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Test Data Selection and Quality Estimation Based on

the Concept of Essential Branches for Path Testing

TAKESHI CHUSHO

Abstract-A new coverage measure is proposed for efficient and
effective software testing. The conventional coverage measure for
branch testing has such defects as overestimation of software quality
and redundant test data selection because all branches are treated
equally. These problems can be avoided by paying attention to only
those branches essential for path testing. That is, if one branch is ex-
ecuted whenever another particular branch is executed, the former
branch is nonessential for path testing. This is because a path covering
the latter branch also covers the former branch. Branches other than
such nonessential branches will be referred to as essential branches.
A testing tool for the new measure is developed in order to discrim-

inate essential branches from nonessential branches and to measure
the coverage rate of these essential branches. By using this tool, it is
ascertained that the number of essential branches is about 60 percent
of all branches.

As a result, the new measure reduces software quality overestima-
tion because the accumulative curve of the new measure to the number
of executed test data is closer to linearity than that of the conventional
measure. Another advantage is the prevention of redundant test data
selection. It results from a 40 percent reduction in the number of
branches to be monitored and is confirmed by a reasonable algorithm
for test data selection. Furthermore, an efficient algorithm for redun-
dancy elimination of a selected test data set is presented.

Index Terms-Algorithm, branch testing, control flow graph, cov-
erage measure, path testing, program testing, quality estimation, test
data selection.

I. INTRODUCTION
pROGRAM testing constitutes approximately half of

total software development costs and is the key to im-
proving software productivity and reliability. Many dif-
ferent software testing tools have already been developed
to support the various aspects of software testing [1], [2].
In particular, the most important aspect of software test-
ing is a method for selecting test data [3] because cor-
rectness of program logic is a main factor of software re-
liability, which is a part of software quality. The method
is categorized into functional testing and structural testing
[4]. The former implies that test data are selected based
on the function specification of a program, and the latter
implies that test data are selected based on the control
structure of a program. It is, however, difficult to support
functional testing by using software tools [5] because a
formal specification language is required.
On the other hand, there are several methods and tools
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for structural testing. In particular, great attention has re-
cently been paid to path testing [6]-[8]. Path testing ,is
intended to execute all paths reaching from an entry to an
exit on a control flow graph of a program. Practically
speaking, a subset of paths is selected, and input data that
will cause their paths are found. This technique is called
sensitizing the path [20]. Notably, branch testing, a form
of simplified path testing, is more practical because exact
path testing often requires an enormous amount of test
data. A typical branch testing tool measures the ratio of
executed branches to all branches in a program. This cov-
erage measure is used to estimate the quality of a tested
program with regard to correctness of program logic and
to select test data by which unexecuted branches are ex-
ecuted. This technique [9] is used in many tools such as
RXVP [10], SADT [11], ATA [12] for Fortran, CIP [13],
SMOTL [14] for Cobol, and HITS [15] for microcom-
puter software.

Conventional branch testing, however, has the follow-
ing two defects.

1) Redundant test data are apt to be selected when con-
ventional branch testing is used for test data selection
since there are many branches, all of which are executed
by many test data.

2) Quality is overestimated when conventional branch
testing is used for quality estimation since the coverage
rate increases rapidly when the first group of test data is
executed.
These problems are caused by treating all branches

equally and can be avoided by paying attention to only
those branches essential for path testing. That is, if one
branch is executed whenever another particular branch is
executed, the former branch is nonessential for path test-
ing. This is because a path covering the latter branch also
covers the former branch. Branches other than such non-
essential branches will be referred to as essential branches.

First of all, to present a method for discriminating es-
sential branches from nonessential branches, this paper
introduces a directed graph, obtained from a control flow
graph of a program by eliminating arcs which correspond
to nonessential branches. All arcs of this graph corre-
spond to essential branches and are called primitive arcs.
The eliminated arcs are called inheritor arcs because these
arcs can inherit information about path coverage from
primitive arcs. This graph is called an inheritor-reduced
graph. An algorithm transforming a control flow graph
into the inheritor-reduced graph is then presented.
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Next, a new coverage measure, based on the number of
essential branches executed at least once by test runs of a
program, is proposed, and a tool for this new measure is
developed. Then, through experiments with this tool, it is
confirmed that the new measure is more suitable for test
data selection than the conventional measure for branch
testing since the number of branches to be considered de-'
creases. It is also ascertained that the new measure is suit-
able for quality estimation. This is because this measure
has features similar to path testing features, where the path
testing coverage rate is linear to the number of executed
test data.

