
Java Virtual Machine with Rollback Procedure
allowing Systematic and Exhaustive Testing of

Multi-threaded Java Programs

Pascal Eugster <pe@student.ethz.ch>

10th April 2003

c© Formal Methods Group, Computer Science Institute, ETH Zürich

Abstract

Many Java programs have sources of non-determinism, where a program depends upon
factors that cannot be controlled. Such sources include (true) random numbers or the
inherent non-determinism in concurrent threads, where the thread schedule is deter-
mined by the environment and varies between executions. This makes classical testing
and fault-finding very inefficient: due to the non-deterministic nature of concurrent
programs, a program run can no longer be reproduced reliably, and a fault may not
manifest itself except under rare circumstances. Therefore the wish arises to test a pro-
gram, under all possible outcomes. Different thread schedules are of primary interest.

The main goal was to create a virtual machine that aims to expose its internal ex-
ecution environment to tools in a consistent, well-documented way. It also includes a
rollback mechanism, that allows establishing checkpoints in program execution, which
can be reverted to in order to test another schedule.

On top of our custom virtual machine, a testing algorithm was implemented that
systematically finds errors resulting from unintended timing dependencies. This work
implements the ExitBlock and the ExitBlock-RW algorithm presented in Derek Bruen-
ing’s master thesis [7]. Both algorithms execute a program or parts thereof on a given
input multiple times, enumerating meaningful schedules in order to cover all program
behaviours. A key challenge is to minimize the number of schedules. ExitBlock and
the ExitBlock-RW achieve this by enumerating possible orders of synchronized regions,
provided the target program follows a mutual-exclusion locking discipline. However,
the number of resulting schedules is still to high. Real programs therefore cannot be ex-
haustively tested as a whole. This thesis presents the implementation of ExitBlock and
ExitBlock-RW in our custom virtual machine, and demonstrates how possible assertion
violations, and most potential deadlocks are discovered.

Acknowledgements

I would like to thank Prof. Armin Biere of the Swiss Federal Institute of Technology for
giving me the opportunity to participate in such a challenging and interesting project.

This Diploma Work would not have been gotten so far without the guidance and
tutelage of my assistant Cyrille Artho. He gave me invaluable guidance at every stage
of the work – from planning over development to proofreading. He was never tired of
giving feedback.

More thanks to Viktor Schuppan for taking the time to revise this report meticu-
lously. He gave me many ideas how to improve this report.

ii

Contents

1 Introduction 1
1.1 Considered concurrency errors . 4
1.2 The JNuke framework . 4
1.3 Related work . 5
1.4 Overview . 8

2 Algorithms for Systematic Testing 9
2.1 Target program requirements . 9
2.2 Overview . 11
2.3 The ExitBlock algorithm . 13

2.3.1 Number of schedules executed by ExitBlock 20
2.4 The ExitBlock-RW algorithm . 20

2.4.1 Number of schedules executed by ExitBlock-RW 21
2.5 Deadlock detection . 22

2.5.1 Lock-Cycle deadlocks . 22
2.5.2 Condition deadlocks . 24

2.6 Summary . 25

3 The Virtual Machine 26
3.1 Objectives . 26
3.2 The design at a glance . 27
3.3 The heap manager . 28
3.4 The lock manager . 33
3.5 The waitset manager . 35
3.6 The runtime environment . 35
3.7 Pluggable schedulers . 38
3.8 Limitations . 41
3.9 Summary . 41

4 The Milestone and Rollback Mechanism 43
4.1 Usage . 43
4.2 Implementation . 43
4.3 Summary . 45

5 Experiments 46
5.1 Performance and memory usage of the VM 46
5.2 ExitBlock and ExitBlock-RW . 52

5.2.1 Performance of the milestone/rollback mechanism 57

iii

iv CONTENTS

5.3 Summary . 58

6 Future Work 60
6.1 Future work on the virtual machine 60
6.2 Future work on the milestone/rollback mechanism 62
6.3 Future Work on ExitBlock-RW . 63
6.4 Summary . 64

7 Conclusions 66

A API Documentation 67
A.1 JNukeArrayInstanceDesc . 69
A.2 JNukeExitBlock . 70
A.3 JNukeHeapLog . 71
A.4 JNukeHeapManager . 72
A.5 JNukeInstanceDesc . 77
A.6 JNukeLock . 78
A.7 JNukeLockManager . 80
A.8 JNukeRBCInstruction . 81
A.9 JNukeRLCAnalyzer . 90
A.10 JNukeRRScheduler . 90
A.11 JNukeRuntimeEnvironment . 91
A.12 JNukeSchedule . 96
A.13 JNukeStackFrame . 97
A.14 JNukeThread . 99
A.15 JNukeVirtualTable . 104
A.16 JNukeVMState . 106
A.17 JNukeWaitList . 108
A.18 JNukeWaitsetManager . 109

B Code Examples 111
B.1 JNukeHeapManagerActionEvent . 111
B.2 MethodInvocation . 111
B.3 ReadManyFields . 112
B.4 Iteration . 112
B.5 Array . 113
B.6 MultiArray . 113
B.7 DoubleOp . 113
B.8 BubbleSort . 114
B.9 JASPA . 115
B.10 JGFCrypt . 118
B.11 JGFSeries . 129
B.12 JGFSparseMatmult . 136
B.13 Performance . 141
B.14 Deadlock . 141
B.15 Deadlock3 . 142
B.16 SplitSync . 143
B.17 Dining Philosopher . 143
B.18 DeadlockWait . 145
B.19 BufferIf . 146

CONTENTS v

B.20 BufferWhile . 147

C Test Cases 149

D Miscellaneous 158
D.1 Supported platforms . 158
D.2 Code coverage . 158
D.3 Implemented Java foundation classes 159

Table of Listings 160

List of Algorithms 161

List of Tables 162

List of Figures 164

Bibliography 167

Index 167

vi CONTENTS

c© Formal Methods Group, Computer Science Institute, ETH Zürich

Chapter 1

Introduction

A concurrent program consists of several threads or processes. A process has its own
program counter, its own stack, register set, and address space. Processes have nothing
to do with each other, except that they may be able to communicate through the sys-
tem’s interprocess communication primitives, such as semaphores, monitors or mes-
sages [3]. In contrast to processes, threads have the same address space which means
they share global variables allowing communication. Threads are sometimes called
lightweight processes [42]. The Java programming language inherently follows the
concept of threads. All Java threads share the same memory and thus all variables of
objects may be accessed from different threads.

The operating system executes threads and processes in parallel. On a uni-processor
machine however, threads do not actually execute in parallel. A uni-processor environ-
ment simulates parallelism by interleaving processes or threads using time-sharing.
Real parallel execution presumes a multi-processing environment.

Concurrency allows to perform multiple computations in parallel and to control
multiple external activities which occur at the same time. It can also increase the
throughput and responsiveness. Enterprise applications increasingly rely on concur-
rency in order to process many user requests at the same time [2]. Graphical user
interfaces often use concurrency as well, so they remain responsive to user interaction
even during a calculation.

The execution order of a concurrent program is nondeterministic due to the ap-
parent randomness in the way threads are scheduled. Different execution orders of
threads or processes may result in different program behaviours. Some of them might
be erroneous. Errors that underlie the timing of threads are called timing-dependent
errors. Due to the nondeterministic nature of concurrent programs, classical testing
techniques for sequential programs are far less effective. Techniques for testing se-
quential programs usually consist of test suites where the target program is run on
different representative sets of input data. Applied to a concurrent program however
only one fraction of the possible schedules is covered. A concurrent program may pass
a traditional test suite in spite of timing-dependent errors. Even if a timing-dependent
error is found, there is no guarantee that the same erroneous behaviour can be repro-
duced by rerunning the same test case with the same input data as the outcome of a
concurrent program is determined by a pair of input and schedule.

Thus, this thesis describes algorithms for exhaustively enumerating possible be-
haviours of a Java program for a given input. Our motivation is to discover all erro-
neous behaviours by systematically exploring a concurrent program’s behaviour.

1

2 CHAPTER 1. INTRODUCTION

A tester therefore needs to exhaustively explore all possible schedules for each rep-
resentative input. A naïve approach would consist of interleaving each statement of
a thread with each statement of all other threads. The problem with simply enumer-
ating possible schedules of the program is the exponential increase in the number of
schedules that has to be considered. Thus, this naïve approach is hardly applicable for
real concurrent programs. The ExitBlock algorithm [7] assumes that a program follows
a mutual exclusion locking discipline. It enumerates orders of synchronized regions,
which still covers all behaviours. However, the number of explored schedules by Ex-
itBlock still increases exponentially in both the number of threads and the number of
lock uses by each thread. The solution is to investigate which schedules lead to the
same behaviour and thus execute as few schedules as possible. This idea is followed
by ExitBlock-RW [7], an extension of ExitBlock, which does not reorder regions that
do not share data. The number of schedules to be considered is reduced. It results in
a polynomial growth in average case. In this thesis a systematic tester implementing
ExitBlock and ExitBlock-RW is described. It provides behaviour-complete testing for
multi-threaded Java programs by enumerating possible schedules.

ExitBlock uses a depth-first search. It first executes one complete schedule of the
program. Then, ExitBlock backs up from the end of the program to the last synchro-
nized region boundary at which a different thread is chosen to schedule. This leads to
a new schedule branching off from this point in the program. This process is system-
atically repeated, continuing to back up to synchronized region boundaries choosing
different threads.

The described depth-first search presumes that the state of a program can be stored
in order to return to a previous state. Thus, there has to be a mechanism that allows
establishing check points in program execution, which can be reverted to. We call this
milestone/rollback mechanism.

Figure 1.1 shows different approaches that come into question. The implementation
of the rollback/milestone mechanism can take place at any layer of the system stack.
The according layer is then either replaced as a whole or parts thereof by a custom
implementation. Beside replacing a layer, it is also possible to control an existing
layer. Table 1.1 gives an overview about possible approaches detailed below.

Figure 1.1: The system stack from the Java program to the hardware.

3

Layer Description Flexibility Effort Performance

5 Instrumentation of the Java program − low +/−
4 Replacing the virtual machine as a + low +/−

whole or parts thereof
3 Replacing parts of the POSIX API − high +
3 Steering execution with strace, − high +

ptrace and other system tools
2 Modification of the OS kernel − very high +
1 Dedicated hardware supporting − very high +

rollbacks

Table 1.1: Overview about possible ways to implement a milestone/rollback mecha-
nism at different system layers introduced in Figure 1.1.

The first approach is located at the fifth layer where a package of Java classes is
provided implementing the rollback mechanism. Maybe Foundation Classes need to
be rewritten as well. A target Java program is then instrumented using this package
and executed by an arbitrary virtual machine. The implementation of the libraries
providing the rollback mechanisms and the instrumenting of the Java code is rather
difficult to realize as a Java program has hardly any access to the underlying virtual
machine. This approach, however, could profit of the optimization of the used virtual
machine, such as a just-in-time compiler.

