
Concurrency: monitors & condition synchronization 1
©Magee/Kramer

(Chapter 5.2)

Monitors

to Implement Semaphores

Concurrency: monitors & condition synchronization 2
©Magee/Kramer

Monitors & Condition Synchronization

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion of access procedure
-> single access procedure active in monitor

+ condition synchronization

Practice: private data and synchronized methods (exclusion).
wait(), notify() and notifyAll() for condition synch.
single thread active in the monitor at a time

Concurrency: monitors & condition synchronization 3
©Magee/Kramer

Monitors, Basic Principles

Active entities (that initiate actions) -> threads.
Passive entities (that respond to actions) -> monitors.

Mutual exclusion of access procedures
For each monitor exists an exclusion lock.

To enter the monitor,
a thread acquires the mutual exclusion lock

To exit the monitor,
a thread releases the lock, and therefore the monitor,
for other threads.

Concurrency: monitors & condition synchronization 4
©Magee/Kramer

Semaphores

Semaphores are widely used for dealing with inter-process
synchronization in operating systems. Semaphore s is an
integer variable that can take only non-negative values.

down(s): if s >0
then decrement s
else block execution of calling process
endif

up(s): if processes blocked on s
then awaken one of them
else increment s
endif

The only
operations
permitted on
s are up(s)
and down(s).
Blocked
processes are
held in a
FIFO queue.

Concurrency: monitors & condition synchronization 5
©Magee/Kramer

Semaphores

How to model semaphores ?
using Petri nets

How to implement semaphores ?
using Java’s condition synchronization by

wait(), notifyAll
notify()

Concurrency: monitors & condition synchronization 6
©Magee/Kramer

Condition Synchronization in Java

Java provides a thread wait queue per monitor object
with the following methods:

public final void notify()
Wakes up a single thread that is waiting on this object's queue.

public final void notifyAll()
Wakes up all threads that are waiting on this object's queue.

public final void wait()
throws InterruptedException

Waits to be notified by another thread. The waiting thread
releases the synchronization lock associated with the monitor.
When notified, the thread must wait to reacquire the monitor
before resuming execution.

Concurrency: monitors & condition synchronization 7
©Magee/Kramer

condition synchronization in Java

Wait() - causes the thread to exit the monitor,
permitting other threads to enter the monitor.

Thread A Thread B

wait()
notify()

Monitor

data

Concurrency: monitors & condition synchronization 8
©Magee/Kramer

Semaphores in Java

Semaphores are
passive objects,
therefore
implemented as
monitors.

(In practice,
semaphores are a
low-level mechanism
often used in
implementing the
higher-level monitor
construct.)

public class Semaphore {
private int value;

public Semaphore (int initial)
{value = initial;}

synchronized public void up() {
++value;
notify();

}

synchronized public void down()
throws InterruptedException {

while (value == 0) wait();
--value;

}
} // Semaphore

Concurrency: monitors & condition synchronization 9
©Magee/Kramer

SEMADEMO display

current
semaphore
value

thread 1 is
executing
critical
actions.

thread 2 is
blocked
waiting.

thread 3 is
executing
non-critical
actions.

Concurrency: monitors & condition synchronization 10
©Magee/Kramer

SEMADEMO program - MutexLoop

class MutexLoop implements Runnable {
Semaphore mutex;

MutexLoop (Semaphore sema) {mutex=sema;}

public void run() {
try {
while(true) {
while(!ThreadPanel.rotate());
mutex.down(); // get mutual exclusion
while(ThreadPanel.rotate()); //critical actions
mutex.up(); //release mutual exclusion

}
} catch(InterruptedException e){}

}
} ThreadPanel.rotate() returns false

while executing non-critical actions (dark color) and true
otherwise.

Threads and
semaphore are
created by the applet
start() method.

Concurrency: monitors & condition synchronization 11
©Magee/Kramer

Monitors, Summary

Each guarded action in a monitor is implemented
as a synchronized method which uses a
while loop and wait() to implement the guard.
The while loop condition is the negation of the
guard condition.

Active entities (that initiate actions) are implemented as threads.
Passive entities (that respond to actions) are implemented as monitors.

Changes in the state of the monitor are signaled to
waiting threads using notify() or notifyAll().

Concurrency: monitors & condition synchronization 12
©Magee/Kramer

Summary

Concepts

monitors: encapsulated data + access procedure

mutual exclusion + condition synchronization

Practice
private data and synchronized methods in Java

wait(), notify() and notifyAll() for condition

synchronization

single thread active in the monitor at a time

