
Pascal-FC LRM

var
clients: array[1..max] of clienttype;

process screen;
var
i: integer;

begin
repeat
select
for i := 1 to max replicate
coms[i] ? any;
writeln(’Message from process ’,i);

or
terminate

end
forever

end;

var
i: integer;

begin
cobegin
screen;
for i := 1 to max do
clientsi

coend
end.

9.3.2. The select statement with accept alternatives
The following is a solution to the bounded buffer problem using the Ada style of inter-
process communication.

program pcon5;

(* buffered producer-consumer with ada rendezvous *)

process buffer;
entry take(var ch: char);
entry put(ch: char);

const
buffmax = 4;

FC-LRM-9/1.1 - 52 -

mh

mh

Pascal-FC LRM

var
store: array[0..buffmax] of char;
nextin, nextout, count: integer;

begin
nextin := 0;
nextout := 0;
count := 0;
repeat

select
when count <> 0 =>

accept take(var ch: char) do
ch := store[nextout];

count := count - 1;
nextout := (nextout + 1) mod (buffmax + 1);

or
when count <= buffmax =>

accept put(ch: char) do
store[nextin] := ch;

count := count + 1;
nextin := (nextin + 1) mod (buffmax + 1);

or
terminate

end (* select *)
forever

end; (* buffer *)

process producer;
var

local: char;
begin

for local := ’a’ to ’z’ do
buffer.put(local)

end; (* producer *)

FC-LRM-9/1.1 - 53 -

mh

Pascal-FC LRM

process consumer;
var

local: char;
begin

repeat
buffer.take(local);
write(local)

until local = ’z’;
writeln

end; (* consumer *)

begin
cobegin

producer;
consumer;
buffer

coend
end.

9.4. Process States and Transitions
This section summarises the effects on process states of the features described in this
chapter.
1. A process that attempts to execute a select on which there are no open

alternatives with pending calls becomes blocked unless there is an else part. (In
the special case that there are no open guards and no else part, a run-time error
must be signalled).

2. A process that becomes blocked on a select with a terminate alternative
enters the "termstate" state. It may return to the "executable" state if a call occurs
on an open alternative or (in the case of a ,channel or entry mapped to a source of
interrupts) when an appropriate interrupt occurs. It will prroceed directly to the
"terminated" state if the run-time system detects that all processes are in "termstate"
or are already "terminated".

3. A process that becomes blocked on a select with a timeout alternative is
considered "delayed". It may become executable when the specified time has
elapsed, or when a call occurs on an open alternative, or (in the case of a channel or
entry mapped to a source of interrupts) when an appropriate interrupt occurs.,
whichever of these events occurs first.

4. A process that becomes blocked on a select with neither terminate nor
timeout alternatives becomes "suspended" if none of the open-guarded
alternatives is mapped to a source of interrupts, or "awaiting interrupt" if one or
more such alternatives is so mapped.

FC-LRM-9/1.1 - 54 -

mh

mh

mh

mh

