% check whether certain exact time points are in the trace %P=?[ F(time = 49999) ] %P=?[ F(time = 50000) ] %P=?[ F(time = 51000) ] % lactose peaks at 50.000 % P=?[ (49999 <= time ^ time < 50000) -> [Lactose] <= 0.01 * max([Lactose]) ] %P=?[G( Â(49999 <= time ^ time < 50000) V [Lactose] <= 0.01*max([Lactose]))] %P=?[ (50000 <= time ^ time < 50001) -> [Lactose] >= 0.99 * max([Lactose]) ] P=?[ 50000 = time -> [Lactose] >= 0.99*max([Lactose]) ] %P=?[G( Â(50000 = time) V [Lactose] >= 0.99*max([Lactose])) ] %P=?[F( 50000 = time ^ [Lactose] >= 0.99*max([Lactose]) )] %P=?[ (52000 <= time ^ time < 52001) -> [Lactose] <= 0.01 * max([Lactose]) ] %P=?[ (52000 <= time ^ time < 52001) -> [Lactose] <= 0.03 * max([Lactose]) ] %P=?[ (52000 <= time ^ time < 52001) -> [Lactose] <= 0.05 * max([Lactose]) ] P=?[ (52000 <= time ^ time < 52001) -> [Lactose] <= 0.1 * max([Lactose]) ] %P=?[G( Â(52000 <= time ^ time < 52001) V [Lactose] <= 0.1*max([Lactose])) ] % Z is highly likely to be a low concentration at time point 50,000 P=?[time = 50000 -> [Z] <= 0.1*max([Z]) ] %P=?[G( Â(time = 50000) V [Z] <= 0.1*max([Z]) )] % Z will rise to at least 60% of its maximal value within 2,000 time units %P=?[F( (50000 < time ^ time < 52000) ^ [Z] >= 0.6 * max([Z]) )] %P=?[F( (50000 < time ^ time < 52000) ^ [Z] >= 0.7 * max([Z]) )] P=?[F( (50000 < time ^ time < 52000) ^ [Z] >= 0.8 * max([Z]) )] %P=?[F( (50000 < time ^ time < 52000) ^ [Z] >= 0.9 * max([Z]) )] % % peak(lactose) -> pretty soon (within 2,000 time units) peak(Z) % %P=?[(time=50000 ^ [Lactose]>=0.99*max([Lactose]) ^ [Z]<=0.1*max([Z])) -> F([Z]>=0.6*max([Z]) ^ time<52000 ) ] %P=?[G( Â(time=50000 ^ [Lactose]>=0.99*max([Lactose]) ^ [Z]<=0.1*max([Z])) V F([Z]>=0.6*max([Z]) ^ time<52000 ) )] P=?[(time=50000 ^ [Lactose]>=0.99*max([Lactose]) ^ [Z]<=0.1*max([Z])) -> F([Z]>=0.8*max([Z]) ^ time<52000 ) ]