
oo software testing WS 2017/18

monika.heiner@b-tu.de 1 / 7

THE CHALLENGE OF OO TESTING
 (. . . THE GURUS ARE SPEAKING)

❑ THE FAIRY TALE OF THE EARLY BIRDS:

”Both testing and maintenance are simplified by an oo approach . . .”

[Rumbaugh 91]

❑ OPTIMISM ALL OVER:

”. . . the use of oo design doesn’t change any basic testing principles;
what does change is the granularity of the units tested.”

[Booch 94]

. . .

❑ THE BIG DISCOVERY:

“ . . . we have uncovered a flaw
in the general wisdom about oo languages -
that “proven” (that is well-understood, well-tested, and well-used)
classes can be reused as superclasses
without retesting the inherited code.”

[Perry 90]

❑ PESSIMISM FIGHTS BACK:

“ . . . it costs a lot more to test oo software
than to test ordinary software - perhaps four or five times as much . . .

Inheritance, dynamic binding, and polymorphism create
testing problems that might exact a testing cost so high
that it obviates the advantages.”

[Beizer 94]

oo software testing WS 2017/18

monika.heiner@b-tu.de 2 / 7

SOME DIFFERENCES (I)

❑ increasing modularization

-> decreasing module size

-> more inter-module dependencies
(if methods depend on methods of other classes)

❑ project is divided into oo (data structure-oriented) work packages

-> instead of function-oriented work packages

-> functionality may depend on classes developed by co-workers

-> increasing dependencies among co-workers

-> dependencies require coordination

-> coordination requires time = money

-> coordination may result into misunderstanding

-> misunderstanding results into errors

❑ functionality - collaboration among objects

-> collaboration requires interfaces -> public methods

-> interfaces tend to be complex

-> interfaces require coordination

-> coordination <see above>

❑ general purpose classes

-> reuse beyond the current project

-> higher degree of potential applications

-> public methods may be used by any method of any other class

-> testing of all (currently) relevant states
requires anticipation of user profile

oo software testing WS 2017/18

monika.heiner@b-tu.de 3 / 7

SOME DIFFERENCES (II)

❑ program structure does not reflect program functionality

-> functionality is realized by a subset of methods

-> new instrumentation technique to check functional test coverage

-> user profile oriented instrumentation

❑ object methods communicate by shared object attributes

-> the object state produced by a former method (in a sequence)
may influence the behaviour of the latter method

-> the method behaviour is influenced by
method parameters AND
object state

-> exhaustive testing =
all possible state transitions in all possible states

❑ methods call often other methods of the same class

-> procedural coupling among methods

. . .

❑ oo software is not only harder to test,
there is even a richer set of potential errors

-> dedicated oo test techniques required

oo software testing WS 2017/18

monika.heiner@b-tu.de 4 / 7

STATE OF THE ART
(LATEST NEWS FROM CASE STUDIES)

❑ oo software exhibits an higher fault rate

❑ inaccurate classes in inheritance hierarchies

-> three times more bound to be erroneous
than classes without inheritance

❑ concise code results into higher fault density

❑ oo analysis and design faults

-> greater influence
than faults in classical analysis and design techniques

❑ the real fault causes are harder to detect

-> difficult debugging

❑ insufficient oo analysis/design/programming skills

-> avoidable faults

❑ BUT:
reused classes produce generally less faults

-> higher dependability seems to be possible

oo software testing WS 2017/18

monika.heiner@b-tu.de 5 / 7

THE MOST IMPORTANT TROUBLEMAKERS

❑ encapsulation

-> restricts visibility of object states

-> restrictes observability of intermediate test results

-> code adaption for test purposes, e.g. “friendly” methods

-> fault discovery more difficult

❑ inheritance

-> the oo goto statement

-> invisible dependencies between super/sub-classes

-> reduced code redundancy = increased code dependencies

-> erroneous functionality is inherited too

-> a subclass can’t be tested without its superclasses

-> abstract classes can’t be tested at all

❑ polymorphism & dynamic binding

-> static program structure /= dynamic behaviour

-> all possible bindings have to be tested

-> explosion of potential execution paths

-> explosion of potential errors

oo software testing WS 2017/18

monika.heiner@b-tu.de 6 / 7

(CURRENT ?) CONCLUSIONS

❑ high dependability demands

-> avoid oo

[Sneed 2002]

-> “Currently, at the time of developing this standard,
it is not clear whether object-oriented languages
are to be preferred to other conventional ones.”

[IEC 61508-7, p. 169]

❑ to promote oo

-> developed skills in sophisticated oo testing techniques

-> testing costs may be much higher than developing costs

❑ lessons learnt

-> method test /= procedure test

-> class test /= module test

❑ oo testing

-> class test - a challenge

-> integration test - a challenge

-> system test - reuse of conventional test strategies

oo software testing WS 2017/18

monika.heiner@b-tu.de 7 / 7

REFERENCES

❑ Arbeitskreis
GI-FG 2.1.7 “Test objektorientierter Programme”

❑ Binder, Robert V.:
Testing Object-oriented Systems; Models, Patterns, and Tools;
Addison-Wesley, 4th edition, 2003

❑ IEC 61508
Functional safety of electrical/electronic/programmable electronic
safety-related systems, part 7 Overview of techniques and measures,
IEC, first edition August 2002

❑ Sneed, H. M.; Winter, M.:
Testen objektorientierter Software; Das Praxishandbuch für den Test
objektorientierter Client/Server-Systeme;
Hanser 2002

❑ Vigenschow, U.:
Objektorientiertes Testen und Testautomatisierung in der Praxis;
Konzepte, Techniken und Verfahren;
dpunkt.verlag 2005 (2. Auflage 2010), www.oo-testen.de