It is also possible to replace the virtual machine or parts thereof. This thesis follows
this approach. Our virtual machine is written from scratch, which comes with several
considerable advantages. First, the virtual machine is implemented such that it exposes
its internal execution environment to tools in a consistent, well-documented way. Its
event system easily allows tools to access run-time information and control the virtual
machine. Second, a custom virtual machine allows to chose a design well supporting
the implementation of the rollback mechanism. However, a custom virtual machine
cannot profit of all the optimizations provided by commercial virtual machines. This
results in lower performance. The Rivet virtual machine [7] written in Java itself, run-
ning on top of any other virtual machine, is a partial virtual machine. Thus, Rivet can
make use of lower virtual machine’s platform-specific features and inherently profit of
optimizations of the underlying virtual machine. Development, however, has been dis-
continued as Rivet replaces foundation classes, which is disallowed by current virtual
machines.

Another approach is to implement a software layer beneath the existing virtual ma-
chine which replaces parts of the POSIX API [33] level and allows to control thread
switches as well as memory accesses (provided the target virtual machine uses the
POSIX API for threading support). Replacing the POSIX API may raise some compat-
ibility issues. Working with strace/ptrace [3] avoids this. These tools allow to monitor
and influence system calls. It may be possible steer the system this way. Also, we can
go to deeper layers down to the hardware. The effort, however, increasingly grows, and
portability becomes a problem. It is also supposable to implement a virtual machine
on top of the host operation system that executes another operation system or the Java
virtual machine [46, 44].

As mentioned, a virtual machine, written from scratch, exposing its interfaces, eas-
ily allows to implement runtime checkers. It provides a good flexibility paired with a
reasonable effort. Thus, our group decided to write a custom virtual machine extended

4 CHAPTER 1. INTRODUCTION

with rollback facilities based on the JNuke framework introduced in Section 1.2. Due to
the early stage, our custom virtual machine is much slower than Sun’s virtual machine.
However, it is able to execute any program in reasonable time provided the target pro-
gram does not perform I/O operations. Thes are not implemented yet. ExitBlock and
ExitBlock-RW are implemented on top of our virtual machine. Experiments in Chap-
ter 5 demonstrate that possible assertion violations and most deadlocks are discovered.
Examples like dining philosophers with up to twenty threads are considered. A din-
ing philosophers program with twenty concurrent threads leads to 300’000 schedules
explored within five minutes on a recent workstation1.

1.1 Considered concurrency errors

Various timing-dependent errors can occur in a concurrent program. This thesis con-
siders the following timing-dependent errors:

Race Conditions also called data races can be defined as follows. A data race occurs
when two concurrent threads access a shared variable and when at least one access is
a write, and the threads use no explicit mechanism to prevent the accesses from being
simultaneous [36]. Race conditions can be detected by the Eraser algorithm [36]. It
observes what locks are held by each thread on each variable access.

Deadlocks are a cycle of resource dependencies that leads to a state in which threads
are blocked from execution for infinite time. Lock cycle analyzes can detect deadlocks.
A lock graph without any cycles ensures the absence of deadlocks [7].

Specific Properties are often tested through assertions at run-time and may fail be-
cause of an unexpected schedule. For instance, this can happen if conditions are not
rechecked when several threads are awakened by notifyAll. Violations of proper-
ties are hard to track down and can only reliably found by systematically exploring a
concurrent program’s behaviours.

ExitBlock and ExitBlock-RW discover assertion violations and deadlocks. If the
Eraser algorithm [36] is run in parallel data races can be found, too. Examples like
dining philosophers, producer-consumer problems, and others show that even difficult
timing-dependent errors are located. The described implementation is able to analyze
small programs containing a small number of threads and synchronized regions within
a couple of minutes.

1.2 The JNuke framework

The virtual machine is based on the JNuke framework. This framework provides an
object-oriented concept for C, commonly used container and other utility classes, and,
most importantly, a Java classloader. This classloader performs a transformation which
translates the stack based bytecode of Java to a Register Based Bytecode (RBC) by
eliminating the stack. The final byte code, the Register Based Bytecode, contains reg-
ister operations instead of stack operations. Each register index corresponds to the

1The test platform was an Intel Pentium IV with a processor of 2 GHz.

1.3. RELATED WORK 5

current stack height of the original bytecode. For instance, the first value on the stack
is represented by r0. Moreover, local variables are represented with indices, too. Lo-
cal variables and registers are therefore treated uniformly. Register Based Bytecode is
more suitable for analysis and optimizations and it benefits from the Abstract Bytecode
Transformation [38].

The JNuke framework already provides some basic optimization. The transforma-
tion to Register Based Bytecode produces many useless register assignments. Thus,
many of them can be eliminated which results in so called Optimized Register Based
Bytecode. As an example, consider Figure1.2.

RBC
0: "r5 = Get" r1
1: "r6 = Get" r2
2: "r5 = Prim" iadd r5 r6
3: "r1 = Get" r5

Optimized RBC
0:
1:
2: "r1 = Prim" iadd r1 r2
3:

Figure 1.2: Register byte code produced for the example statement local1 +=
local2.

1.3 Related work

Software verification can be divided into dynamic and static checking. Dynamic check-
ing consists of verifying properties of a program at run-time. Because of the arbitrary
number of possible inputs and possible schedules, it is necessary to test many inputs
combined with many schedules hoping that eventually, enough combinations would be
tested to uncover most faults. In contrast to that, static checkers do not run the program,
but analyze properties based on the source or structure of the program.

Dynamic checkers

Dynamic checkers monitor properties of interest, such as assertions, lock sets, or mem-
ory accesses at run-time. Since the number of possible inputs is exponential in the
length of the input, exhaustive testing that covers each outcome cannot be implemented.
In addition to the enormous number of inputs to be considered, the outcome of con-
current programs depends on the schedule. The number of schedules is exponential in
the number of threads and locks. There are approaches that use heuristics in order to
reduce complexity or keep track of the program’s history and deduce information about
other possible outcomes.

A dynamic checker finds a fault if the currently tested input leads to this fault.
For a multi-threaded program any possible schedule has to be considered, too. Thus,
certain faults cannot be detected unless either the checker is exhaustive or someone has
created a test case that leads to this fault. Creating test cases is far from trivial and a
time-consuming and tedious task. This strongly limits dynamic checkers.

There are also advantages. A dynamic checker knows the entire and exact program
state at any point of execution whereas static checkers work on an approximation of
the program states. This accurate view on the program state allows to make assertions
without a doubt.

6 CHAPTER 1. INTRODUCTION

There are some dynamic checkers working on multi-threaded programs which are
able to detect common timing-dependent errors. Some of them are listed below:

Rivet [7] is a partial virtual machine implemented by the Software Design Group at
the MIT. Equivalent to the virtual machine described in this work, the Rivet virtual
machine provides a rollback mechanism. It also provides a debugger that supports ex-
ecution in the reverse direction of program flow, including stepping, execution to the
next breakpoint, and execution until a data value changes. There is an implementation
of ExitBlock and ExitBlock-RW on top of the Rivet virtual machine. The Rivet virtual
machine is written in Java. Its design focuses on modularity, extensibility, and sophis-
ticated tool support rather than on maximizing performance. Since Rivet runs on top of
another Java virtual machine, it can make use of that lower virtual machine’s platform-
specific features like garbage collection and native method libraries. The work, how-
ever, has been discontinued as the security policy of current virtual machines does not
allow to replace classes from the standard library.

MaC [24] MaC (Monitoring and Checking) is a framework combining low-level
monitoring with high-level requirement specification. MaC instruments and verifies
single-threaded as well as multi-threaded programs. It is being developed at the Uni-
versity of Pennsylvania.

Verisoft [45, 14], by Patrice Godefroid from Lucent Technologies, systematically
explores the state space including thread interleavings of a program. Verisoft makes
use of state-space pruning methods and performs some static analysis to provide in-
formation needed by these pruning methods [13]. Verisoft’s target programs are small
C programs consisting of multiple processes. Since processes run in separate memory
spaces and must explicitly declare the variables that they share, the number of global
states is significantly smaller than the number of states. Since processes can only com-
municate through global states, Verisoft need only consider schedules that differ in
their sequences of global states. Verisoft further prunes the state space by identifying
schedules that lead to identical behaviours. Verisoft discovers errors in C program such
as deadlocks, life-locks, assertion violations, and other properties.

Visual Threads [43] is part of the development tools of Compaq’s Tru64 Unix. Vi-
sual Threads is a diagnostic tool used to analyze and refine multi-threaded applications.
It can be used to debug potential thread-related logic problems, such as race conditions
and deadlocks that only occur due to slight timing differences. It can also pinpoint
bottlenecks and performance problems by using its rule-based analysis and statistics
capabilities and visualization techniques.

JPaX (Java PathExplorer) [16, 15] is built at NASA Ames research center. The
runtime analysis is based on program instrumentation or transformation, and can in-
clude monitoring of a program in its final environment. JPaX implements deadlock
and data race analysis. It includes automated test-case generation as well as automated
generation of assertions and properties corresponding to test cases.

1.3. RELATED WORK 7

Static checkers

In contrast to dynamic checkers, static checkers do not execute the program. They ex-
amine and check programs against defined properties working on the source or an ab-
stract model thereof. Three techniques have mainly emerged: model checking, abstract
interpretation, and theorem proving. Model checking explores the full state space. Ab-
stract interpretation examines the abstract model which represents the control flow and
data flow of a program. Theorem proving translates the program into logic formulas
where a prover works on these logic formulas.

Static checkers have advantages over dynamic checkers as they work on a more ab-
stract representation of the target program. In particular, static checkers depend neither
on the input nor on the schedule of a program. The complexity rather depends on the
size of the model and the algorithms applied to this model.

The key problem is that the actual values of variables are usually known at run-time
only. Indeed, static checkers have to work on an approximation of the reachable pro-
gram states which sometimes leads to states that are unreachable in the real program.
Since the model has a limited knowledge of the program state, the model is not accurate
at any execution point, resulting in spurious errors.

A range of static checkers working on multi-threaded programs are listed below:

ESC/Java [10] is a theorem prover that detects common programming errors at compile-
time. It has been developed by Digital Equipment Inc. (now part of Hewlett Packard).
ESC/Java statically checks a program for null reference errors, array bounds errors,
potentially incorrect type casts and race conditions. The source code needs annotations
in an annotation language.

Spin [37] is a model checker serving among other things as back-end for other static
checkers, such as Bandera or JPF1. The tool was developed at Bell Labs in the orig-
inal Unix group of the Computing Sciences Research Center. The software has been
available freely since 1991.

Bandera [4] comes from the Kansas State University. It tries to simplify the program
by omitting statements that are not relevant to the later analysis and reducing the state
space of variables. This technique is called slicing [9]. It can drastically cut down the
complexity of the model. The model created is processed by Spin.

JPF [23] is the second Java Model Checker developed by the Automated Software
Engineering group at NASA Ames. JPF works on Java bytecode and discovers as-
sertion violations and deadlocks statically. JPF1 [17] used a translation from Java to
PROMELA, SPIN’s input language, in order to do model checking with the SPIN
model checker [37].

Jlint [22, 21] has been developed at the Moscow State University. Jlint detects certain
deadlocks, race conditions and a few other faults. It performs a global control flow and
a local data flow analysis that allows to check many properties in Java bytecode.