Finally, this paper presents an algorithm for test data
selection resulting in reduced redundancy and an algo-
rithm for'eliminating redundancy in a selected test data
set by paying attention to only essential branches.

II. CONVENTIONAL METHOD
A. Branch Testing

In general, program testing is performed by dynamic
testing in such a way that a program is executed with var-
ious input data and then each result is confirmed. In this
method, however, it is impossible to test all possible input
data. Therefore, a finite test data set should be selected
so as to assure high quality of the tested program under
time and cost limitations [3].

Path testing is one technique for this purpose and is
intended to execute as many feasible paths from an entry
to an exit on a control flow graph of a program as possi-
ble. The coverage measure based on this technique is as
follows:

Cpathi =
the number of executed paths

the number of all feasible paths in a tested program

This measure, however, is not practical since the num-
ber of feasible paths is enortnous in most programs be-
cause of iterations. Therefore, for practical purposes, at-
tention is paid to a path component instead of a path. This
component, called the dd path (decision-to-decision path)
[10], is defined as a partial path in a control flow graph
such that a) its first constituent arc emanates from either
an entry node or a decision box, b) its last constituent arc
terminates at' either a decision box or an exit node, and c)
there is no decision box on the path except those at both
ends, where a decision box is a node with two or more
exit arcs. The coverage measure based on such dd paths
is as follows:

the number of executed dd paths
the number of all dd paths in a tested program

This technique is called branch testing because this mea-
sure promotes execution of all branches. The following
are the uses of this measure:

1) to detect a lack of test data, and to select additional
data so as to reach unexecuted dd paths; and

~S, a

i f L, b

then if L2 C

d e
then S1

else S2

el se S3 ;

S4;

(a) (b)
Fig. 1. A program example. (a) Source. (b) The control flow graph.

e
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The number of test data

Fig. 2. Accumulative curve of coverage rate to the number of executed
test data on branch testing.

2) to estimate the quality of a tested program, assum-
ing that the higher the measure, the higher the quality of
the tested program.

B. Problems of the Conventional Method
For a demonstration of the first problem, consider the

program in Fig. 1 and the following test cases.
Case 1: Both logical predicates L1 and L2 are true.
Case 2: L1 is true, but L2 is false.
Case 3: L1 is false.
There are five dd paths a, b, c, d, and e in the control

flow graph of this program as shown in Fig. l(a). When
Case 1 is first executed, a, b, and d are covered and Cdd
is 3 /5. After Case 2 and 3' are executed sequentially, Cdd
will'become 4 / 5 and then 5 /5, respectively.
However, it is desirable that the coverage rate increase

by 1 / 3 per case when the essential measure Cpath is used
since there are three paths in this program. The difference,
between Cdd and Cpath in t-he increase trend is caused by
the fact that the nonessential dd paths for path coverage,
a and b, and the essential dd paths, c, d, and e, are treated
equally. That is, the degree to which each case contrib-
utes to Cdd depends on the execution order.

Consequently, when using Cdd instead of Cpath, the
quality of the tested program is overestimated, as shown
in Fig. 2, in which the bold line is Cdd and the broken line
is a ratio of executed test data to all test data. That is,
when a coverage rate is less than 100 percent, Cdd is
greater than a ratio of executed test data to all test data.

Next, consider the other program in Fig. 3 and the fol-
lowing test cases to demonstrate the second problem.
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an ancestor of b. This is because b inherits information
about the execution of a; that is, b is executed whenever
a is executed.

Definition 4: An arc which is never an inheritor of an-
other arc is called a primitive arc.

Definition 5: A directed graph with no inheritors is
called an inheritor-reduced graph.

Fig. 3. A program example. (a) Source. (b) The control flow graph.

Case 1: L1 is true.
Case 2: L1 is false the first time and true the second

time.
Case 1 was first selected so as to include the dd path c.

Then Case 2 was selected so as to include b. As a result,
Case 1 becomes redundant from the path coverage view-
point because Case 2 includes all dd paths in the program.

As shown in this example, test data selection based on all
dd paths has a defect in that redundant test data are apt to
be selected. The reason is the same as for the first prob-
lem; that is, all dd paths are treated equally, although the
dd path b is essential for path coverage but a and c are

not.

