CONDITIONAL CRITICAL REGIONS AND MONITORS 80

2. All the declarations except for the identifiers appearing in the export list, are only in the scope
within the monitor.

3. Only the names of procedures in the export list can be called by a process statement of the form:

monitor identifier.export_procedure_identifier[actual parameters]

4. The monitor body (begin statement-sequence), which is optional (i.e. not all monitor need a
body), is executed immediately when the program is initiated, to give initial values to the monitor
variables. It is just executed once during the program execution.

5. The compiler guarantees that access to the code within a monitor is done under mutual exclusion.
A process that tries to execute a monitor procedure when there is already a process executing one
of the procedures in the same monitor becomes blocked on a what is called a monitor boundary
queue. In general, several processes may be blocked on this queue by the time an occupying
process completes its monitor procedure call. Mutual exclusion is then passed to one of the blocked
processes. In Pascal-FC, monitor boundary queues are defined to be FIFO.

54.3 Mutual exclusion with monitors

As an example of application of monitors to mutual exclusion, we consider the Ornamental Gardens
problem with monitor. A general ornamental gardens problem is the case that we have a number of
turnstiles (rather than only two) concurrent updating the number count of people in the garden. The
solution of the problem is now very easy: we define a monitor to control the updating of count under
mutual exclusion.

PROGRAM
GARDMON; (*Ornament gardens - monitor version*) CONST
max=10; (*number of turnstilesx*)

MONITOR Tally;
EXPORT
inc, print; (*export list*)
VAR
count: integer; (*global variablex)
PROCEDURE inc;
BEGIN
count:=count+l
END; (*inc¥)
PROCEDURE print;
BEGIN
writeln(count)
END; (*print*)
BEGIN (*body of Tally*)
count:=0
END; (*Tally*)

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau





CONDITIONAL CRITICAL REGIONS AND MONITORS

81

PROCESS TYPE turnstiletype;
VAR

loop:integer;
BEGIN

for loop:=1 TO 20 DO

Tally.inc (*call monitor procedure inc*)

END; (*turnstiletype¥*)
VAR

turnstile: ARRAY[l..max] OF turnstiletype;
procloop:integer;
BEGIN (*main¥)
COBEGIN
FOR procloop:=1 TO max DO
turnstile[procloop]
COEND;
Tally.print
END.

The key feature of the program:

. The shared data structure, such as count, is declared in the monitor; the code in the monitor body
is executed to give initial values of the monitor variables before processes begin to call the monitor.

. The monitor procedures inc and print sit passively until called from a process.
. If a process wishes to increment count, all it needs to do is to call the monitor procedure ¢n.c.

. The monitor data structure is not directly visible from outside the monitor; it can only be accessed
by executing one of the ‘official’ operations implemented by the exported procedures. For exam-
ple, it is necessary to call the monitor procedure print from the main program in order to view the
final result, even though the monitor T'ally’s mutual exclusion is not required any more after the
completion of concurrent phase of execution.

. The mutual exclusive access to the shared variable count is enforced automatically by the complier
when it generates code for a call to an exported monitor procedure: it is not possible to access the
data except under mutual exclusion.

. In comparison with semaphores, monitors are more structured:
e casier to understand: all the code that manipulates a given data structure must be located in
one place;
e casier to modify: a change in a monitor does not lead to change in other parts;

e safer to use: a monitor can be written by a senior person with unimpeachable competence
and trustworthiness; then the users of the monitor need only call a procedure.

Report No. 325, May 2005 UNU/IIST, P.O. Box 3058, Macau







