
pressilator test case as coloured fuzzy stochastic Petri net, the coloured Fuzzy
continuous Petri net and coloured Fuzzy hybrid Petri net can be applied in an
equivalent way.

2.1 Modelling

The modelling procedure starts off with creating a new coloured Fuzzy Petri
net file, a net class can be chosen from the list of Snoopy ’s Petri nets family;
compare Figure 16.

Figure 16: List of Petri net classes in Snoopy .

Coloured fuzzy Petri nets can also be created by using Export feature e.g.,
coloured stochastic Petri nets SPN C cen be exported to coloured fuzzy stochas-
tic Petri net.; compare Figure 17.
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Figure 17: Export dialog of coloured stochastic Petri net.
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2.2 Constant definitions

Once coloured fuzzy net has been created, a user can define constants using
constant definitions window; by double clicking on the constants item on the
declarations tree. A user can define constants to be used, e.g., in the net as whole
or in the rate functions of transitions. For defining a constant as triangular
fuzzy number, a user has to choose the T FN data type, then the value of
the constants can be specified by writing the value directly in the value field;
compare Figure 5, or by drawing it graphically using T FN drawing window
which appears by double clicking on the value field ; compare Figure 18.

Figure 18: TFN drawing window.

2.3 Example - Repressilator

The coloured model of repressilator consists of three places and three transitions,
each place is assigned to a colour set Gene, the transition generate has the
following rate function

k gen ∗ gene

, where k gen is a fuzzy kinetic parameter T FN (0.05,0.1,0.15) and gene is a
variable (pre-place); compare Figure 19. The Table 4 shows the transition rates
associated to each transition.

The kinetic parameters can be colour-dependent,e.g., one colour can have a
crisp kinetic parameter, and another colour a fuzzy kinetic parameter defined as
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Figure 19: Coloured fuzzy stochastic Petri net model in Snoopy which is ex-
ported from SPN C [7] The declarations: colorset GeneSet = enum with a,b,c,
and variable x: GeneSet.

T FN . In the Repressilator model, the coloured transition (in orange) indicates
that this transition has a fuzzy kinetic parameter in its rate function, whereas
the other transitions have crisp kinetic parameters (white).

2.4 Model simulation

Simulation of coloured fuzzy Petri nets requires unfolding step, by switching to
the simulation mode, the unfolding engine appears; compare Figure 20.

After unfolding the coloured fuzzy stochastic Petri net, we implicitly get the
unfolded fuzzy stochastic Petri net at the background, which is equivalent to
the coloured model. As a result, unfolding the Repressilator gives: 9 uncoloured
places, 12 stochastic transitions and 30 standard arcs. Furthermore, each tran-
sition instance will get assigned a function rate after evaluating the coloured
function rate of its corresponding coloured transition, e.g., the function rate
of transition generate will be evaluated to k gen*gene a, k gen*gene b and
k gen*gene c.

Once the simulation result dialog appears, a user can configure the exper-
iment settings e.g., simulation time, the simulator and its properties and the
fuzzy-related setting e.g., number of alpha levels, number of discretisation points
and sampling strategy, and then a user can start simulation by clicking Start
Simulation button; compare Figure 21 for more details.
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Table 4: Repressilator FSPN C- rate functions of transitions.

Transition r Rate function Kinetic constant k

generate k gen · gene (0.005,0.1,0.15)
degrade k deg · protein 0.001
blocked k block · protein 1
unblocked k unblock · blocked 0.0001

Figure 20: Unfolding engine dialog in Snoopy .
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(a) Fuzzy bands of the selected variables.

(b) Membership functions of the selected
variables at t = 40.

