% maxima (1.0, 0.95) P=?[G([A] < 7550)] P=?[G([B] < 5350)] % using constraints to get the probability range of the max % %x:P=?[G([B] <= max[B] ^ max[B]=$x)] %x:P=?[max[B]=$x)] % peaks (0.9, 1.0) % %P=?[F(time = 20 ^ [A] > 7300 ^ 3000 < [B] ^ [B] < 3500)] P=?[F(time = 20 ^ [A] > 0.9*max[A] ^ 3000 < [B] ^ [B] < 3500)] % wrong answer %P=?[F(time=30 ^ 5000 < [A] ^ [A] < 5400 ^ [B] > 0.9*max([B]) )] % correct answer P=?[F(29 < time ^ time < 30 ^ 5000 < [A] ^ [A] < 5400 ^ [B] > 0.9*max([B]) )] %x:P=?[F([A] > 5000 ^ [A] < 5500 ^ [B] > 5000 ^ [B] < 5500 ^ time = $x)] % steady state, relative statements (0.03, 0.59, 0.8, 0.91) %P=?[G([A] < [B])] %x:P=?[F(time = $x ^ G([A] < [B]))] P=?[ (time >= 50) -> G([A] < [B])] P=?[ (time >= 55) -> G([A] < [B])] P=?[ (time >= 60) -> G([A] < [B])] P=?[ (time >= 70) -> G([A] < [B])] % steady state, absolute statements (0.39, 1.0) P=?[(time >= 50) -> G(1500 < [A] ^ [A] < 1800 ^ 1600 < [B] ^ [B] < 2000)] P=?[(time >= 60) -> G(1500 < [A] ^ [A] < 1800 ^ 1600 < [B] ^ [B] < 2000)]