
dependability engineering & Petri nets January 2019

Y:\Documents\teaching\course-concurrency\skript-sources\nl_skript_fm\nl14_pn_modelling.sld.fm 14 - 1 / 22

SOFTWARE
MODELLING

WITH
PETRI NETS

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 2 / 22

STEP-WISE

MODELLING

❑ according system structure

-> each sequential process separately

-> composition of processes

system of interacting concurrent processes
(ICP)

❑ according process structure

-> control structure model (csm)
as place/transition net

-> control flow model (cfm)
as place/transition net or
as coloured net

cfm = csm + control variables

-> data flow model

❑ abstractions

-> data,
extend depends on model purpose

-> time

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 3 / 22

CSM REFERENCE LANGUAGE
process ::= process_id@ “:” process

 statement_sequence

#process process_id@ .

statement_sequence ::= statement_sequence “;” statement

| statement .

statement ::= if_statement

| case_statement

| loop_statement

| jump_statement

| send_statement

| receive_statement

| wait_statement

| simple_statement@ .

if_statement ::= if if_expression@

then statement_sequence

[else statement_sequence]

#if .

case_statement ::= case case_expression@ of

case_label@ ”:” statement_sequence

{ “|” case_label@ “:” statement_sequence }*

 [default “:” statement_sequence]

#case .

loop_statement ::= [loop_ label@ “ :”]

loop [loop_expression@]

statement_sequence

#loop [loop_ label@] .

jump_statement ::= next loop_label@

 | exit loop_label@

| stop .

send_statement ::= send message@ [to process_id@] .

receive_statement ::= receive message@ [from process_id@] .

wait_statement ::= wait

message@ [from process-id@] “:” statement_sequence

{ “|” message@ [from process-id@] “:” statement_sequence }*

#wait .

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 4 / 22

CSM,
PETRI NET COMPONENTS

Tthen Telse Tcase1 Tcase2 Tdefault. . .

Tloop Tend

Pexit

Pnext

Pnext

Tnext

Pstop

Tstop

Pexit

Texit

Twait1 Twait2 Tdefault. . .

PmessageTsend Pmessage Treceive

Pexpression

Tsimple

if_statement case_statement

loop_statement jump_statement

wait_statement

simple_statement

send_statement receive_statement

Pexpression Pexpression

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 5 / 22

SEQUENTIAL PROCESS,
CONTROL STRUCTURE MODEL

(WITHOUT DATA DEPENDENCIES)

❑ pure

❑ ordinary

❑ conservative

❑ marked with exactly one token

❑ CPI

❑ all static conflicts are dynamically realizable

❑ SM,
SCSM (if only structured goto’s)

homogenous

structurally bounded

safe (1-bounded)

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 6 / 22

CFM REFERENCE LANGUAGE

(IN ADDITION TO CSM GRAMMAR)

case_expression@ :: = Bool_expression

 | ordinal_expression@.

loop_expression@ :: = Bool_expression

 | ordinal_expression@ .

Bool_expression :: = Bool_operand

 | not Bool_expression

 | Bool_expression or Bool_operand

 | Bool_expression and Bool_operand

 | Bool_expression “=“ Bool_operand

 | Bool_expression “/=“ Bool_operand .

Bool_operand :: = Bool_denotation

 | Bool_variable

 | “(“ Bool_expression “)” .

Bool_denotation :: = true

 | false .

Bool_variable :: = identifier@ { of type Boolean } .

statement :: = Bool_declaration

 | Bool_assignation .

Bool_declaration :: = Bool Bool_variable “:=” Bool_denotation .

Bool_assignation :: = Bool_variable “:=” Bool_expression .

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 7 / 22

REMARKS TO

CFM GRAMMAR

❑ each declaration of a Boolean variable
encloses its initialization

❑ grammar rules defining the same
metanotion are additive

❑ for each variable,
the usual data flow restrictions of static semantics
apply to the order of
declarative and applied occurrence

❑ Boolean expressions can be of any complexity

DECLARATION OF A BOOLEAN VARIABLE A

❑ two places A and /A are generated

❑ initial marking according to
the given initialization of the variable

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 8 / 22

NO ZERO TEST IN
P/T NETS!

❑ wayout for finite, discrete data types

each variable is modelled by as many
places as there are values in the type,

e. g. for a Boolean variable P (initializid with true)

❑ notation agreement for test edge

A - connector (fusion node)

P / P

⇔ ⇔

A A A

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 9 / 22

P/T NET COMPONENTS

FOR BOOLEAN OPERATIONS,
EXAMPLES

A/A

then else

elsethen

A := (B or C)

A := B

p5
if not

p6

p6

p5
if not

p4

/AA

A A/A /A
F

T

p3

B C B /C C/B /C/Bp3

p4

A/A

/A /B/A B/BABA

p2

p1

p2

p1

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 10 / 22

SEQUENTIAL PROCESS,
CONTROL FLOW MODEL

(WITH DATA DEPENDENCIES)

❑ not pure

❑ ordinary

❑ conservative

❑ not marked with exactly one token
- one process counter
- one token for each pair of Boolean places

❑ CPI (1-P-invariants)

❑ no dynamic conflicts

❑ not ES

homogenous

structurally bounded

safe (1-bounded)

max outdegree of a reachability graph node = 1

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 11 / 22

BASIC PRINCIPLES OF

PROCESS CONNECTION

ICP - INTERACTING CONCURRENT PROCESSES

Pi Pj

Pi Pj

ICP

CSM - COMMUNICATING STATE MACHINES

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 12 / 22

 PROCESS COMMUNICATION

LANGUAGE CONSTRUCTS,
A CLASSIFICATION

- direct (one-to-one communication:
 sender and receiver know each other)