Figure 21: Fuzzy bands and membership functions of the variables Protein a,
Protein b and Protein c, the membership functions of the variables at the time
point 40. Please note that the number of simulation runs of Gillespie’s simulator
is set up to 10 000 runs (a) Fuzzy band . (b) Membership function.
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2.5 FSPN C of Coupled Ca2+ Channels

The Coupled Ca2+ Channels is a biological test case describing an ubiquitous
second messenger used to regulate a wide range of cellular processes [6]. It
basically consists of two-state channel : ‘closed’ and ‘open’; which can be gener-
alized to N channels. The transition diagram between channels can be described
as continuous time Markov chain (CTMC), which can be converted into a Petri
net model. Figure 22 gives the coloured stochastic fuzzy Petri net of six-state
Ca2+ Channels, For more details about the kinetic rates and other basics, please
consult [6].

Figure 23 gives the fuzzy bands of some selected (unfolded) variables; while
Figure 24 gives the corresponding timed-membership functions at the time point
t = 46. Please note that membership functions are exactly describe how the
fuzzy band is developing over time; we could easily notice that at the middle of
the simulation time, when the fuzzy band of the place NumOpen is tending to
be narrow; this tendency can obviously be seen from the membership function
of the place NumOpen at the same time point as well; see Figure 24. This is
equally applied on the other unfolded places; which have narrow membership
functions over time.
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Figure 22: FSPN C Six-state Ca2+ in Snoopy . Color definitions: Constants:
N = 5; Color sets: Row = 1 -N ; Comumn = 1 -N ; CS = Row X Comumn. Vari-
ables: x: Row; y: Comumn. This model has two fuzzy kinetic parameters: c inf
= (0.01,0.05,0.1) which has been set in the transitions (marked with black);
while the second fuzzy kinetic parameter is k em = (0.01,6.0,12.01) which has
been set in the transition (marked with orange).

28

Snoopy@informatik.tu-cottbus.de


Snoopy@informatik.tu-cottbus.de January 31, 2021

Figure 23: Fuzzy bands of some unfolded variables. Simulation traces have been
averaged averaged over 100 runs.

Figure 24: Membership functions of some unfolded variables (at the time point
t=46.
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3 Latin Hypercube Sampling (LHS)

Latin hypercube sampling is a statistical method for generating a near-random
sample of parameter values from a multidimensional distribution [9].

The sampling method is often used to construct computer experiments or for
Monte Carlo integration. When sampling a function of N variables, the range of
each variable is divided into M equally probable intervals. M sample points are
then placed to satisfy the Latin hypercube requirements; this forces the number
of divisions, M , to be equal for each variable. This sampling scheme does not
require more samples for more dimensions (variables); this independence is one
of the main advantages of this sampling scheme. Another advantage is that
random samples can be taken one at a time, remembering which samples were
taken so far.

Besides Basic and Reduced Sampling, Snoopy supports five LHS sampling
algorithms. The LHS algorithms are implemented in lhslib Library [2]. By using
LHS we get the minimal number of simulation runs; no matter how many fuzzy
kinetic parameters (Numbers) exist in the model.

3.1 Random LHS

randomLHS(4,3) returns a 4x3 matrix with each column constructed as fol-
lows: A random permutation of (1,2,3,4) is generated, say (3,1,2,4) for each of
K columns. Then a uniform random number is picked from each indicated quar-
tile. In this example a random number between .5 and .75 is chosen, then one
between 0 and .25, then one between .25 and .5, finally one between .75 and 1.

This algorithm takes three arguments, which are:

� n the number of rows or samples,

� k the number of columns or parameters/variables,

� preserveDraw should the draw be constructed so that it is the same for
variable numbers of columns?.

3.2 Improved Latin Hypercube Sample

Draws a Latin Hypercube Sample from a set of uniform distributions for use in
creating a Latin Hypercube Design. This algorithm attempts to optimize the
sample with respect to an optimum euclidean distance between design points.
The optimum distance D is calculated using the following equation:

D = n/n
1.0
k

This algorithm takes the following arguments:

� n the number of rows or samples

� k the number of columns or parameters/variables
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� dup A factor that determines the number of candidate points used in the
search. A multiple of the number of remaining points than can be added.