III. THE PRIMITIVE ARC CONCEPT
A. Primitive and Inheritor Arcs

In this section, the concepts of primitive and inheritor
arcs in a control flow graph are introduced to discriminate
the essential branches from nonessential branches de-
scribed previously.

Definition 1: A program is transformed to a directed
graph so that a node will correspond to a basic block,'
which is a sequence of sequentially executed statements,
and so that an arc will correspond to control transfer be-
tween basic blocks. Each entry and exit is transformed
into individual nodes.2 This graph is called a controlflow
graph and is denoted by G (N, A) where N is a set of
nodes and A is a set of arcs.

In the remainder of this paper, nodes are represented by
lower case letters from the end of the alphabet, such as x,

y, or z, and arcs from x to y are represented by (x, y) or

lower case initial letters of the alphabet, such as a, b, or
c.

Definition 2: For each node x, let IN(x) be the number
of arcs entering x and OUT(x) be the number of arcs ex-

iting from x. A node x with IN(x) = 0 is called an entry
node, and x with OUT(x) = 0 is called an exit node.

Definition 3: For any path from an entry node to an exit
node, if the path including an arc a always includes an-

other arc b, b is called an inheritor of a and a is called

'Although the correspondence between a basic block and statements de-
pends on the control statements of each individual programming language,
it is not detailed in this paper because there is no relation to the subject of
this paper.

2Since each entry or exit does not correspond to a node in the-definition
of a control flow graph in [17], a program with no branches and no loops
is transforned into a single node. In this paper, however, each entry or
exit corresponds to one node because coverage of paths from an entry to
an exit is discussed.

B. Elimination of Inheritors

This section introduces several reduction rules to elim-
inate inheritors from a directed graph.

Definition 6: Arcs incident to the same node in a path
are called adjacent arcs.

Theorem 1: If there is an inheritance relation between
two arcs which are not adjacent, the inheritor has its ad-
jacent arc as another ancestor.

The proof is shown in a previous paper [16].
Definition 7: For a node x, an arc (x, x) is called a self-

loop.
Theorem 2: A self-loop is a primitive arc.

The proof is shown in a previous paper [16].
Definition 8: A node y is called a dominator of a node

x if all paths from an entry node to x include y. A node z

is called an inverse dominator of x if all paths from x to
an exit node include z. Let DOM (x) and IDOM (x) be
sets of dominators and inverse dominators of x, respec-
tively. An algorithm for obtaining DOM (x) is detailed in
[17]. An algorithm for obtaining IDOM (x) is conducted
from the algorithm for obtaining DOM (x) by inverting
arc directions.

Following the above considerations, the condition for
an inheritor is discussed. From Theorems 1 and 2, it suf-
fices to consider whether an arc between different nodes
is an inheritor of its adjacent arc or not. The general form
of such an arc is shown in Fig. 4, where the broken line
implies one or more arcs that may exist.
The condition for a being an inheritor of b, c, d, or e

in Fig. 4 will be examined by considering the following
four cases.

Case 1: a is an inheritor of b.
A path passing through b necessarily passes through a

or c because x is not an exit node. Therefore, a path pass-
ing through b necessarily passes through a, only if the
following condition holds:

1) there is no c, or

2) there are one or more c's and a path passing through
c necessarily returns to x; that is, x is an inverse domi-
nator of the drain node for c.

Case 2: a is an inheritor of c.

The condition of this case is the same as the second
condition of Case 1.

Case 3: a is an inheritor of d.
A path passing through d passes through a or e because

y is not an entry node. Therefore, a path passing through
d necessarily passes through a, only if the following con-
dition holds:

1) there is no e; or

SO;

repeat

S,

unti I L, ;

S2;
(a)

)a

b

l(b)
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Fig. 4. General form of an arc and its two nodes.
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2) there are one or more e's, and a path passing through
e has necessarily passed through y previously; that is, y
is a dominator of the source node for e.

