dependability engineering & Petri nets

January 2019

x
SOFTWARE
MODELLING

WITH
PETRI NETS

-

dependability engineering & Petri nets January 2019

STEP-WISE
MODELLING

according system structure

->

->

each sequential process separately
composition of processes

system of interacting concurrent processes
(ICP)

according process structure

-> control structure model (csm)
as place/transition net
-> control flow model (cfm)
as place/transition net or
as coloured net
cfm = csm + control variables
-> data flow model
abstractions
-> data,
extend depends on model purpose
-> time

monika.heiner@b-tu.de

14-2/22

dependability engineering & Petri nets January 2019 dependability engineering & Petri nets January 2019

\

CSM REFERENCE LANGUAGE

process_id@ “:" process
statement_sequence
#process process_id@ .

CSM,
PETRI NET COMPONENTS

if_statement case_statement

statement_sequence

statement_sequence “;” statement

Pexpression Pexpression

statement .

statement

if_statement

case_statement
loop_statement
jump_statement

Teise Tdefault

send_statement
receive_statement
wait_statement
simple_statement@ .

loop_statement jump_statement

Tnext Tstop
Pexpression Pnext Pstop

Tend

Pnext

if if_expression@
then statement_sequence

[else statement_sequence]
#if . >

if_statement

case_statement = case case_expression@ of
case_label@ ™" statement_sequence

Texit
{ “|" case_label@ “:" statement_sequence }*

[default “:” statement_sequence]
#case .

Pexit Pexit

loop_statement

[loop_ label@ “:"]
loop [loop_expression@] send_statement receive_statement

statement_sequence

#loop [loop_ label@] .
—_— h
Tsend . Pmessage Pmessage.

Treceive

next loop_label@
exit loop_label@
stop .

jump_statement

wait_statement

send_statement = send message@ [to process_id@] . .\'

receive_statement receive message@ [from process_id@] .

Taetault simple_statement

Twait1 Twait2

wait_statement wait
message@ [from process-id@] “:" statement_sequence

“|” message@ [from process-id@] “:" statement_sequence }*

-~

#wait . Tsimple

_/ -

monika.heiner@b-tu.de 14 -3/22 monika.heiner@b-tu.de 14-4/22

dependability engineering & Petri nets January 2019

\

dependability engineering & Petri nets January 2019

CFM REFERENCE LANGUAGE
(IN ADDITION TO CSM GRAMMAR)

SEQUENTIAL PROCESS,
CONTROL STRUCTURE MODEL
(WITHOUT DATA DEPENDENCIES)

case_expression@ ::= Bool_expression
| ordinal_expression@.
0 pure)]
loop_expression@ :: = Bool_expression
. | ordinal_expression@ .
O ordinary

Bool_expression :» = Bool_operand
’% homogenous not Bool_expression

Bool_expression or Bool_operand

O conservative

I

I

| Bool_expression and Bool_operand
| Bool_expression “=" Bool_operand

I

43, structurally bounded Bool_expression “/=* Bool_operand .

Bool_operand :» = Bool_denotation

O marked with exactly one token | Bool_variable
| “(“ Bool_expression “)" .

@, safe (1-bounded)

Bool_denotation ;= true
| false .
0 CPI) R
Bool_variable :: = identifier@ { of type Boolean } .
0 all static conflicts are dynamically realizable statement :: = Bool_declaration
| Bool_assignation .
0 SM, . Bool_declaration :» = Bool Bool_variable “:=" Bool_denotation .
SCSM (if only structured goto’s)
Bool_assignation :: = Bool_variable “:=" Bool_expression .

_/ -

monika.heiner@b-tu.de 14-5/22 monika.heiner@b-tu.de 14-6/22

dependability engineering & Petri nets January 2019

\

dependability engineering & Petri nets January 2019

REMARKS TO
CFM GRAMMAR

NO ZERO TEST IN
P/T NETS!