3.3 Optimum Latin Hypercube Sample

Draws a Latin Hypercube Sample from a set of uniform distributions for use
in creating a Latin Hypercube Design. This Algorithm uses the Columnwise
Pairwise (CP) algorithm to generate an optimal design with respect to the S
optimality criterion.

This Algorithm generates a Latin Hypercube Sample by creating random
permutations of the first n integers in each of k columns and then transform-
ing those integers into n sections of a standard uniform distribution. Random
values are then sampled from within each of the n sections. Once the sample is
generated, the uniform sample from a column can be transformed to any dis-
tribution by using the quantile functions, e.g. qnorm(). Different columns can
have different distributions.

S-optimality seeks to maximize the mean distance from each design point to
all the other points in the design, so the points are as spread out as possible.

This Algorithm uses the CP algorithm to generate an optimal design with
respect to the S optimality criterion. The Optimum LHS algorithm takes the
following arguments as an input:

� n the number of rows or samples

� k the number of columns or parameters/variables

� maxSweeps the maximum number of times the CP algorithm is applied
to all the columns.

� eps the optimal stopping criterion. Algorithm stops when the change in
optimality measure is less than eps*100 % of the previous value

� verbose Print informational messages

3.4 Latin Hypercube Sampling with a Genetic Algorithm

Draws a Latin Hypercube Sample from a set of uniform distributions for use
in creating a Latin Hypercube Design. This algorithm attempts to optimize
the sample with respect to the S optimality criterion through a genetic type
algorithm.

This algorithm generates a Latin Hypercube Sample by creating random
permutations of the first n integers in each of k columns and then transform-
ing those integers into n sections of a standard uniform distribution. Random
values are then sampled from within each of the n sections. Once the sample is
generated, the uniform sample from a column can be transformed to any dis-
tribution by using the quantile functions, e.g. qnorm(). Different columns can
have different distributions.
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S-optimality seeks to maximize the mean distance from each design point to
all the other points in the design, so the points are as spread out as possible.
The Genetic Algorithm does the following:

� Generate pop random latin hypercube designs of size n by k

� Calculate the S optimality measure of each design

� Keep the best design in the first position and throw away half of the rest
of the population

� Take a random column out of the best matrix and place it in a random
column of each of the other matricies, and take a random column out of
each of the other matricies and put it in copies of the best matrix thereby
causing the progeny

� For each of the progeny, cause a genetic mutation pMut percent of the
time. The mutation is accomplished by swtching two elements in a column.

This Algorithm takes the following arguments as an input:

� n The number of partitions (simulations or design points or rows)

� k The number of replications (variables or columns)

� pop The number of designs in the initial population

� gen The number of generations over which the algorithm is applied

� pMut The probability with which a mutation occurs in a column of the
progeny

� criterium The optimality criterium of the algorithm. Default is S. Max-
imin is also supported

� verbose Print informational messages. Default is FALSE

3.5 Maximin Latin Hypercube Sample

Draws a Latin Hypercube Sample from a set of uniform distributions for use
in creating a Latin Hypercube Design. This function attempts to optimize the
sample by maximizing the minium distance between design points (maximin
criteria).

This Algorithm takes the following arguments as an input:

� n The number of partitions (simulations or design points or rows)

� k The number of replications (variables or columns)

� method build or iterative is the method of LHS creation. build finds
the next best point while constructing the LHS. iterative optimizes the
resulting sample on [0, 1] or sample grid on [1, N ]
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� dup A factor that determines the number of candidate points used in the
search. A multiple of the number of remaining points than can be added.
This is used when method=”build”

� eps

The minimum percent change in the minimum distance used in the itera-
tive method

� maxIter The maximum number of iterations to use in the iterative
method

� optimize.on

grid or result gives the basis of the optimization. grid optimizes the LHS
on the underlying integer grid. result optimizes the resulting sample on
[0, 1]

� debug prints additional information about the process of the optimiza-
tion.
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