8 CHAPTER 1. INTRODUCTION

Java virtual machines

There are various Java virtual machines available. The most popular virtual machines
come from Sun [41] and IBM [18]. Both virtual machines can be downloaded for
free. They are closed-source, however, which makes it very difficult to implement
a milestone/rollback mechanism on top of them. There are also several open source
virtual machine projects such as Kaffe [29], LaTTe [30], kissme [25], SableVM [31],
Japhar [28], or CACAO [27]. A rollback/milestone mechanism could be implemented
on top of these virtual machines. It mainly depends on whether the design of the virtual
machine easily allows this. Since these virtual machines do not profit of advantages of
the register based byte code transformation, our group decided to write a custom virtual
machine.

JNuke already provides a basic interpreter for register based byte code (JNuke In-
terpreter). Development, however, has been discontinued. The JNuke Interpreter is too
slow and many things are not standards compliant. It does not support threading and
Java strings. Moreover, things like interface calls, cast checks, exception and many
other things do not work properly. Though the prime reason why development of the
JNuke Interpreter has been discontinued, was that a milestone/rollback mechanism was
to hard to add due to the non-modular design of the interpreter.

1.4 Overview

The next chapter introduces the theory of systematic testing and presents the two algo-
rithms ExitBlock and ExitBlock-RW. Chapter 3 focuses on the design and the interfaces
of the virtual machine. Chapter 4 explains the implementation of the rollback mech-
anism. Chapter 5 then shows experiments demonstrating the capability of the virtual
machine and the implementation of ExitBlock and ExitBlock-RW. Chapter 6 presents
future work and finally Chapter 7 concludes.

Chapter 2

Algorithms for Systematic
Testing

This chapter describes the algorithms which execute a program or parts thereof multi-
ple times, enumerating possible schedules in order to cover all program behaviours on
a single input. The theory of systematic testing has been taken from Bruening’s master
thesis [7]. Since many things are unclear or not mentioned in Bruening’s master thesis,
this chapter explains the theory more accurately. In particular, the description of Exit-
Block and ExitBlock-RW is vague. It was not possible to implement these algorithms
without making own assumptions.

In [7], Bruening says that these algorithms guarantee to find all possible assertion
violations in a program if the tested program meets some requirements1. Assertions in
a program can detect any program condition. The algorithms for systematic testing will
be called systematic scheduler. Thus, the systematic scheduler guarantee to enumerate
all possible behaviours.

This chapter is organized as follows. Section 2.1 describes the requirements that a
target program has to meet. Section 2.2 introduces the idea of enumerating all mean-
ingful schedules and Section 2.3 describes the first testing algorithm called ExitBlock.
Section 2.4 modifies ExitBlock in order to reduce the number of schedules whereby all
program behaviours are still covered. This algorithm is called ExitBlock-RW. Finally,
Section 2.5 shows detecting deadlocks using ExitBlock and ExitBlock-RW.

2.1 Target program requirements

The algorithms for systematic testing presented in this work require that a target pro-
gram meets three criteria:

1However, Scott Stoller criticises in [39] this statement. He says that Bruening’s proof is incomplete,
because the proof implicitly assumes that all accesses satisfy Mutex Locking Discipline (MLD) [36, 39].
The MLD allows objects to be initialized without locking. Initialization is assumed to be completed before
the object becomes shared. According Scott Stoller, Bruening does not prove that ExitBlock is guaranteed to
find a violation of MLD for systems that violate MLD. Even if violations of MLD are manifested as assertion
violations, the (incomplete) proof does not imply that ExitBlock finds all violations of MLD, because that
proof presupposes that the system satisfies MLD.

9

10 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

Mutual-exclusion locking discipline A target program has to follow a mutual-ex-
clusion locking discipline which dictates that each shared variable is associated to at
least one mutual-exclusion lock. Furthermore, this lock or these locks are always held
by the current thread which accesses that variable. The Eraser algorithm by Savage et
al. [36] can be used to verify that a program follows this discipline. It is even possible
to run Eraser in parallel to the systematic scheduler.

By limiting the scope to those programs that follows this locking discipline, some
valid programs are ruled out for the algorithms described in this chapter. For instance,
wait and notify can be used to build a barrier, which is a point that each thread has
to reach before any thread can cross this barrier. Among other things, barriers can be
used to protect shared variables. Barriers, however, are hardly used for these purposes.
Programmers tend to use a simple mutual-exclusion locking discipline.

Thread-safe finalizers Finalizer methods are mainly used to release system resources
like open file descriptors. As such, finalizers do not affect the rest of the program.
Since finalizers are called by the garbage collector when instances of those classes are
reclaimed, finalizers can be invoked at any time and in any order [26]. A systematic
testing algorithm would need to execute every possible schedule of finalizers with the
rest of the program in order to find possible assertion violations. This can be a very
large number of schedules to run. The systematic scheduler thus assume that the or-
der of finalizers has no bearing on weather assertions will be violated or whether a
deadlock can occur. This reduces the number of explored schedules.

In order to avoid timing-dependent errors in finalizers, the target program needs to
meet the following criteria: A finalizer should only access fields of the current instance
and, in order to prevent deadlocks, a finalizer should not contain nested synchronized
sections or perform wait or notify. As a result, the garbage collector can be com-
pletely ignored, as a garbage collector cannot affect assertions under this assumption.

As a matter of fact, finalizers rarely occur in Java applications. Consider Table 2.1
which illustrates that the Java Foundation Classes (JFC) of Sun’s JDK 1.3 contain only
26 finalizers in about 4’000 classes. Static analysis can ensure the thread safety of
finalizers.

Package Number of finalizers

java/awt 10
java/io 2
java/lang 2
java/net 4
java/util 4
javax/swing 4
TOTAL 26

Table 2.1: Number of finalizers in the foundation classes of Sun’s JDK 1.3

Terminating threads The systematic scheduler requires that each thread terminates.
This is due to the fact that these algorithms explore the tree of schedules in a depth-first
search executing a schedule from start to finish. If a thread run for an infinite time, no
other schedule would be explored anymore. There are two approaches to avoid this:
either the user modifies the target program (for instance, changing an infinite loop to

2.2. OVERVIEW 11

a loop with a finite number of iterations) or the testing algorithm limits the number of
byte codes for each thread, terminating threads exhausting this limit.

The systematic scheduler discovers deadlocks and assertions violations in a target
program; data races are not discovered. However, Eraser [36] which discovers data
races can be applied to a target program to ensure that the mutual-exclusion locking
discipline is met. Eraser should be either run in parallel or prior to the systematic
testing algorithms.

2.2 Overview

The order of two instructions in different threads can only affect the behaviour of the
program if both instructions perform read or write accesses on the same field. As
postulated before, the target program follows a mutual-exclusion locking discipline
where each shared field is protected by a lock. This discipline ensures that fields cannot
be accessed outside of a body of a synchronized statement. Multiple accesses to a
shared field at the same time are strictly serialized. This means that only one thread is
allowed to access a field at a time. Thus, in order to cover all possible behaviours of a
program it suffices to enumerate possible orders of synchronized regions.

For these purposes a program is divided into atomic blocks based on blocks of
code being protected by synchronized regions. An atomic block consists of code in-
between the ends of synchronized blocks (so called lock exit). Thread creations and
terminations also define borders of atomic blocks. Atomic blocks of a program may
change at run-time due to varying data flow. Atomic blocks are therefore enumerated
during execution using depth-first search.

The testing algorithm performs a depth-first search on a program executing one
complete schedule of the target program first. After this, execution reverts from the
end of the schedule to the last atomic block boundary. At this point a new branch is
created choosing another thread to run. This schedule is also executed until program
completion. As long as there is still a thread that has not been chosen yet, execution
reverts to the last atomic block boundary. Otherwise, a further rollback to the previous
atomic block boundary is performed. The same procedure is repeated until any thread
at each atomic block boundary has been selected for execution once. At the end, the
depth-first search results in a tree of schedules.

T1:
1: synchronized (x) {}

T2:
2: synchronized (x) {}

T3:
3: synchronized (x) {}

Figure 2.1: Three threads each containing a single synchronized region.

Figure 2.2 illustrates a sample tree for three threads shown in Figure 2.1. Arrows
show the execution flow. A horizontal line indicates a new branch. Six different sched-
ules are explored where each of the three atomic blocks was selected in any combi-
nation with the other two blocks. The depth-first search finds the following schedules
from left to right: {1,2,3}, {1,3,2}, {2,3,1}, {2,1,3}, {3,1,2}, and {3,2,1}. This covers
any possible schedule and, thus, any behaviour of the program is covered.

The previous program was a simple example where each thread consists of exactly
one atomic block at whose end the lock is released. Thus, each thread is able to obtain
the lock at any possible schedule. This example does not illustrate how the depth-first

12 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

T1, T2, T3

{1}

T2, T3

{2}

T3

{3}

()

T2, T3, T1

{2}

T3, T1

{3}

T1

{1}

()

T3, T1, T2

{3}

T1, T2

{1}

T2

{2}

()

T3, T2

{3}

T2

{2}

()

T1, T3

{1}

T3

{3}

()

T2, T1

{2}

T1

{1}

()

Figure 2.2: Tree of schedules for the three thread of Figure 2.1.

search reacts to a situation where a lock cannot be obtained. The program shown in
Figure 2.3 whose tree is presented in Figure 2.4 illustrates such an example. There are
two schedules whose execution is blocked as a lock cannot be obtained: {1,2,3,4,5,7}
and {1,2,7,8,9,3}. Apparently, the execution cannot be continued and there are still
schedules to explore. Therefore the algorithm aborts this path and backs up to the last
atomic block boundary where another thread is scheduled instead.

T0:
1: t1 = new LockAB (A, B);
2: t1.start();
3: synchronized (B) {
4: synchronized (A) {
5: }
6: }

T1:
7: synchronized (A) {
8: synchronized(B) {
9: }
10: }

Figure 2.3: Two Threads, both containing nested synchronized regions. We divide
Thread 0 into atomic blocks {1, 2}, {3, 4, 5}, and {6}. Thread 1 is divided into
atomic blocks {7, 8, 9} and {10}

Since the depth-first search immediately aborts any blocked path, it cannot run into
a deadlock. It is however possible to perform lock-cycle deadlock detection when a
lock could not be obtained. This is exactly the approach followed by the lock-cycle
deadlock detection described in Section 2.5.1. This algorithm is notified when a lock
could not be obtained. Then deadlock detection takes place deciding whether the cur-
rent incident is a deadlock or not. In the program from Figure 2.3 two paths are aborted
where both paths would be discovered as deadlock by a lock cycle detection analysis.

The ExitBlock algorithm, presented in the next section, applies the depth-first search.
ExitBlock finds each possible schedule of atomic blocks. The next section will also
show that exhaustive testing is applicable for small programs only, as ExitBlock in-
terleaves any atomic block with each other, regardless of whether the order of two
atomic blocks is relevant for the behaviour. Due to the poor scalability of ExitBlock the
branching behaviour is modified such that only atomic blocks with data dependencies
are interleaved. This modified algorithm called ExitBlock-RW is described in Section
2.4.

2.3. THE EXITBLOCK ALGORITHM 13

T0, T1

T0, T1

{1,2}

T0, T1

{3,4,5}

{6}

T1

T1

{7,8,9}

()

{10}

T1

T1, T0

{7,8,9}

{10}

T0

T0

{3,4,5}

{6}

()

T1

{7}

T0

{3}

Figure 2.4: Tree of schedules explored by ExitBlock for the threads in Figure 2.3.
Threads in a rectangle are enabled. Arrows indicate the execution of the sections of
code on their right. A gray box means that the execution is blocked because a lock
could not be obtained.

