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This construct provides a secure way of programming mutual exclusion, because:

• a shared variable V is declared such that it should be accessed in a CR tagged with the name V -
the compiler can flag as an error any attempt to access it outside the CRs;

• all CRs tagged with the same variable name V are executed under mutual exclusion, but statements
in CRs tagged with distinct variables can be executed concurrently,

• in effect, the wait and signal operations which would be required to protect a CS when using
semaphores are automatically generated by the compiler, so that they cannot be overlooked.

An Example

For the ornamental gardens problem, we can easily have the following solution:

PROGRAM GARDENS; VAR
count: SHARED integer;

PROCESS Turnstile1;
VAR loop:integer;
BEGIN

FOR loop:=1 To 20 DO
REGION count DO

count:=count+1
END;
PROCESS Turnstile2;
VAR loop:integer;
BEGIN

FOR loop:=1 To 20 DO
REGION count DO

count:=count+1
END;
BEGIN (* main program*)

REGION count DO
count:=0;

COBEGIN Turnstile1; Turnstile2 COEND
END.

5.3 Conditional critical regions

CRs provide a more structured and securer way of implementing mutual exclusion than semaphores.
However, they are not expressive enough to be as widely applicable as semaphores: CRs are not capa-
ble of simulating semaphores. They cannot solve the condition synchronization problem. Therefore,
conditional Critical regions (CCRs) are introduced to meet such requirements.

Notation and semantics for CRs
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