% 1-P-invariant (1.0) % P=?[G(([stochastic_on] = 1 ^ [det_on] = 0) V ([stochastic_on] = 0 ^ [det_on] = 1))] % weak version of 1-P-invariant: both cannot be on % %P=?[Â F([stochastic_on] = 1 ^ [det_on] = 1)] % both cannot be off: % % P=?[Â F([stochastic_on] = 0 ^ [det_on] = 0)] % deterministic token flow from A to B between time points 10 and 30 (1.0) % P=?[(10 <= time ^ time < 30) -> [det_on] = 1] % exchanging the implication by G(!A V B) % %P=?[G(Â(10 <= time ^ time < 30) V [det_on] = 1)] %P=?[(time = 8) -> [stochastic_on] = 1] %P=?[(time = 9) -> [stochastic_on] = 1] %P=?[(time = 10) -> [stochastic_on] = 1] %P=?[(time = 10) -> [det_on] = 1] %P=?[(time = 29) -> [det_on] = 1] %P=?[(time = 29) -> [stochastic_on] = 1] %P=?[(time = 30) -> [stochastic_on] = 1] %P=?[(time = 31) -> [stochastic_on] = 1] % stochastic token flow from A to B before time points 10 and after 30 (1.0) % P=?[(time < 10 V 30 <= time) -> [stochastic_on] = 1] %P=?[G(Â(time < 10 V 30 <= time) V [stochastic_on] = 1)]