Case 4: a is an inheritor of e.
The condition of this case is the same as the second

condition of Case 3.
The above four conditions give the following reduction

rules for the elimination of an inheritor.
Condition 1: For a directed graph G (N, A),

x,yeNAx * yA (x,y)eA.
Reduction Rule RI: Under Condition 1, if

IN(x) * 0 A OUT(x) = 1,

(x, y) is eliminated from A and x and y are merged into
one, as shown in Fig. 5(a).
With respect to arc arrows in Figs. 5 and 6, the bold

line is an eliminated arc, the fine line is another arc in
existence, and the broken line implies one or more arcs
that may exist.
Reduction Rule R2: Under Condition 1, if

IN(y) = 1 A OUT(y) . 0

(x, y) is eliminated from A and x and y are merged into
one, as shown in Fig. 5(b).
Reduction Rule R3: Under Condition 1, if

OUT(x) 2 2

and

xEIDOM(w) forVwe{wI(x,w)eAAw y},

(x, y) is eliminated from A and x and y are merged into
one, as shown in Fig. 6(a).
Reduction Rule R4: Under Condition 1, if

IN(y) j 2

and

y E DOM(w) for v w E { w |(w, y) E A Aw * x},

(x, y) is eliminated from A and x and y are merged into
one, as shown in Fig. 6(b).
C. Reduction Algorithm
Using these four reduction rules, the algorithm for

transforming a directed graph to an inheritor-reduced
graph is given as follows.
Algorithm 1: For a given directed graph G (N, A), the

following procedure is executed.

(a) (b)
Fig. 5. Applications of the reduction rules. (a) RI. (b) R2.

l0,//

//

(a) (b)
Fig. 6. Applications of the reduction rules. (a) R3 (x is an inverse domi-

nator of w). (b) R4 ( y is a dominator of w).

1) Apply R1 for any arc which satisfies the condition
of RI.

2) Step 1) is repeated until no further suitable arcs are
found.

3) Apply R2 for any arc which satisfies the condition
of R2.

4) Step 3) is repeated until no further suitable arcs are
found.

5) Write an inheritor mark on any arc (x, y) that sat-
isfies the condition of R3, if there is at least one arc with-
out an inheritor mark among input arcs ofx or among arcs
composing a path from output arcs of x to x, except (x,
y) itself.

6) Step 5) is repeated until no further suitable arcs are
found.

7) Write an inheritor mark on any arc (x, y) that sat-
isfies the condition of R4, if there is at least one arc with-
out an inheritor mark among the output arcs of y or among
arcs composing a path reaching inversely from input arcs
of y to y, except (x, y) itself.

8) Step 7) is repeated until no further suitable arcs are
found.

9) Eliminate any arc with an inheritor mark, and merge
the two nodes on both ends of this arc into one.

10) Step 9) is repeated until no arcs with inheritor
marks are found.
The following theorem assures that this algorithm is

correct and optimum.
Theorem 3: The directed graph reduced by Algorithm

1 has the following features.
1) A set of paths covering all arcs in the reduced graph

also covers all arcs in the original graph.
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2) The number of arcs in the reduced graph is least
among graphs with the feature of 1).
The proof is shown in a previous paper [16].
Although the application order of RI and R2 is unim-

portant, the order of Algorithm 1 is such that RI is prior
to R2. This has the following merits.

1) Each arc in the reduced graph corresponds uniquely
to a particular arc in the original graph.

2) Furthermore, each arc in the reduced graph corre-
sponds uniquely to a particular dd path in the original
graph since the corresponding arc in the original graph is
a branch arc whose source node has two or more exit arcs.
Such corresponding arcs are called essential branches, and
the other branch arcs are called nonessential branches in
the original program.

IV. NEW COVERAGE MEASURE AND ITS SUPPORT TOOL
A. New Coverage Measure

In order to improve both effectiveness and efficiency of
branch testing, a new coverage measure Cpr, instead of
Cdd, is defined below on the inheritor-reduced graph,
which is transformed from a program by Algorithm 1:

Cpr

the number of executed arcs
the number of all arcs in the inheritor-reduced graph

B. A Tool for New Coverage Measure
The tool for measurement of Cpr, SCORE (the source-

level coverage rate evaluator), was developed and used
for comparison between CP, and Cdd. SCORE is applica-
ble to Pascal programs and is composed of the following
four phases.
Phase P1: A Pascal program is transformed to the con-

trol flow graph.
Phase P2: The control flow graph is transformed to the

inheritor-reduced graph by Algorithm 1.
Phase P3: An instrument code is embedded into any

place in the source program corresponding to any arc in
the inheritor-reduced graph.
Phase P4: The coverage rate Cpr and unexecuted es-

sential branches are printed out after the code-embedded
program is executed.

