
CONDITIONAL CRITICAL REGIONS AND MONITORS 74

This construct provides a secure way of programming mutual exclusion, because:

• a shared variable V is declared such that it should be accessed in a CR tagged with the name V -
the compiler can flag as an error any attempt to access it outside the CRs;

• all CRs tagged with the same variable name V are executed under mutual exclusion, but statements
in CRs tagged with distinct variables can be executed concurrently,

• in effect, the wait and signal operations which would be required to protect a CS when using
semaphores are automatically generated by the compiler, so that they cannot be overlooked.

An Example

For the ornamental gardens problem, we can easily have the following solution:

PROGRAM GARDENS; VAR
count: SHARED integer;

PROCESS Turnstile1;
VAR loop:integer;
BEGIN

FOR loop:=1 To 20 DO
REGION count DO

count:=count+1
END;
PROCESS Turnstile2;
VAR loop:integer;
BEGIN

FOR loop:=1 To 20 DO
REGION count DO

count:=count+1
END;
BEGIN (* main program*)

REGION count DO
count:=0;

COBEGIN Turnstile1; Turnstile2 COEND
END.

5.3 Conditional critical regions

CRs provide a more structured and securer way of implementing mutual exclusion than semaphores.
However, they are not expressive enough to be as widely applicable as semaphores: CRs are not capa-
ble of simulating semaphores. They cannot solve the condition synchronization problem. Therefore,
conditional Critical regions (CCRs) are introduced to meet such requirements.

Notation and semantics for CRs

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau










