% 1-P-invariant (1.0) %P=?[Â F([input_on] = 1 ^ [input_off] = 1)] % P=?[G(([input_on] = 1 ^ [input_off] = 0) V ([input_on] = 0 ^ [input_off] = 1))] % input is switched on if the token amount on A crosses the threshold 10 (1.0) % P=?[G( [A] < 10 -> [input_on] = 1 )] %P=?[G( Â([A] < 10) V [input_on] = 1 )] % input is switched off if the token amount on A crosses the threshold 30 (1.0) % P=?[G([A] >= 30 -> [input_off] = 1)] %P=?[G( Â([A] >= 30) V [input_off] = 1)] % minima %P=?[G([A] > 9)] %P=?[G([A] > 8)] %P=?[G([A] > 7)] %P=?[G([A] > 6)] %% P=?[G([A] > 5)] %% P=?[G([A] > 4)] % maxima %P=?[G([A] < 31)] %P=?[G([A] < 32)] %P=?[G([A] < 33)] %P=?[G([A] < 34)] %% P=?[G([A] < 35)] %% P=?[G([A] < 36)] % range % There is a delay of 0.5 time units between the switch on/off % and the reaction of the actual inflow transition. % E.g., after having switched off the input, 5 additional tokens will arrive % by the already triggered firing of the transition $input$. % Thus, even a weaker range than specified by the threshold values does not get probability 1 (0.995) %P=?[G([A] > 9 ^ [A] <= 30)] %P=?[G([A] >= 8 ^ [A] <= 35)] P=?[G(5 <= [A] ^ [A] <= 40)]