V. REDUCTION OF BRANCHES To BE MONITORED
First, the number of branches to be monitored for Cpr

is compared to that for Cdd. The following three programs
written in Pascal are used for this experiment with
SCORE.
PLO Parser: This is the parser for the language PLO,

whose source program is shown in Wirth [18, pp. 314-
319].
SCORE: This is the tool itself for Cpr, whose four

phases P1, P2, P3, and P4 are used separately.
PARSE: A structure editor recently developed by our

Fig. 7. A control flow graph of the getsym procedure in the PLO parser,
in which an arc with the number n is eliminated by the reduction rule Rn
of Algorithm 1.

Fig. 8. The inheritor-reduced graph of Fig. 7, all arcs of which are prim-
itive arcs corresponding to arcs with "p" in Fig. 7.

group (19].
The PLO parser was selected to assure objectivity, and

the others were selected as rather large programs.
For example, consider the getsym procedure in the PLO

parser. This procedure is transformed to the control flow
graph as shown in Fig. 7 and then transformed to the in-
heritor-reduced graph by applying the Algorithm 1 as
shown in Fig. 8. The number n in Fig. 7 implies that the
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TABLE I
REDUCTION OF BRANCHES To BE MONITORED WHEN APPLYING ALGORITHM 1 TO PASCAL PROGRAMS

PLO SCORE SCORE SCORE SCORE
Tested Programs Parser (P1) (P2) (P3) (P4) PARSE Total

1) The number of executable statements 326 1375 1095 516 1052 6663 11 027
2) The number of branches

(a denominator of Cdd) 136 582 533 230 553 2914 4 948
3) The number of eliminated branches:

a) using the R2 rule 40 87 73 44 52 754 1 050
b) using the R3 rule 5 104 113 18 131 138 509
c) using the R4 rule 10 48 49 11 47 148 313

4) The number of essential branches
(a denominator of Cpr) 81 343 298 157 323 1874 3 076

The ratio of 4) /2) 0.60 0.59 0.56 0.68 0.58 0.64 0.62

arc with the number is eliminated by the reduction rule
Rn. The other arcs with p are primitive arcs in Fig. 8.
The entire result is shown in Table I. Item 2) is the

number of all branches in a tested program; all these
branches are monitored when Cdd is applied as a coverage
measure for branch testing. Item 3) is the number of
branches eliminated as nonessential branches by using the
reduction rules R2, R3, and R4 in Algorithm 1. Table I
omits the number of arcs eliminated by using the reduc-
tion rule Rl because it has no relation to the comparison
between Cpr and Cdd. Item 4) is the number of essential
branches that correspond to arcs in the inheritor-reduced
graph of a tested program. Only these essential branches
are monitored when Cpr is applied. Therefore, this exper-
iment demonstrates that the number of branches to be
monitored for branch testing is reduced to about 60 per-
cent by using Cp, instead of Cdd.
As a result, this reduction implies the following advan-

tages when Cp, is used for making additional test data so
that they will execute unexecuted branches.

Effectiveness: The possibility of selecting redundant
test data is less because attention is paid to only essential
branches.

Efficiency: It is easier to select additional test data be-
cause the number of branches under consideration is
lower.

VI. FEATURES OF THE NEW MEASURE FOR QUALITY
ASSURANCE

The difference between Cpr and Cdd is experimentally
observed by applying these measures to the PLO parser
mentioned previously.

A. Test Data Selection
The following set of test data is selected for full cov-

erage of all branches in the PLO parser.
1) A1-A26: These test data cover all arcs of the syntax

diagram in [18, pp. 308-310] so that the execution of An
covers only one arc which is not executed by a set of AI-
An-l

2) B1-B25: These test data correspond to 25 invocations
of the error-handling procedure ERROR in the PLO par-
ser.

3) C1-C4: These test data were added individually so
that they would execute four branches not executed by the
above test data. These four test data correspond to the
following cases.

a) C1 is the case where the '.' is missing at the end of
a program.

b) C2 is the case where the number of characters for an
identifier exceeds ten.

c) C3 is the case where there is a ':' not followed by a
4 =,

d) C4 is the case where two or more different identifiers
are used.
Among this set of test data, 1) and C4 are test data of

legal input, and 2) and C1-C3 are test data of illegal input.
In this process, the keyword 'to' of the following state-

ment in the main program was replaced with 'downto':

for ch:='A' to ';' do ssym[ch]:=nul;
This is because the character code of 'A' is greater than
the character code of ';' in our computer system. The ne-
cessity of this modification was detected by the fact that
the body of the for statement was not executed by above
test data of 1) and 2). This demonstrates the effectiveness
of branch testing.