- semi-direct-by-sender (many-to-one communication:
 only the sender knows the receiver,

 not vice versa)

- semi-direct-by-receiver (one-to-many communication:
 only the receiver knows the sender,

 not vice versa)

- indirect (many-to-many communication:
 via common global objects like

channels, mail boxes, monitors)

PROCESS COMMUNICATION

ADDRESSING

WAITING (of receiver)

- asynchronous (no-wait-send, the general case
requires infinite buffer)

- semi-asynchronous (delay, if finite buffer full)

- (simple) synchronous (delay until message has been received)

- remote invocation (delay until a response has been given)

- hand shaking (delay until message has been
 exchanged, no buffering, direct transfer)

- deterministic (the choice of the message to receive
 occurs independently from the progress
 of neighbouring processes)

- non-deterministic (receiving is influenced by the available
 messages provided by neighbouring

 processes)

SYNCHRONIZATION (of sender)

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 13 / 22

PROCESS ADDRESSING,
PETRI NET COMPONENTS

direct
(only
 static channel conflicts)

semi-direct-by-sender
(only
 static channel conflicts)

semi-direct-by-receiver
(dynamic channel conflicts
 possible)

indirect
(dynamic channel conflicts
 possible)

Ps Pr

Ps1

Psi

Pr

Ps

Pr1

Prj

Psi

Ps1 Pr1

Prj

The pre-process Ps can send from different control points, and
the post-process Pr can receive from different control points.

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 14 / 22

PROCESS SYNCHRONIZATION,
PETRI NET COMPONENTS

asynchronous
(possibly unbounded)

semi-asynchronous
(k-bounded,
 locally conservative)

synchronous
(safe,
 globally conservative)

remote invocation
(safe,
 globally conservative)

hand-shaking
(safe,
 locally conservative)

send receive
syn

send receive

syn

cap(syn)
k

syn

cosyn

syn

ack

send

receive

send receive

send receive
merging

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 15 / 22

PROCESS WAITING,
PETRI NET COMPONENTS

deterministic
(confusion impossible)
pure control flow conflicts)

non-deterministic
(confusion possible)

receive
syn

receive1 receivek

synk

...

syn1

t1 t2 t3

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 16 / 22

MODEL OF

INTERACTING

CONCURRENT PROCESSES

❑ ordinary

❑ safe (1-bounded), if only
synchronous or
remote invocation or
rendezvous communication

❑ bounded, if only
semi-asynchronous communication

homogeneous

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 17 / 22

SIMPLIFIED VIEW1

ON THE INFLUENCE OF

COMMUNICATION PATTERNS

ON NET STRUCTURE CLASS

1. provided, pre- and postprocesses do not access
the same communication object from different control points

direct /
semi-direct-by-

sender

indirect /
semi-direct-by-

receiver

determininistic EFC ES

non-deterministic ES ISP

known to be time-independently live [Starke 90],
i.e. a live net remains live
under any constant delay timing (duration net).

addressing

waiting

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 18 / 22

THE INFLUENCE OF

COMMUNICATION PATTERNS

ON CONFLICT STRUCTURES

direct /

semi-direct-by-
sender

indirect /
semi-direct-by-

receive

deterministic

no
dynamic

channel & control
flow conflicts
appear only
separately

non-deterministic

channel
conflicts confusing

combination of
channel & control

flow conflicts
possible

addressing

waiting

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 19 / 22

EXAMPLE OF

A TIME-DEPENDENTLY LIVE

(DURATION) CSN

CONFUSING COMBINATION OF
CHANNEL AND CONTROL FLOW CONFLICT

time-
dependently
live

2

1

1

1

1 1

1

t1 t2 t3

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 20 / 22

A SIMPLE PROTOCOL

IN THREE VARIANTS

process1

!A ?B

!C

process2

!B?A

?C

!A ?B

?C

process1

!A ?B

!C

process2

!B?A

?C

process1 process2

process1

!A ?B

process2

!B?A

?C

B

A

AckA

AckB

C

AckC

!C

(1a)
rendezvous:
EFC,
safe,
live

(1b)
asynchronous:
ES,
unbounded,
live

(1c)
remote
invocation:
ES,
safe,
not live

(1)
given

 original
process
patterns

!C

?A !B

B

A

C

[Diaz 1986,LNCS 255]

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 21 / 22

A MODIFIED SIMPLE PROTOCOL

IN THREE VARIANTS

process1

!A

!C

?B

process2

?A

?C

!B

process1

!A

!C

?B

process2

?A

?C

!B

process1

!A

!C

?B

process2

?A

?C

!B

A

B

C

(2)
given
modified
process
patterns

(2a)
rendezvous:
(E)FC,
safe,
not live

(2b)
asynchronous:
(E)FC,
unbounded,
not live

(2c)
remote

 invocation:
(E)FC,
safe,
not live

The resulting net consists of
20 places and 16 transitions.

process1 process2

dependability engineering & Petri nets January 2019

monika.heiner@b-tu.de 14 - 22 / 22

PETRI NET

GENERATOR

❑ preconditions

-> dedicated language constructs
for all process interactions

-> (quasi-) static amount of processe

-> no run-time dependencies
(like recursion, dynamic loops)

❑ generated granularity

-> coarse-grained control structure
(communication skeleton,
purely sequential program parts -> transitions

-> fine-grained control structure
(statement structure,
each statement -> transition)

❑ support of cross referencing
between program and net structure:
node names with source text line numbers

❑ automatic layout of a sequential process’ structure

❑ program complexity measure:
Number of Acyclic Paths - NAP
(number of structurally possible paths)