2.3 The ExitBlock algorithm

The ExitBlock algorithm is implemented as a scheduler placed on top of the virtual
machine, controlling execution flow and monitoring the current state. ExitBlock ini-
tializes the runtime environment, installs listeners at the virtual machine and executes
the target program. When the target program is started ExitBlock is triggered on certain
events as shown at the flow chart in Figure 2.5 on the following page. The according
handler methods are considered below.

Handler for lock exits

When a lock exit occurs, ExitBlock is notified by the lock manager. ExitBlock handles
this as shown in Algorithm 1. First, all enabled threads are collected. Then a milestone
is created. A milestone saves the whole state of the virtual machine including states of
objects, locks, wait sets, threads and the enabled set. Finally, the milestone is pushed
on a stack.

The enabled set contains threads that are ready to run and have not been sched-
uled yet from the current milestone (since the current thread continues running, it is
not member of the enabled set). This set of enabled threads is used by the rollback
mechanism. On a rollback the state of the whole virtual machine is restored and a new
branch is created scheduling one thread from the enabled set.

14 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

Fetch byte code

Execute byte code

lock exit lock exit handler:
create milestone

thread died

thread termination handler:
reschedule next thread if
possible. Otherwise, perform

rollback.

lock
acquired failed

lock acquirement
failure handler:
perform rollback

thread
start

thread start handler:
create milestone

wait,
join

wait/join handler:
reschedule next thread
if possible. Otherwise,

perform rollback.

notify

notify handler:
notify first
thread, and

create Milestone

yield
yes

start

end

No

Yes

Yes

Yes Yes

Yes

Yes

Yes

Figure 2.5: Flow chart showing event handling for ExitBlock

2.3. THE EXITBLOCK ALGORITHM 15

Algorithm 1 Handler triggered on a lock exit
handleLockExit() {

enabled_set = collectEnabledThreads();
enabled_set = enabled_set \ cur_thread;
if (number_enabled_threads >= 1) /* avoids empty milestones */
setMilestone(enabled_set);

}

Handler for thread termination

When the current thread terminates, an enabled thread to be scheduled next must be
selected (see Algorithm 2). If there is no enabled thread left, the end of the current
schedule is reached; all threads have terminated. Thus, a rollback is performed in order
to explore the next schedule in a new branch.

Algorithm 2 Handler triggered on death of current thread
milestone = getCurrentMilestone();
enabled_set = enable_set \ {cur_thread};
next_thread = reschedule();
if (next_thread == NULL)

/** rollback continues down the stack,
selects a next thread there. Returns
NULL, if stack becomes empty.*/

next_thread = rollback();
if (next_thread == NULL)

/** empty stack of milestones */
terminate();

else
switchThread (next_thread);

The rollback mechanism (illustrated in Algorithm 3) reverts to the last milestone,
restoring the state of the virtual machine and trying to select a new thread from the
enabled set of the last milestone. If all threads of the enabled set have already been
scheduled from the last milestone (which is indicated by an empty enabled set), the
last milestone is removed and the previous milestone is retrieved from the stack. The
thread election starts anew. This procedure stops if a milestone was found that still has
enabled threads to schedule (then a new branch is created) or if the stack of milestones
becomes empty (ExitBlock terminates).

Handler for lock acquirement failure

The lock manager notifies ExitBlock when a lock could not be obtained by the current
thread. In consequence of this ExitBlock aborts the current branch and performs a
rollback as shown in Algorithm 4.

16 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

Algorithm 3 Implementation of rollback
thread rollback() {

rollbackVM();

/** elect thread */
milestone = getCurrentMilestone();
next_thread = first(milestone->enabled_set);
milestone->enabled_set = milestone->enabled_set \ next_thread;
if (next_thread == NULL)
{

/** no further branch from this
milestone. So remove this milestone
and rollback again, continuous down
the stack.*/

removeMilestone(milestone);
next_thread = rollback();

}

return next_thread;
}

Algorithm 4 Handler triggered when a lock could not be obtained
next_thread = rollback();
switchThread (next_thread);

2.3. THE EXITBLOCK ALGORITHM 17

Handler for thread start

The situation when a thread was started through java/lang/Thread.start() is han-
dled like a lock exit as previously presented in Algorithm 1. A milestone is created
where the enabled set contains, among other things, the newly started thread, which is
scheduled once when ExitBlock reverts to this position.

Consider the program in Figure 2.6 and the according tree of schedules in Figure
2.7. The sample program contains a condition deadlock which occurs when notify
is performed prior to wait. The deadlock occurs in the schedule (1,5,6,7,2) which is
discovered only if a milestone is created after line 1. Otherwise, ExitBlock explores
only schedule (1,2,3,4,5,6,7) and wait and notify are executed in the right order. The
deadlock does not occur. Thus, ExitBlock always creates a milestone when a thread has
been started which ensures behaviour-complete testing.

T0:
1: t1.start();
2: synchronized(a) {
3: a.wait();
4: }

T1:
5: synchronized(a) {
6: a.notify();
7: }

Figure 2.6: Two threads with a condition deadlock occurring when notify is per-
formed prior to wait

T0

{1}

T0

{2,3,4}

T1

{5,6,7}

T1

{5,6,7}

()

T0

{2}

Condition Deadlock
at 3

Figure 2.7: Tree of schedules produced by the program in Figure 2.6.

Handler for invocation of wait or join

So far thread communication other than with shared variables protected by synchro-
nized regions has been ignored. In particular, wait and notify have been omit-
ted. The base class java/lang/Object provides the three methods wait, notify,
and notifyAll to any sub-class. Method wait allows the current thread to wait on
an object which sets the current thread sleeping until another thread performs either
notify (awakening a random thread waiting on the object) or notifyAll (awakening
all threads waiting on the object). Another thread operation that needs to be consid-
ered is join. The current thread can join another thread which sets the current thread

18 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

sleeping until the joined thread has been terminated. Method join and wait have in
common that the current thread is disabled such that the scheduler has to find another
thread to schedule. Thus, join and wait are treated the same way as illustrated in Al-
gorithm 5. First it is tried to find a thread that is still enabled. If this succeeds this thread
is scheduled. Otherwise, ExitBlock has detected a condition deadlock where one thread
is waiting on a notification for an infinite time as no other thread is enabled. Since the
current schedule is blocked, a rollback is performed. Method rollback reverts to the
last milestone, creating a branch and returns a thread scheduled next. If the depth-
first search has been completed which is indicated by an empty stack of milestones,
rollback returns null.

Algorithm 5 Handler triggered for join and wait
next_thread = reschedule();
if (next_thread == NULL)
{

/** condition deadlock detected !!!*/
next_thread = rollback();

}
if (next_thread == NULL)

terminate_depth_search();
else

switchThread(next_thread);

Handler for invocation of notify

In contrast to notifyAll, which awakens any thread waiting on a certain object,
notify does the same for one arbitrary thread. ExitBlock needs to explore the sched-
ules resulting from each possible thread being woken up by a notify, so it needs to
make new branches for each. The handler for notify is shown in Algorithm 6. The
first thread in the wait set is notified which is the usual way to handle notify. Fur-
thermore, ExitBlock creates a milestone that additionally contains a list of threads that
can also be notified (called notify set). On each rollback the virtual machine reverts
to the point where notify was performed and notifies another thread from the notify
set. ExitBlock reverts to this milestone as often until each thread initially waiting on
the notified object has been notified. Finally, ExitBlock has created a branch for each
thread waiting on the notified object.

The rollback mechanism needs some additions as shown in Algorithm 7. They are
printed in bold. When ExitBlock reverts to a milestone that belongs to an invocation of
notify, the enabled set is restored and one thread of the notify set is notified at a time.
ExitBlock creates for each thread in the notify set one branch.

Handler for invocation of yield

Method yield causes the currently executing thread to temporarily pause and allow
other threads to execute. Since ExitBlock allows preemption on lock exits only, invo-
cations of yield are ignored.

2.3. THE EXITBLOCK ALGORITHM 19

Algorithm 6 Handler triggered on invocation of notify

/** retrieve the wait set of the object on which notify was
performed */

wait_set = getWaitSet(object);
/** notify first thread which removes notified thread

from wait set */
notifyNext (wait_set);
/** create a milestone if there are still threads

waiting on this object that could also be notified */
if (count (wait_set) > 0)

{
handleLockExit() /* see Algorithm 1 */

milestone = getCurrentMilestone();
/** threads from the wait set needs to be notified later. */
milestone->notify_set = copy(wait_set);
/** remember enabled set */
milestone->saved_enabled_set = copy(milestone->enabled_set);

}

Algorithm 7 Implementation of rollback with additions for notify handling.
thread rollback() {

milestone = getCurrentMilestone();
enabled_set = getEnabledSet(milestone);
next_thread = pop(enabled_set);

if (isNotifyMilestone(milestone))
{

milestone->enabled_set =
copy (milestone->saved_enabled_set);

thread = first(milestone->notify_set);
milestone->notify_set = milestone->notify_set \ {thread};
if (thread)
notify(thread);
next_thread = cur_thread;

else
next_thread = NULL;

}
if (next_thread == NULL)
{
removeMilestone(milestone);
next_thread = rollback();

}

return next_thread;
}

20 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

Handler for stop, resume, and suspend

There is no handler implemented for stop, resume, and suspend yet due to lack
of time. Furthermore, stop, resume, and suspend have been deprecated. Method
suspend and resume are inherently deadlock-prone. If the target thread holds a lock
on the monitor protecting a critical system resource when it is suspended, no thread
can access this resource until the target thread is resumed. If the thread that would re-
sume the target thread attempts to lock this monitor prior to calling resume, a deadlock
results.

Method stop is inherently unsafe. Stopping a thread causes it to unlock all the
monitors that it has locked. If any of the objects previously protected by these mon-
itors were in an inconsistent state, other threads may now view these objects in an
inconsistent state.

2.3.1 Number of schedules executed by ExitBlock

Assume a program with k threads each with n lock exits, the total number of lock exits
is k · n. The n lock exits of the first thread can be placed

(kn
n

)

times in between all of

the other lock exits. The second thread can place its atomic blocks
((k−1)n

n

)

times in

between the others. This continues as follows:
(kn

n

)

·
(

(k−1)·
n

)

·
(

(k−2)n
n

)

· · ·
(n

n

)

. Applying
Stirling’s approximation results in a product of terms exponential in both the number
of threads and the number of locks uses by each thread [7].

The exponential growth of the number of schedules limits the applicability to small
and not representative concurrent programs. ExitBlock explores too many schedules
in a real concurrent program. It does not terminate in a reasonable amount of time.
ExitBlock could be restricted to explore portions of a program. The user would de-
fine critical sections to explore. This feature is not implemented yet. It is, however,
discussed in Chapter 6.