B. Measurement of Cpr
First, all the test data were executed in order. As a re-

sult, there were eight redundant test data where the ac-
cumulative coverage rate did not increase. This is because
the types of operators { =, ., <, >, c, 2 }, { +, =},
or { *, / } are discriminated at once by using a relative
operator in in the program, although these discriminations
are represented by different arcs that correspond to each
operator in the syntax diagram. Thus, these redundant test
data were omitted.

Fig. 9 demonstrates the accumulative curves of Cpr and
Cdd by using 47 test data. A tendency to overestimate soft-
ware quality by using Cdd is weakened by using Cp, in-
stead because the accumulative curve of Cp. is closer to
linearity than that of Cdd. It is proved conclusively that
Cpr is more suitable as a measure for software quality es-
timation than Cdd.
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a)

a1)
io

(L

0
0 ail ( ih

5>

The number of test data

Fig. 9. Accumulative curve of Cpr and Cdd when testing the PLO parser
with 47 test data.

VII. APPLICATION TO TEST DATA SELECTION
A. Algorithms for Test Data Selection

In order to decrease redundant test data from the path
coverage viewpoint mentioned in Section II, a new algo-
rithm for test data selection is proposed on the basis of
the following policies.

1) Consideration should be limited to arcs in an inher-
itor-reduced graph, that is, to essential branches.

2) Furthermore, arcs with less possibility of being in-
cluded in the execution paths of many test data should be
given priority over arcs in an inheritor-reduced graph.
Algorithm 2: The test data for a program are selected

according to the following procedure.
1) Transform a control flow graph of the program to

the inheritor-reduced graph by using Algorithm 1.
2) Based on this inheritor-reduced graph, select test

data including as many of the following arcs as possible
among those arcs not yet included in the executed paths
of selected test data. The upper items have priority over
the lower items:

a) a self-loop;
b) a backward arc [171; and
c) among sets of arcs from the same source node to

the same drain node, an arc chosen from a set which holds
the maximum number of arcs.

Although this algorithm is not deterministic, it can be
refined so as to be deterministic by neglecting path pred-
icates. However, such automatic path selection is not
practical since there is a tendency to select infeasible
paths. By using this algorithm, redundant test data de-
crease considerably.

Next, the effectiveness of Algorithm 2 is discussed. Step
1) is reasonable because it is not necessary to pay atten-
tion to inheritors from the path coverage viewpoint. In
step 2), a self-loop and a backward arc have high priority
because the other arcs in a path that includes these kinds
of arcs have a high possibility of also being included in
other paths. For example, if there is a path including a
self-loop and another path excluding only the self-loop
from the former path, all arcs except the self-loop overlap
in these two paths. Since a path including a backward arc
has a loop, all arcs except the backward arc in this path
are apt to overlap with other paths also.

Fig. 10. A chain of nodes.

It is intuitively obvious that item c) of step 2) also has
less possibility of overlap and therefore must have the
third priority. The following two theorems are given to
assist understanding of item c).

Condition 2: For a directed graph G (N, A),
N= {n,, * * ,nk},

(ni, ni+ 1) E A for i = 1, * , k-1,

(ni, nj) A for j *i + 1,

IN(nl) = 0,

OUT(ni) = IN(ni+1) 2 2 fori = 1, k 1,
and

OUT(nk) = 0.
Let hi be the number of (ni, ni+1) represented by ail,

aihi, as shown in Fig. 10.
Theorem 4: Under Condition 2, the minimum possible

number of paths for covering all arcs is

max (hi).

Theorem 5: Under Condition 2, the maximum possible
number of paths for covering all arcs is

k - 1

Z (hi - 1).

Theorem 4 is obvious. The proof of Theorem 5 is de-
scribed in the Appendix.

B. Optimization of Selected Test Data Set

Software testing is important in the maintenance phase
as well as in the development phase because more than
70 percent of total software costs are spent on mainte-
nance. In particular, a test data set is executed more fre-
quently for the regression test in the maintenance phase.
Therefore, it is desirable to eliminate redundant test data
from'the selected test data set. A reduction algorithm
based on an inheritor-reduced graph is given as follows.
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Algorithm 3: For a given program, its test data set D
is reduced as follows.