[0 each declaration of a Boolean variable 0 wayout for finite, discrete data types

encloses its initialization . _
each variable is modelled by as many

0 grammar rules defining the same places as there are values in the type,

metanotion are additive , o
e. g. for a Boolean variable P (initializid with true)

0 for each variable, ®P O/p
the usual data flow restrictions of static semantics
apply to the order of
declarative and applied occurrence

0 Boolean expressions can be of any complexity [notation agreement for test edge

A A A
DECLARATION OF A BOOLEAN VARIABLE A

0 two places A and /A are generated

O initial marking according to
the given initialization of the variable
A - connector (fusion node)

_/ -

monika.heiner@b-tu.de 14 -7122 monika.heiner@b-tu.de 14-8/22

dependability engineering & Petri nets January 2019

A:=(BorQC)

%
\

p4

\
P/T NET COMPONENTS

FOR BOOLEAN OPERATIONS,
EXAMPLES

_/

monika.heiner@b-tu.de

14-9/22

0 not pure
0 ordinary
43, homogenous
0 conservative
4%, structurally bounded
O not marked with exactly one token
- one process counter
- one token for each pair of Boolean places
0 CPI (1-P-invariants)
€, safe (1-bounded)
O no dynamic conflicts
47, max outdegree of a reachability graph node = 1
0 notES
_

dependability engineering & Petri nets January 2019

SEQUENTIAL PROCESS,
CONTROL FLOW MODEL
(WITH DATA DEPENDENCIES)

monika.heiner@b-tu.de 14-10/22

dependability engineering & Petri nets January 2019

BASIC PRINCIPLES OF
PROCESS CONNECTION

O
O
IcP

CSM - COMMUNICATING STATE MACHINES

Exl

ICP - INTERACTING CONCURRENT PROCESSES

\

_/

14-11/22

monika.heiner@b-tu.de

-

PROCESS COMMUNICATION

dependability engineering & Petri nets January 2019

PROCESS COMMUNICATION
LANGUAGE CONSTRUCTS,
A CLASSIFICATION

ADDRESSING

+ direct (one-to-one communication:
sender and receiver know each other)

+ semi-direct-by-sender (many-to-one communication:
only the sender knows the receiver,

not vice versa)

+ semi-direct-by-receiver (one-to-many communication:
only the receiver knows the sender,
not vice versa)

+ indirect

(many-to-many communication:
via common global objects like
channels, mail boxes, monitors)

SYNCHRONIZATION (of sender)

- asynchronous (no-wait-send, the general case

requires infinite buffer)

- semi-asynchronous (delay, if finite buffer full)

- (simple) synchronous (delay until message has been received)

- remote invocation (delay until a response has been given)

- hand shaking (delay until message has been

exchanged, no buffering, direct transfer)

WAITING (of receiver)

- deterministic (the choice of the message to receive

occurs independently from the progress
of neighbouring processes)

- non-deterministic (receiving is influenced by the available

messages provided by neighbouring
processes)

monika.heiner@b-tu.de

14-12/22

dependability engineering & Petri nets January 2019

\

PROCESS ADDRESSING,
PETRI NET COMPONENTS

direct
(only = O —
static channel conflicts)

(only I \
static channel conflicts) | -/

semi-direct-by-sender

semi-direct-by-receiver
(dynamic channel conflicts
possible)

L

indirect .\ /..

(dynamic channel conflicts K
possible) -/ '\ o

\ The pre-process Pg can send from different control points, and
the post-process P, can receive from different control points.

/

monika.heiner@b-tu.de 14 -13/22

dependability engineering & Petri nets

January 2019

asynchronous
(possibly unbounded)

semi-asynchronous
(k-bounded,
locally conservative)

synchronous
(safe,
globally conservative)

remote invocation
(safe,
globally conservative)

hand-shaking
(safe,
locally conservative)

-

PROCESS SYNCHRONIZATION,
PETRI NET COMPONENTS

send %%n/_\‘% receive

cap(syn)
Q’/— receive
LA

syn

end% \ﬂ.\‘%receive
)