2.4 The ExitBlock-RW algorithm

The ExitBlock algorithm executes all schedules interleaving each atomic block with
each other. However, not all schedules need to be executed in order to find all possible
assertion violations. If two atomic blocks have no data dependencies between them,
the order of their execution has no effect on a potential assertion violation. A data de-
pendency between two atomic blocks exists if one atomic block writes a field whereas
the other atomic block either reads or writes the same field. Two atomic blocks reading
the same field or accessing different fields do not have data dependencies.

ExitBlock-RW records a read/write log for each thread. The log for a thread n is
defined as pair of two sets (rn,wn). A log k intersects with another log l iff (wk ∩wl 6=
/0∨wk ∩ rl 6= /0∨ rk ∩wl 6= /0).

A thread that has been scheduled in a branch is disabled for further branches. Ex-
itBlock-RW re-enables a disabled thread when the currently executing thread’s log in-
tersects with the disabled thread’s log. If no such intersection occurs, then none of the
later threads interacts with the disabled thread and there is no reason to execute sched-
ules in which the disabled thread follows them. As a result, disabled threads which are
not re-enabled due to lack of data dependencies decrease the number of branches and
cause aborts of branches prior to maturity.

2.4. THE EXITBLOCK-RW ALGORITHM 21

As an example, consider again the sample program shown in Figure 2.3, and the
according tree explored by ExitBlock-RW in Figure 2.8. Consider path {1,2,7,8,9}
which leads to a milestone where no branch is created in contrast to the tree explored by
ExitBlock. T0 whose log consists of entries from {3,4,5} does not intersect with the log
of the current Thread T1 whose log consists of entries from {7,8,9}. In consequence
T0 is not re-enabled and no branch is created as the order of the two atomic blocks
{3,4,5} and {7,8,9} is not relevant. Consider also path {1,2,7,8,9,10} which is aborted
since T0 still cannot be re-enabled. The log of T0 tracked during execution of {3,4,5}
does not intersect with the current thread’s log. As a result, {3,4,5,6} is not executed
anymore as this sequence was executed in the path {1,2,3,4,5,6,7,8,9,10} where the
thread interleaving is not relevant due to lack of data dependencies.

T0, T1

T0, T1

{1,2}

T0, T1

{3,4,5}

{6}

T1

T1

{7,8,9}

()

{10}

T1,(T0)

T1,(T0)

{7,8,9}

{10}

()

T1,(T0)

{7}

Figure 2.8: Tree of schedules explored by ExitBlock-RW for the thread in Figure 2.3.
Threads in parentheses are disabled. Compared to the tree for ExitBlock shown in
Figure 2.4 this tree does not bother finishing the schedule {1, 2, 7, 8, 9, 10, . . . } and
does not execute at all tree {1, 2, 7, 8, 9, 3, . . . }.

2.4.1 Number of schedules executed by ExitBlock-RW

The number of executed schedules depends on the number of atomic blocks with data
dependencies. Assume k threads each obtaining locks n times. If no atomic blocks
interact, which is the best case, every thread is disabled once and never becomes re-
enabled. Thus we can consider the problem creating each schedule simply that of
deciding where to disable each thread. Each thread can be disabled at n + 1 places
(at n lock exits and also at the end of the program). Providing no data dependencies
exist, there are (n+1)k−1 schedules. This is polynomial in the number of locks per
thread and exponential in the number of threads. It is much better than the growth of
ExitBlock which is exponential in the number of locks per thread. Since the number

22 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

of threads in a program is typically not very high, while the code each thread executes
can grow, ExitBlock-RW achieves polynomial growth in the best case.

The worst case exists if each atomic block has data dependencies with every other
one. In this case ExitBlock-RW has exponential growth like ExitBlock. Thread interac-
tions between atomic blocks of different threads are usually kept to a minimum. So it
appears likely that the typical number of paths explored by ExitBlock-RW is closer to
the best case result than the worst case result. Experiments in Chapter 5 support this
assumption.

2.5 Deadlock detection

A deadlock is a cycle of resource dependencies that leads to a state in which threads are
blocked from execution. Two kinds of cycles are possible in Java programs. Either the
deadlock occurs because of a cycle lock chain or threads wait on an object and other
threads are blocked on locks. The first kind of deadlocks is called lock-cycle deadlock
considered in Section 2.5.1. The second kind of deadlocks is called condition deadlock,
discussed in Section 2.5.2.

2.5.1 Lock-Cycle deadlocks

Consider the program in Figure 2.9 and the schedules produced by ExitBlock for this
program, shown in Figure 2.10. The deadlock occurs if T0 holds lock a but not lock b
and T1 holds lock b but not lock a. However, ExitBlock does not run into this deadlock
since the acquisitions of both locks in each thread are in the same atomic block.

T0:
1: synchronized(a) {
2: synchronized(b) {
3: }
4: }

T1:
5: synchronized(b) {
6: synchronized(a) {
7: }
8: }

Figure 2.9: Two threads with a potential deadlock.

Nevertheless deadlocks can be detected based on the explored schedules by Ex-
itBlock. The key observation is that a thread in a lock-cycle deadlock blocks when
acquiring a nested lock, since it must already be holding a lock. Also, the lock that it
blocks on cannot be the nested lock that another thread in the cycle is blocked on, since
two threads locked on the same lock cannot be in a lock cycle. The cycle must be from
a nested lock of each thread to an already held lock of another thread. For example,
when the threads of Figure 2.9 deadlock, T0 is holding its outer lock a and blocks on
its inner lock b while T1 is holding its outer lock b and blocks on its inner lock a.

These observations suggest the following approach. We track not only the current
locks held by any thread but also the last lock held by each thread. Then, after we
execute a synchronized region nested inside some other synchronized region, the last
lock held is the lock of the inner synchronized region. When a thread cannot obtain a
lock, the reverse lock chain analyzer looks at the last locks held by the other threads
and sees what would have happened if those threads had not yet acquired their last
locks. It is looking for a cycle of matching outer and inner locks. The outer locks are
currently held by the threads. The inner locks are the thread’s last locks held. If the

2.5. DEADLOCK DETECTION 23

T0, T1

{1,2,3}

T0, T1

{4}

T0, T1

{5,6,7}

T1

{8}

T1

()

{5,6,7}

T1

{8}

T1, T0

{1,2,3}

T0

{4}

T0

()

{5}

T1

{1}

T0

Figure 2.10: Tree of schedules explored by ExitBlock for the threads in Figure 2.9.

current thread cannot obtain a lock and the analyzer can follow a cycle of owner and
last lock relationships back to the current thread, then a lock-cycle has been detected.

Figure 2.11 shows the situation at the time when a deadlock occurs in schedule
{1,2,3,5}. The first thread holds lock a and has lock b released which becomes the last
lock held. The current thread has obtained lock b; it blocks on lock a. Figure 2.12
presents how the reverse lock chain algorithm works. As mentioned, the current thread
was not able to obtain lock a which belongs to the first thread whose last hold lock
is b. Lock b is owned by the current thread which closes the cycle. The deadlock is
discovered.

a

b

Thread 0
 lock(a)
 last_held_lock(b)

Thread 1
 lock(b)
 last_held_lock()

Lock could not be obtained

Last held lock

Figure 2.11: Lock dependency graph illustrating the situation when T0 has executed
{1,2,3} and T1 cannot obtain lock a at line 6 of the program presented in Figure 2.9

The implementation of the reverse lock chain analyzer, presented in Algorithm 8,
is straightforward. It does not cost much in performance, as failures to acquire locks
hardly happen. The reverse lock chain analyzer is implemented as a listener of the
ExitBlock. The lock manager notifies ExitBlock on failures to acquire locks, ExitBlock
forwards these events to the reverse lock chain analyzer.

The performance can be improved by combining reverse lock chain analysis with
ExitBlock-RW instead of ExitBlock. This optimization, however, comes at a cost.

24 CHAPTER 2. ALGORITHMS FOR SYSTEMATIC TESTING

T1

T0

1. cannot obtain

3. whose last held lock is

4. locked by

ab

2. locked by

Figure 2.12: Reverse lock chain analysis for the situation illustrated in Figure 2.11.

Algorithm 8 Reverse lock chain analyzer
/* in: lock - The lock that could not be obtained */
while (owner_thread = JNukeLock_getOwner (lock)) {

lock = JNukeThread_getLastHeldLock (owner_thread);
if (getOwner (lock) == cur_thread) {

/** Deadlock detected !!! */
break;

}
}

ExitBlock-RW in connection with reverse lock chain analysis does not always detect
deadlocks in a program. ExitBlock-RW does not consider a lock enter to be a write to
the lock object. Thus, ExitBlock-RW may prune paths on which deadlocks can occur.

2.5.2 Condition deadlocks

Condition deadlocks occur when threads are waiting and the rest are blocked on locks
disallowing a thread to wake up the waiting thread. ExitBlock detects condition dead-
locks by checking if there are threads waiting or blocked on locks whenever the sched-
uler detects that no enabled threads are left. Consider the example in Figure 2.13
showing two threads manipulating a queue. Thread T0 holds both locks lock and
queue when calling wait. It only releases queue but not lock. If Thread T1 executes
after T0, it can never obtain lock and so never proceed to notify. This results in a
condition deadlock.

Condition deadlocks can also be detected by ExitBlock-RW. However, it does not
find condition deadlock on paths that were pruned. Also, when the scheduler runs out
of enabled threads and there are disabled threads, ExitBlock-RW cannot determine if it
is a condition deadlock. Since a disabled thread, which is not scheduled due to lack of
data dependencies, could break the condition deadlock, it cannot accurately be declared
whether a condition deadlock has occurred.

2.6. SUMMARY 25

T0:
1: synchronized (lock) {
2: synchronized (queue) {
3: while(queue.empty()) {
4: queue.wait();
5: }
6: }
7: }

T1:
8: synchronized (lock) {
9: synchronized (queue) {
10: queue.add(element);
11: queue.notify();
12: }
13: }

Figure 2.13: Queue example with an apparent condition deadlock

2.6 Summary

This chapter has introduced systematic and behaviour-complete testing by enumerat-
ing possible schedules. Behaviour-complete testing allows to discover any assertion
violation in a multi-threaded program. It has shown that it is possible to build a sys-
tematic scheduler for multi-threaded Java programs by making three assumptions about
the nature of the target programs: First, each thread of the target program has to ter-
minate. Otherwise, depth-first search never terminates. Second, finalizers have to be
thread-safe, as they are not tested by the systematic scheduler. And third, the target
program has to follow a mutual-exclusion locking discipline. Given these assump-
tions, only schedules of interleaving synchronized sections needs to be considered in
order to cover all behaviours of the target program.

Based on this idea, two algorithms has been presented: ExitBlock and ExitBlock-
RW. ExitBlock enumerates all possible schedules of synchronized regions regardless of
whether the order of two synchronized regions is relevant for the outcome. ExitBlock-
RW avails this observation and uses data dependency analysis to prune the tree of
schedules explored by ExitBlock. As a result, ExitBlock-RW is able to reduce the num-
ber of schedules to be considered. In the average case, the number of schedules grows
polynomially in the number of locks per thread instead of exponentially which is the
case for ExitBlock.

This chapter has also shown how deadlock detection works based on ExitBlock and
ExitBlock-RW. Condition deadlocks and lock-cycle deadlocks are discovered where
ExitBlock-RW sometimes does not discover deadlocks as it prunes the tree of schedules.
However, ExitBlock-RW is still able to find all possible assertion violations as they
depend on data dependencies.