1) Transform the program to the inheritor-reduced
graph G (N, A) by Algorithm 1.

2) For all test data in D, obtain a set of arcs included
in the corresponding path p. Let A (p) be the set and P
be a set of paths corresponding to D.

3) Obtain a subset of PS from P as follows:

PS= {pI{L(ai) 2 2 forv ai eA(p)}, 3p EP}
where L (ai ) is the number of paths including ai.

4) Eliminate a path pm satisfying the following condi-
tion from P:

min {L(ai) for v aie A(Pm)} min L(aj) for v a

E A(p)} for v p E Ps.
In addition, eliminate the test data corresponding to pm
from D.

5) Steps 3) and 4) are repeated until PS becomes empty.
This algorithm, excluding step 1), can be applied to an

original control flow graph as well as to an inheritor-re-
duced graph. This algorithm, however, is executed more
efficiently because treated arcs are limited to primitive
arcs.

VIII. CONCLUSIONS

A new coverage measure for branch testing was pro-
posed for more effective and efficient software testing.
This measure is defined by coverage of only essential
branches, whereas the conventional measure is defined by
coverage of all branches. The essential branches are de-
fined so that full coverage of all essential branches will
imply full coverage of all branches.
The testing tool for this new measure was developed in

order to discriminate essential branches from nonessential
branches and to measure the coverage rate over these es-
sential branches. By using this tool, it is ascertained that
the number of essential branches is about 60 percent of
all branches.
As a result, the new measure had the following advan-

tages in comparison to the conventional measure:
1) avoidance of software quality overestimation;
2) prevention of redundant test data selection; and
3) efficient optimization of a selected test data set for

redundancy elimination.
The first advantage demonstrated by an expermental

fact was that the accumulative curve of Cpr is closer to
linearity than that of Cdd. The second advantage resulted
from a 40 percent reduction in the number of branches to
be monitored and was confirmed by a reasonable algo-
rithm for test data selection. For the third advantage, the
optimization algorithm was presented. Furthermore, any
type of tool collecting information about branch coverage
can be executed efficiently by monitoring only essential
branches because coverage of all branches can be ob-
tained from coverage of essential branches together with

the corresponding relation between inheritors and ances-
tors.

APPENDIX
This Appendix proves Theorem 5, mentioned in Sec-

tion VII-A. First, an example of the case in which the
number of paths is Ei-I (hi 1) is given. Suppose that
the path including any aij j i= 1) is composed of the
following arc sequence, and other types of paths do not
exist:

all, a21,* , ai-11, aij, ai+11 **, ak-11l

In this case, (hi- I) arcs, except ail, among arcs exiting
from the node ni have a one-to-one correspondence with
the set of paths. Then the number of paths becomes
E- (hi - 1)

Next, assume that
k-i

S= E (h - 1) + d
i= 1

where S is the number of paths necessary for covering all
arcs and d 2 1. Let P be a set of these paths, and let
A (p) be a set of arcs composing a path p. Let L(aij) be
the number of paths including aij. Now, if there is a path
p satisfying

{L(a,j ) > 1 for v aij E A(p)}, 3 pEiP,
p is a redundant path for full coverage of all arcs. Since
this contradicts the assumption,

{ L(aij ) = 1, 3 aij E A(p)} for V p e P.

This condition implies that there are at least S arcs with
L (aij ) = 1. On the other hand, if

{L(agj) > 1,3aij
E ( a set of arcs exiting from ni } } for i

.= 1, * k-i,

the number of arcs with L(a1) = 1 is not more than
SIk (hi- 1), and this contradicts the previous result.
Then there is a node n1 satisfying

L(aij)= 1 forVaii
E { a set of arcs exiting from ni

Therefore, for this node,
hi

E L(ai)= h.
j=1

On the other hand, by definition of L(aij),
hi

Z L(aU) = S.
j=1
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Then these two equations conduct
k-1

hi= Z (hi - 1) + d = (h, - 1) +

+ (hi-, - 1) + hi + (hi+, - 1) ...

' (hk-l - 1) + (d - 1).
From the assumption of d 2 1, this equation implies

hj < 1 forj * i

and then contradicts Condition 2. [E

ACKNOWLEDGMENT
The author wishes to express his gratitude to Dr. J. Ka-

wasaki and Y. Aoyama for providing the opportunity to
conduct this study. He is also indebted to T. Watanabe
and A. Tanaka for their invaluable technical assistance
and K. Horiuchi, who implemented the tool for the new
measure.