T
O cosyn

send C_; _j%/”/—\% receive

e 2

ack

OO

send

OO

%receive

merging

monika.heiner@b-tu.de

14-14/22

dependability engineering & Petri nets

January 2019

\
PROCESS WAITING,
PETRI NET COMPONENTS
deterministic
(confusion impossible)
pure control flow conflicts)
@) receive
syn
non-deterministic syn; syny
(confusion possible) O\'
receivey receive
o /Q>'/.
\O
/
monika.heiner@b-tu.de 14 -15/22

-

dependability engineering & Petri nets

January 2019

ordinary

43, homogeneous

safe (1-bounded), if only
synchronous or
remote invocation or
rendezvous communication

bounded, if only
semi-asynchronous communication

INTERACTING
CONCURRENT PROCESSES

MODEL OF

monika.heiner@b-tu.de

14-16/22

dependability engineering & Petri nets January 2019

dependability engineering & Petri nets January 2019

\
SIMPLIFIED VIEW1 THE INFLUENCE OF
ON THE INFLUENCE OF COMMUNICATION PATTERNS
COMMUNICATION PATTERNS ON CONFLICT STRUCTURES
ON NET STRUCTURE CLASS
addressing direct / indirect / _
semi-direct-by- | semi-direct-by- addressing direct / indirect /
waiting sender receiver semi-direct-by- | semi-direct-by-
waiting sender receive
determininistic EFC ES
channel & control
non-deterministic ES ISP deterministic flow conflicts
appear only
no separately
dynamic
channel

1. provided, pre- and postprocesses do not access
the same communication object from different control points . .
conflicts confusing

combination of

[] known to be time-independently live [Starke 90], channel & control
i.e. a live net remains live .
under any constant delay timing (duration net). flow conflicts
possible

non-deterministic

/ _
14-18/22

14 -17/22 monika.heiner@b-tu.de

monika.heiner@b-tu.de

dependability engineering & Petri nets January 2019 dependability engineering & Petri nets January 2019

\
EXAMPLE OF A SIMPLE PROTOCOL
A TIME-DEPENDENTLY LIVE IN THREE VARIANTS
(DURATION) CSN
1) processl process2
. given 1A 2B 2A B
original \
process
ZT* 1 patterns
IC ?C
T |

(1a) process pI’OCGSSZ
1 rendezvous: A %|<B o8

safe,
live

time- e 2C

dependently 1

live (1b) process2
asynchronous:

ES,

! ?B ?2A B
unbounded, -\
live C
IC ?C
CONFUSING COMBINATION OF Cr_\’
CHANNEL AND CONTROL FLOW CONFLICT

(lC) process
remote 1A
invocation:

ES,
\ safe,
1 0 13 ok not live

N

O

[Diaz 1986,LNCS 255]

_/ -

14 -19/22 monika.heiner@b-tu.de

monika.heiner@b-tu.de 14-20/22

dependability engineering & Petri nets January 2019 dependability engineering & Petri nets January 2019
\
A MODIFIED SIMPLE PROTOCOL PETRI NET
IN THREE VARIANTS GENERATOR
) process1 . process2
given ,/Q\ //Q\
modified ..
process T T O preconditions
patterns A . ,)A? CRB -> dedicated language constructs
' ' e for all process interactions
-> (quasi-) static amount of processe
IC 2C))
—— T -> no run-time dependencies
28) process1 process?2 (like recursion, dynamic loops)
rendezvous: /Q\
(B)FC, 0 generated granularity
safe, .
not live -> coarse-grained control structure
(communication skeleton,
purely sequential program parts -> transitions
-> fine-grained control structure
(statement structure,
(2b) process /@i‘“ﬁz each statement -> transition)
asynchronous: T
(BE)FC, :
unbounded. A O support of cross referencing
not live ‘ - O, o between program and net structure:
A %W' node names with source text line numbers
C . .
IC _/,Q/_\‘ 2C 0 automatic layout of a sequential process’ structure
(ZC) processl rocess2 .
remote © O 0 program complexity measure:
invocation: The resulting net consists of Number of Acyclic Paths - NAP
gzc 20 places and 16 transitions. (number of structurally possible paths)
not live I N

_/ -

monika.heiner@b-tu.de 14 -21/22 monika.heiner@b-tu.de 14-22/22