Chapter 3

The Virtual Machine

This chapter describes how the Java Virtual Machine is implemented and how it can
be used by a client. It is organized as follows: Section 3.1 appoints the objectives of
the Virtual Machine. Section 3.2 gives an overview of the design. All sub-systems and
the relationship between them will be shown. As a result of this section, the following
sections 3.3, 3.4, 3.5, 3.6, and 3.7 give full particulars the sub-systems.

3.1 Objectives

Functional objectives

The goal was to implement a Java virtual machine (JVM) that is able to execute multi-
threaded Java programs. Unlike other virtual machines the desired virtual machine
provides well-documented interfaces that allow external tools to monitor and modify
the virtual machine state at run-time. In particular, the virtual machine should allow to
monitor and modify thread scheduling, locks, and field accesses. The intended virtual
machine also allows external tools to provide their own thread scheduler. Thus, thread
scheduling takes place at user level instead of kernel level as current JVMs do. This
allows tools to achieve full control over the virtual machine and its threads.

Non-functional objectives

Almost any common JVM today comes with a Just-in-time Compiler (JIT) that trans-
lates Java byte code into native machine code of the host system. A JIT enormously
boosts the execution performance. However, a JIT compiler does not come into ques-
tion for this virtual machine, as full control over the virtual machine, as postulated
before, cannot be achieved anymore. In spite of this, the virtual machine has to run
even complex programs in a reasonable time. In particular, the execution time for algo-
rithms which exhaustively test schedules should remain as short as possible. Although
an interpreter can never reach the performance of native machine code, performance
was always kept in mind during the implementation.

It is also important to keep track of the memory footprint. Although recent comput-
ers are provided with hundreds of megabytes of memory, memory footprint becomes
an issue in terms of runtime verification algorithms that save the whole state of the vir-
tual machine many times in order to revert to previous states. It is therefore important

26

3.2. THE DESIGN AT A GLANCE 27

that the layout of Java objects is as compact as possible and data structures used by the
Virtual Machine during execution are held as small as possible.

3.2 The design at a glance

The entire virtual machine consists of several self-contained subsystems as shown
in Figure 3.1. The core subsystem is the run-time environment (described in Sec-
tion 3.6). The runtime environment drives the whole execution of byte codes. It
starts at the static main method, assumed that a class with a valid main method is
present, and stops running when the program exits. The run-time environment del-
egates tasks like object locking, heap operations, and managing of wait sets to sub-
systems: the heap manager (class JNukeHeapManager) shown in section 3.3, the lock
manager (class JNukeLockManager) shown in section 3.4, and the waitset manager
(class JNukeWaitSetManager) presented in section 3.5.

Figure 3.1: The virtual machine consists of several subsystems: a scheduler on top, that
controls the execution flow, the runtime environment, a heap manager, a lock manager,
and a waitset manager.

The run-time environment as such is not able to execute multi-threaded programs
as it does not provide scheduling facilities. However, it provides a well-documented
interface allowing to write pluggable schedulers. A scheduler acts as a listener of the
run-time environment, reacting on events issued by the virtual machine. A scheduler
can register itself to various events. As a result, a scheduler is able to monitor and
control the virtual machine at any point of execution. Thus, a scheduler can preempt
threads and control the execution order of threads.

The virtual machine currently implements a simple round-robin scheduler (class
JNukeRRScheduler) that grants each thread a fixed time slice in a round-robin order.
As an example, the ExitBlock and ExitBlock-RW algorithm provide their own sched-
ulers, since they allow predetermined thread switches at lock exits only.

28 CHAPTER 3. THE VIRTUAL MACHINE

3.3 The heap manager

A Java Virtual Machine needs a heap memory management unit where all instances are
managed. Unlike other programming languages, Java creates all instances on the heap.
Even temporary instances with local scope are heap objects. The heap management unit
provides methods for creating instances and, load and store operations. These methods
are implemented in class JNukeHeapManager, which is the only class used by a client
of the heap manager. In contrast to a usual heap manager the heap management unit
does not provide any methods yet for relinquishing instances. This is because there is
no garbage collector neither implemented nor planned1.

The design goals of the heap management unit are to achieve both fast operation
and small memory footprint. Fast operations mean in this context:

1. fast creation of instances,

2. fast access to fields, and

3. a fast rollback mechanism (explained in Section 4).

A small memory footprint enforces that data should be stored as compact as possible.
In particular, this is important in terms of the milestone/rollback mechanism where
each modification of an instance is recorded.

Java instances

Java Classes contain field declarations either describing class variables, which are in-
carnated once, or instance variables, which are incarnated for each instance of the
class. Any Java class has exactly one class instance and an arbitrary number of object
instances. The unique class instance is dedicated to the class variables and created
by the virtual machine. The operator new applied to a class name creates an object
instance. An object instance holds the instance variables for one incarnation. Java
also supports arrays. Array instances are objects and dynamically created as object
instances [26].

Instance descriptors

Any Java instance consists of two parts. The descriptor and the actual instance with the
values of the instance. This applies to class instances, object instances, and array in-
stances. The descriptor is either an instance of the class JNukeInstanceDesc (for class
instances and object instances) or JNukeArrayInstanceDesc (for array instances).

There are exactly two separate descriptors for each Java class. The first descriptor
stores names and offsets of the class variables. The second stores the same for instance
variables. Since all object instances of the same class have the same variables, they all
share the same descriptor. Consider the example in Figure 3.2.

1The reason why no garbage collector is planned is that systematic testing of programs with a garbage
collector working in parallel becomes very complicated. Classes in Java may have finalizers that are called
by the garbage collector when instances of those classes are reclaimed. The main problem is that the order
of execution of finalizers is not determined and finalizers can be executed at any time. This means that
systematic testing would need to execute every possible schedule of finalizers with the rest of the program
in order to find possible assertion violations. This can be a very large number of schedules. However, most
finalizers are used only to deallocate resources such as file descriptors. Usually, this kind of activity does not
interact with the rest of the program and so it is a considerable approach not to execute any finalizer. They

3.3. THE HEAP MANAGER 29

JNukeInstanceDesc

JNukeClass

JNukeInstanceDesc

class instanceobject instance

object instance

object instance

..........

.....

.....

Figure 3.2: A class having two descriptors: one for the unique class instance that
contains class variables and one for all object instances of this class. There are four
instances present on the heap: three object instances on the left and the fourth instance,
the unique class instance, on the right.

An array instance does not have named fields as opposed to class and object in-
stances. Therefore, array instances have their own descriptors. This descriptor stores
the component type and the size for one component. This suffices to calculate the
offset of a component. Two arrays share the same descriptor iff they have the same
component type and the same dimension (see Figure 3.3 for an example).

The separation of the actual instance and its descriptor allows to share many de-
scriptors. This results in a small memory footprint. In particular, when a program
creates many instances of the same type, the same descriptor is used each time.

The memory layout of instances

In contrast to a descriptor, the actual instance is designed as a contiguous block of
memory. This approach is similar to C structs which comes along with several consid-
erable advantages:

• Low memory consumption.

• Fast creation of instances. It simply consists of allocating a contiguous block of
memory according the size provided by the descriptor.

• Fast field access. A JNukeInstanceDesc stores pairs of variable names and
the according offsets. A JNukeArrayInstanceDesc provides the size of each

are considered thread safe. In order to ensure that no deadlocks can occur due to the timing of a finalizer,
finalizers should not contain nested synchronized regions or perform wait or notify operations.

30 CHAPTER 3. THE VIRTUAL MACHINE

"[I"

. I I I3

. I I I6 I I I

int[3]

int[6]

. I I I3

MyClass[3]

"[MyClass"

Figure 3.3: Three different array instances: Two integer arrays with different size but
equal type, sharing one array descriptor and a third array with its own descriptor.

component. The offset results if the component size is multiplied by the desired
index.

• Contiguous blocks of memory are ideal in terms of the milestone/rollback mech-
anism. This mechanism uses tracking of heap modifications which is easy to
implement for contiguous blocks of memory.

Each contiguous block has a header as shown in Figure 3.4. The first field of the header
points to the instance descriptor. This descriptor is either an instance of JNukeInstanceDesc
or JNukeArrayInstanceDesc which allows to identify each instance on the heap.

struct JNukeInstanceHeader {
JNukeObj *descriptor;
JNukeObj *lock;
JNukeInt4 arrayLength; /* for arrays only */
JNukeObj *waitset;

};

Figure 3.4: The header of an instance consists of a descriptor pointing to either an
instance of JNukeInstanceDesc or JNukeArrayInstanceDesc, a reference to a lock,
the array length (used for arrays only), and a reference to a list containing threads
currently waiting on that object.

The alignment of fields or components depends heavily on the underlying architec-
ture, the same way as C structs do. The i386 architecture is a 32-bit architecture where
each 4-byte field is aligned to 4-byte boundaries. A field that is smaller than 4 bytes
is also aligned to 4-byte boundaries. 8-byte fields such as double and long fields can
be aligned either to 4-byte or 8-byte boundaries. The Intel architecture accepts both.
However, an 8-byte alignment is preferred [19]. The same alignment is used for the
Power-PC architecture. On 64-bit platforms such as Alpha or SPARC v9 a strict 8-byte
alignment was selected in spite of the fact that this wastes memory for fields smaller
than 8 bytes. At the moment the algorithm that calculates offsets is not smart enough
to compact two 4 byte fields into one 8-byte field. As the SPARC architecture is not

3.3. THE HEAP MANAGER 31

able to read 8-byte values aligned to 4-byte addresses, even SPARC v8, a 32-bit archi-
tecture, uses a strict 8-byte alignment. Figure 3.6 shows an example where offsets are
calculated for the sample class shown in Figure 3.5.

public class MyClass {
int a;
int b;
long c;

}

Figure 3.5: An example class with a couple of fields

0 4 8 12 16 20 24 28

4-byte alignment

8-byte alignment

a

a

b

b

c

c

Figure 3.6: The calculated offsets of the class from Listing 3.5. The 8-byte alignment
wastes 16 bytes in this case although a smart algorithm could place the fields such that
memory usage is the same as for architectures with 4-byte alignment.

Multi-dimensional arrays

As opposed to array, object or class instances, multi-dimensional arrays are not stored
at a single contiguous block of memory. Some programming languages such as C
implement multi-dimensional arrays as one linear memory block. The offset of an
element is calculated with a few multiplications and additions. The overhead of the
additional multiplications and additions is negligible. Thus, the overall performance
is nearly as fast as for arrays. The complexity is therefore O(1). Java, however, pre-
sumes that a multi-dimensional array consists of a composition of several usual array
instances [26]. Consider the example in Figure 3.7 which shows a multi-dimensional
array int[3][2][3]. The first level consists of one array with three components. The
second level consists of three arrays with two components each. Finally, the third level
has six arrays with three components each. In order to read or write an element at the
third level, the virtual machine needs to walk top down the tree. In consequence of
that, an array access is O(n) (n is the number of array levels). It is almost impossible
to allocate a contiguous block of memory for multi-dimensional arrays, as Java allows
to create arrays dynamically at run-time. An array can be incomplete and may change
its size during execution, as shown in Figure 3.8.