REFERENCES

[1] W. E. Howden, "A survey of dynamic analysis methods," in Tuto-
rial: Software Testing & Validation Techniques, IEEE Catalog No.
EHO 138-8. New York: IEEE, 1978, pp. 184-206.

[2] G. J. Myers, The Art ofSoftware Testing. New York: Wiley, 1979.
[3] J. B. Goodenough and S. L. Gerhart, "Toward a theory of test data

selection," IEEE Trans. Software Eng., vol. SE-I, pp. 156-173, June
1975.

[4] W. E. Howden, "Applicability of software validation techniques to
scientific programs," ACM Trans. Programming Lang. Syst., vol. 2,
pp. 307-320, July 1980.

[5] W. R. Elemendorf, "Functional analysis using cause-effect graphs,"
in Proc. SHARE XLIII, New York, 1974.

[6] W. E. Howden, "Reliability of the path analysis testing strategy,"
IEEE Trans. Software Eng., vol. SE-2, pp. 208-214, Sept. 1976.

[7] E. J. Weyuker and T. J. Ostrand, "Theories of program testing and
the application of revealing subdomains," IEEE Trans. Software
Eng., vol. SE-6, pp. 236-246, May 1980.

[8] L. J. White and E. I. Cohen, "A domain strategy for computer pro-
gram testing," IEEE Trans. Software Eng., vol. SE-6, pp. 247-257,
May 1980.

[9] E. F. Miller, "Program testing: Art meets theory," IEEE Computer,
vol. 10, pp. 42-51, July 1977.

[10] J. C. Huang, "Error detection through program testing," in Current
Trends in Programming Methodology, vol. 2, R. T. Yeh, Ed. En-
glewood Cliffs, NJ: Prentice-Hall, 1977, pp. 16-43.

[11] U. Voges et al., "SADAT-An automated testing tool," IEEE Trans.
Software Eng., vol. SE-6, pp. 286-290, May 1980.

[12] M. A. Holthouse and M. J. Hatch, "Experience with automated test-
ing analysis," IEEE Computer, vol. 12, pp. 33-36, Aug. 1979.

[13] A. R. Sorkowitz, "Certification testing: A procedure to improve the
quality of software testing," IEEE Computer, vol. 12, pp. 20-24,
Aug. 1979.

[14] J. Bicevskis et al., "SMOTL-A system to construct samples for data
processing program debugging," IEEE Trans. Software Eng., vol.
SE-5, pp. 60-66, Jan. 1979.

[15] T. Chusho et al., "HITS: A symbolic testing and debugging system
for multilingual microcomputer software," in Proc. NCC'83, May
1983, pp. 73-80.

[16] T. Chusho, "Coverage measure for path testing based on the concept
of essential branches," J. Inform. Processing, vol. 6, pp. 199-205,
Feb. 1984.

[17] M. S. Hecht, Flow Analysis of Computer Programs. New York:
North-Holland, 1978.

[18] N. Wirth, Algorithms+Data Structures=Programs. Englewood
Cliffs, NJ: Prentice-Hall, 1976.

[19] T. Chusho, "A language-adaptive programming environment based
on a program analyzer and a structure editor," in Proc. IFIP'83, 1983;
pp. 621-626.

[20] B. Beizer, Software Testing Techniques. Pennsauken, NJ: Van Nos-
trand Reinhold, 1983.

Takeshi Chusho was born in Marugame, Japan,
in 1946. He received the B.S. and M.S. degrees
in electronic engineering from Tokyo University,

_ Tokyo, Japan, in 1969 and 1971, respectively, and
the Ph.D. degree in computer science from Tokyo
University in 1984.

He is a Senior Researcher in the Systems De-
3 velopment Laboratory, Hitachi Ltd., Kawasaki,

Japan. Since joining the company in 1971, he has
worked on the design and implementation of a
structured programming language, compilers,

testing tools, a structured editor, and a knowledge information processing
language. His current research interests include knowledge engineering and
software engineering.

Dr. Chusho received a winning paper award in 1982 from the Infor-
mation Processing Society of Japan. He is a member of the Editorial Board
of the Information Processing Society of Japan and of the Planning Board
of the Japan Society for Software Science and Technology. He is a member
of the IEEE Computer Society and the Association for Computing Ma-
chinery.

517