Listeners and events

The heap manager provides an interface to allow a client to create, read, and write
instances. It hides internal details from the client. Communication is strictly unidirec-
tional: the client calls the heap manager. However, the heap manager provides another
mechanism that implements notification callbacks similar to the Java event model (also

32 CHAPTER 3. THE VIRTUAL MACHINE

. L L L3

. L L2 . L L2 . L L2

I

I

I

3

I

I

I

3

I

I

I

3

I

I

I

3

I

I

I

3

I

I

I

3

"[[[I"

"[[I"

"[I"

int[3][2][3]

. I I2

int[2]

Figure 3.7: Two arrays, int[3][2][3] and int[2]. Each array, even the sub-level
arrays, have an array descriptor. Sub-level arrays of the same level share the same
array descriptor. Each type of a sub-level array is the dereferenced type of the super-
level array.

public class MyArrays {
static public void main(String[] args) {

int[][] i = new int[4][];
i[3] = new int[10];
int[][] a = new int[4][5];
a[3] = new int[10];

}
}

Figure 3.8: A Java example where two arrays are changed at run-time.

3.4. THE LOCK MANAGER 33

called observer pattern [12]). This enables a client to get notified if an object on the
heap has been read or written, which is often of interest for verification tools.

There is a struct called JNukeHeapManagerActionEvent used as an event (detailed
in Section B.1). The heap manager provides two registration methods, addReadAccess-
Listener and addWriteAccessListener, shown in Figure 3.9. The first registration
method is used if a client wants to be notified when an object is read. The second one
does the same, however it is used in order to listen to write accesses of objects. Each
registration method allows to add a listener function pointer that is used as a callback
when an according event occurs2.

void JNukeHeapManager_addReadAccessListener (
JNukeObj * this,
JNukeObj * listenerObj,
JNukeHeapManagerActionListener (l));

void JNukeHeapManager_addWriteAccessListener (
JNukeObj * this,
JNukeObj * listenerObj,
JNukeHeapManagerActionListener (l));

Figure 3.9: Methods addReadAccessListener and addWriteAccessListener register a
listener. A listener consists of a listener object and a listener function pointer. If an
event occurs, the listener function is called. It takes two arguments: the listener object
used as this pointer and the event.

3.4 The lock manager

The lock manager (class JNukeLockManager) is a subsystem of the runtime environ-
ment. The Java programming language does not provide a way to perform separate lock
and unlock operations; instead, they are implicitly performed by high-level constructs
that always pair such operations correctly. There is a lock associated with every object.
The synchronized statement attempts to perform a lock operation on the object and
does not proceed further until the lock operation has successfully completed. After the
lock operation has been performed, the body of the synchronized statement is exe-
cuted. When the body has been completed an unlock operation is performed on that
object. The same applies to synchronized methods [26].

The lock manager provides lock and unlock operations, called acquireObjectLock
and releaseObjectLock (see Figure 3.10). If the object assigned to the synchronized
statement is already locked by another thread, the current thread is suspended by the
Lock Manager. For this purpose, each lock, represented by the class JNukeLock, im-
plements a list containing threads that were not able to obtain this lock. As soon as the
according lock is completely released, all waiting threads from this list are re-enabled
for scheduling. The scheduler may reschedule one of these re-enabled threads that
immediately retries to acquire the lock. If this succeeds, it enters the synchronized
body. Otherwise, the lock manager suspends the thread and adds the thread to the wait
list of the corresponding lock again.

2Two test cases show the usage of this mechanism: vm/heapmgr/13 and vm/heapmgr/14.

34 CHAPTER 3. THE VIRTUAL MACHINE

int JNukeLockManager_acquireObjectLock (JNukeObj * this,
void * object,
JNukeObj * thread)

void JNukeLockManager_releaseObjectLock (JNukeObj * this,
void * object)

Figure 3.10: Method JNukeLockManager_acquireObjectLock and method
JNukeLockManager_releaseObjectLock. Both methods take the pointer to the in-
stance as the second argument. Method JNukeLockManager_acquireObjectLock
additionally takes a third argument that determines the thread that wishes to obtain the
object lock. The method returns 1 if the lock could be obtained. Otherwise, the method
returns 0 and the thread is suspended and added to the wait set for this lock.

Consider Figure 3.11 illustrating the relationship between instances, locks and the
lock manager. Thread owner is the current owner of the lock. Vector waitList con-
tains threads that were not able obtain the lock. Each lock is assigned to exactly one
instance and vice versa.

JNukeLockManager

JNukeLock

instance

.....

JNukeThread

n

1

owner
n 0..1

waitList

1

n

Figure 3.11: Relationship between the Lock Manager, locks, instances and threads.

Listeners and events

As locking activities are often of interest for runtime-verification algorithms, the lock
manager also provides a listener registration interface. There are three different events:

OnLockReleased occurs when the current thread has performed an unlock opera-
tion, which happens when a thread either invokes wait or leaves a synchronized region.
Method JNukeLockManager_addOnLockReleasedListener registers a listener at the
lock manager. The listener is notified by JNukeLockManagerActionEvents (shown
in Figure 3.12)

OnLockAcquirementSucceed occurs when the lock manager has granted the cur-
rent thread to obtain a lock. A thread triggers this event when it enters a synchro-

3.5. THE WAITSET MANAGER 35

struct JNukeLockManagerActionEvent {
JNukeObj *issuer;
void *object;
JNukeObj *lock;

};

Figure 3.12: A JNukeLockManagerActionEvent provides the pointer to the object
and the pointer to the according lock.

nized region or it is awaken by notify or notifyAll. The registration method is
JNukeLockManager_addOnLockAcquirementSucceedListener and the correspond-
ing event is JNukeLockManagerActionEvent (see Figure 3.12).

OnLockAcquirementFailed occurs when the lock manager could not grant the cur-
rent thread to obtain a lock. The current thread is suspended. A client that has regis-
tered itself with JNukeLockManager_addOnLockAcquirementFailedListener are
notified. As before, an instance of JNukeLockManagerActionEvent represents the
event.

3.5 The waitset manager

Beside the synchronized statement, Java supports another mechanism for synchro-
nizing threads. The class java.lang.Object, contains the methods wait, notify,
and notifyAll. Every instance, in addition to having an associated lock, has an asso-
ciated wait list as illustrated in Figure 3.13. When an instance is first created, its wait
list is empty. The wait method of the wait set manager adds the current thread to the
wait set of the instance, disables the current thread for thread scheduling purposes, and
performs a complete unlock on the instance to relinquish the lock on it. Since a thread
may obtain an object lock several times (so called recursive lock), the lock is unlocked
the same number of times (so called complete unlock). The thread then lies dormant
until one of two things happen:

• Another thread invokes notify on the same instance. The thread is arbitrarily
chosen from the set of waiting threads.

• Another thread invokes notifyAll on the same instance.

The thread is removed from the wait list and re-enabled for thread scheduling. Once
being elected by the scheduler, it will attempt to obtain the locks again.

The waitset manager does not provide an event/listener interface yet, as ExitBlock
and ExitBlock-RW do not need it. Other runtime verification algorithms may need an
event/listener interface for notification on notify, notifyAll, and wait.

3.6 The runtime environment

The runtime environment is the heart of the virtual machine and drives the execution
of register byte codes in an execution loop. It consists of the class JNukeRuntime-
Environment and is in relationship to other classes as illustrated in Figure 3.14. The

36 CHAPTER 3. THE VIRTUAL MACHINE

JNukeWaitList

instance

.....

JNukeWaitSetManager

n

1

Figure 3.13: JNukeWaitSetManager and JNukeWaitList

runtime environment reads byte codes and triggers according actions in the static class
JNukeRBCInstruction. Trivial byte codes are executed in JNukeRBCInstruction;
others are delegated to the according manager (heap, waitset or lock manager). Cre-
ation of instances, reading and writing of fields is managed by the heap manager. Lock
and unlock operations are forwarded to the lock manager. The wait set manager han-
dles invocations of wait, notify, and notifyAll.

JNukeRuntimeEnvironment

JNukeThread

JNukeStackFrame

JNukeRBCInstruction

JNukeLockManager

JNukeWaitsetManager

JNukeHeapManager

JNukeMethod

1

1

1

1

0..n

1

0..n

1

0..1

1

Figure 3.14: The runtime environment with related classes.

Threads are managed by the runtime environment. A thread holds a stack of stack
frames. This stack corresponds to the call stack. Each stack frame is associated to a
method and contains its own register set. The current method in execution is associated
to the top stack frame of the current thread. The current register set is also stored in the
top stack frame of the current thread.

The register set

Most register byte codes in a program, such as mathematic, comparison, or branch
operations, are simple operations. These operations mainly consist of a calculation

3.6. THE RUNTIME ENVIRONMENT 37

and need a few input and output registers or locals. Since Java programs have a high
number of these operations, execution of such simple operations should be as fast as
possible.

Since the number of locals and registers used in a method is predetermined [26], a
register set can be designed as a static array. The width of a register is either 4 bytes
on a 32-bit architecture or 8 bytes on a 64-bit architecture. Since 64-bit architectures
use 8-byte addresses for objects in memory, a Java register also needs 8-byte on these
platforms.

On a 32-bit architecture a 32-bit value consumes one register and a 64-bit value
therefore consumes two registers. On 64-bit architectures, both 32-bit and 64-bit values
fit into one register.

The register byte code does not distinguish between locals and registers. Both,
locals and registers are in the same register set. The enumeration starts with index 0
and ends at locals+ registers−1.

Consider Figure 3.15 showing two additions, one with integer values, the other with
long values. The integer addition is implemented in the virtual machine as follows:
cur_regs[res_reg] = cur_regs[arg1] + cur_regs[arg2].

r0 r1 r2 r3 r4 r5 r6 r7

r2 = r5 + r7

+

r0 r1 r2 r3 r4 r5 r6 r7

(r2,r3) = (r4,r5) + (r6,r7)

+

Figure 3.15: Two example additions: one with two integer values, the other with two
long values.

Events and Listeners

The runtime environment provides three listeners. The according events are as follows:

onThreadStateChanged is used to notify a listener when the current thread has
changed it state which happens if a thread performs wait, join or it dies. The listener
should schedule another thread to execute. The listener is registered by JNukeRuntime-
Environment_addThreadStateListener.

onExecute is used to notify a listener prior to execution of a byte code. This enables
a listener to monitor execution flow, but also to perform thread switches prior to the ex-
ecution phase. The registration method accepts a bit-mask which determines on which
kind of byte-codes the listener is notified. The registration method is JNukeRuntime-
Environment_addOnExecuteListener.

38 CHAPTER 3. THE VIRTUAL MACHINE

onExecuted is also used to notify a listener about execution flow. The listener, how-
ever, is triggered after the execution phase. As before, the registration method accepts a
bit-mask in order to limit notification on a subset of all possible byte codes. A Listener
is registered by JNukeRuntimeEnvironment_addOnExecutedListener.

The execution loop

The execution loop is presented as a flow chart in Figure 3.16 on the next page. First,
a byte code is fetched. The onExecuteListener is notified if such a listener is reg-
istered. When the listener has finished, the execution loop tests whether the listener
has changed the control flow; for instance, a thread switch might happen in the mean-
while. If so, the current byte code is omitted and the loop starts anew. Otherwise,
the byte code is executed. After execution, it is tested whether an internal exception
such as ArrayIndexOutOfBounds, IllegalThreadStateException, etc. has been
detected during execution. If so, an instance of the according exception is created and
thrown whereupon the virtual machine tries to find a matching exception handler. After
this, it is checked whether the state of the current thread has been changed during ex-
ecution. If necessary, the onThreadStateChangedListener is invoked. Finally, the
onExecutedListener is also called provided there is one defined. The execution loop
continues if further byte codes are left. Otherwise, the execution loop stops which also
terminates the virtual machine.

Method invocation

The classloader creates for each class a class descriptor (JNukeClass) describing mem-
bers (methods and fields). The class descriptor is not laid out for fast method resolu-
tion. Methods are stored in a vector which is iterated for resolution. If the imple-
mentation of a method has been derived from a super class the same search procedure
is applied to each super class until the method either is found or the search stops at
java/lang/Object. Since Java uses late binding, method invocations are a time-
critical task. The virtual machine consequently implements vtables [32]. A vtable for
a class B contains pairs of method identifiers and references to the methods extracted
from the class descriptor of class B. The vtable of class B also contains methods that
are derived from super classes. As an example consider Figure 3.17 on page 40. The
vtable for class B contains entries for bar() and foo() since class B implements these
methods. Furthermore, there is an entry for foo(int a). The implementation is de-
rived from the super class A. The vtable entries are hashed which results in fast method
finding.

Entries of the vtable can also refer to native methods. A flag declares whether
a vtable entry is a Java or a native method. Native methods can be registered in
vm/native.h and are statically linked into the virtual machine at compile-time. This
approach is not standards compliant [20]; it however provides a basic support for native
methods.

3.7 Pluggable schedulers

The runtime environment does not include a scheduler; instead, the virtual machine
provides mechanisms that allow to plug in a custom scheduler. Since verification tools
sometimes cannot use the built-in scheduler, they have to provide a custom scheduler.

3.7. PLUGGABLE SCHEDULERS 39

start

end

fetch bytecode

execute bytecode

Exception? throwExceptionYes

call
onExecuteListener

call
onThreadStateChangedListener

call
onExecutedListener

bytecodes
left?

refetch? Yes

No

No

Yes

No

Figure 3.16: Flowchart of the execution loop.

40 CHAPTER 3. THE VIRTUAL MACHINE

int foo(int a)

int bar()

int foo()

vtable: B

int foo(int a)

int foo()

vtable: A

int foo(int a)

int foo()

class A

int bar()

int foo()

class B

Figure 3.17: Two classes A and B, each with a vtable for fast method resolution

A custom scheduler needs to be able to perform thread switches at arbitrary points
of execution and monitor internal execution. Therefore, a scheduler is placed on top
of the virtual machine acting as an observer (consider Figure 3.18). Sub-systems of
the virtual machine such as the runtime environment, the heap manager, and the lock
manager provide registration methods (see Table 3.1), allow a scheduler to install its
own listeners. If an event occurs and the scheduler is registered to this event, the
scheduler is notified.

Scheduler

Runtime Environment Lock ManagerHeap Manager

register notify

Figure 3.18: The scheduler placed on top of the virtual machine registering own listen-
ers at sub-systems allowing to monitor and steer the execution environment.

A scheduler has to register at least one listener for thread state changes. The vir-
tual machine calls the listener if the current thread has been disabled. This happens
if the current thread terminates, performs wait or join, or could not obtain a lock.
The scheduler needs to find the next enabled thread to schedule with JNukeRuntime-
Environment_switchThread. Such a simple, but complete scheduler performs thread
switch only if necessary.

When a scheduler should be notified prior or after execution of certain byte codes,
it can install execution listeners with JNukeRuntimeEnvironment_addOnExecute-
Listener or JNukeRuntimeEnvironment_addOnExecutedListener. This enables a
scheduler to intervene prior to and after execution of a bytecode. In order to prevent that
execution listeners are notified on any byte code execution, both registration methods
take a bit-mask for limiting notification to a subset of byte codes.

3.8. LIMITATIONS 41

Name of method

JNukeRuntimeEnvironment_addOnExecuteListener
JNukeRuntimeEnvironment_addOnExecutedListener
JNukeRuntimeEnvironment_addThreadStateListener
JNukeLockManager_addOnLockReleasedListener
JNukeLockManager_addOnLockAcquirementFailedListener
JNukeLockManager_addOnLockAcquirementSucceedListener
JNukeHeapManager_addReadAccessListener
JNukeHeapManager_addWriteAccessListener

Table 3.1: Registration methods of the virtual machine

Tools detecting deadlocks are often interested in locking activities of the target
program. For these purposes, the lock manager provides three registration methods.
The lock manager can notify listeners on lock and unlock operations. Some tools
are also interested in objects accesses on the heap. Thus, the heap manager provides
notification on read access and write access, too.

The round-robin scheduler

The virtual machine provides a default round robin scheduler (implemented in the class
JNukeRRScheduler) granting each thread a fixed time slice in round-robin order [42].
It allows to run multi-threaded programs without any runtime verification. Tools that
do not need a custom scheduler can rely on this scheduler. However, the round robin
scheduler is not very efficient, as it is notified on any byte code by the runtime environ-
ment. The scheduler counts the number of notifications and performs a thread switch
when the current thread exhausts its execution slice. As a result, this is rather time
consuming. Since the round robin scheduler is that trivial, tools may provide their own
scheduler all the same.

3.8 Limitations

Development of the virtual machine has not completed yet. The most important lim-
itation is that I/O operations has not been implemented yet. This is not that trivial as
blocking I/O operations need to be treated specially. A thread performing a blocking
I/O operation may block the whole virtual machine as scheduling takes place at user-
level. Moreover, the Java virtual machine does not provide a standards compliant Java
native interface [20].

3.9 Summary

This chapter has shown the design of the virtual machine. The virtual machine is
designed as a platform for tools. As such, it provides an event/listener model that allows
to expose the execution environment in a well documented way. Tools can listen to the
execution flow, locking activities and field accesses. Beside this, the virtual machine
also allows tools to control the execution flow.

42 CHAPTER 3. THE VIRTUAL MACHINE

Since some verification tools have to determine the schedule of a program, they can
provide their own scheduler. Schedulers are pluggable using the event/listener model
of our custom virtual machine. Tools that do not need a custom scheduler can use the
default scheduler (JNukeRRScheduler).

During development performance and memory footprint was always kept in mind.
The heap manager stores instances in a contiguous block of memory. This is both
fast and saves memory. Method invocations are another time critical point in a Java
program due to late-binding. Our virtual machine adds vtables providing fast method
resolution. Furthermore, a register set was design as an array, which is best in terms of
performance and memory footprint.

Chapter 4

The Milestone and Rollback
Mechanism

The milestone/rollback mechanism allows establishing milestones in program execu-
tion. These milestones can be reverted to at a later point of execution. A milestone
records the whole state of the virtual machine such that after a rollback, the state can
be accurately restored. This chapter explains how this mechanism is implemented and
how it can be used. The main goal was to achieve good performance as well as small
memory footprint. Moreover, the mechanism should be easy to use. The next section
shows the usage of the mechanism, followed by Section 4.2, focusing on the imple-
mentation.

4.1 Usage

The interface of the milestone/rollback mechanism consists of three methods pro-
vided by the runtime environment: setMilestone, rollback and removeMilestone.
Method setMilestone establishes a milestone at the current execution point. It is
possible to establish an arbitrary number of milestones which can be reverted to in
the opposite order of their creations. A rollback always reverts to the last milestone.
Method removeMilestone destroys the last milestone allowing to revert to the next
milestone.

As an example, consider Figure 4.1. First, two milestones are established at two
different points of execution. Each milestone is reverted to twice, which results, in
three different paths being explored.

4.2 Implementation

The runtime environment provides an easy-to-use interface for the milestone/rollback
mechanism, hiding internal details. The actual work, however, is delegated to the sub-
systems of the runtime environment. This pattern is also called facade [12]. Figure 4.2
illustrates how invocations of setMilestone, rollback, and removeMilestone are
delegated to the numerous subsystems. Each of them provides the same three methods
(setMilestone, rollback, and removeMilestone) again. The runtime environment

43

44 CHAPTER 4. THE MILESTONE AND ROLLBACK MECHANISM

MilestoneExecution Rollback

Start

1.

2.

3.

4.

5.

6.

1. setMilestone
2. setMilestone
3. rollback
4. rollback
 removeMilestone
5. rollback
6. rollback

Figure 4.1: Sample sequence of setMilstone, rollback and removeMilestone.

forwards invocation of any one of these three methods to its sub-systems whereupon
each sub-system also forwards the invocation to its sub-systems.

JNukeWaitset JNukeStackFrame

JNukeThreadJNukeLockManager JNukeWaitsetManagerJNukeHeapManager

setMilestone, rollback, removeMilestone

JNukeThread

JNukeStackFrame

JNukeRuntimeEnvironment

JNukeWaitsetJNukeLockJNukeLock

n

nnn

1 1 1

Figure 4.2: Illustrates the delegation of the milestone/rollback mechanism

When setMilestone is applied to an instance, the state of the instance is copied
on to a stack. Each instance holds its own stack. On a rollback, the copy on top of
the stack is written back to its original place. As a result, the rollback mechanism does
not change any references. An instance is located at the same address prior to and
after a rollback. Method removeMilestone applied to an instance finally removes the
copy on top of the stack. As an example, consider Figure 4.3 and 4.4 presenting the
implementation of rollback and setMilestone for class JNukeLock. The idea is all
the same for other classes.

There is one exception. The heap manager does not copy each Java instance when

4.3. SUMMARY 45

clone = JNuke_malloc (this->mem, sizeof (JNukeLock));
memcpy (clone, lock, sizeof (JNukeLock));
JNukeVector_push (lock->milestones, clone);

Figure 4.3: Implementation of JNukeLock_setMilestone

c = JNukeVector_count (lock->milestones);
milestone = JNukeVector_get (lock->milestones, c - 1);
lock->waitList = JNukeObj_clone (milestone->waitList);

Figure 4.4: Implementation of JNukeLock_rollback

establishing a milestone. Since only a fraction of all Java instances are usually mod-
ified, copying all Java instances would waste to much memory and time. Instead, the
heap manager records modification of Java instances in a log (see JNukeHeapLog).
When a Java instance is modified for the first time, a copy of this instance is created. A
rollback writes back any recorded instances. The heap manager defines two recording
strategies which differ in their granularity. When a Java instance is modified for the
first time, the heap manager can either record the whole instance or just the field which
is written. Recording of whole instances usually consumes more memory. However, it
is considered faster as fewer copies need to be written back.

Assume an array of 100’000 integer components. The total size of this instance
is about 400 kilobytes. Recorded as a whole, the log has one entry consuming about
400 kilobytes which can be written back as a whole. Recording single components,
however, creates one entry for each written component. This results in many small log
entries where each of them is written back individually. This is time consuming. It is
difficult to predict which strategy is best. Therefore, the heap manager provides the
method setLoggingGranularity allowing to choose the strategy at startup.

4.3 Summary

The milestone/rollback mechanism presented in this chapter provides an easy to use
interface consisting of just three methods: setMilestone, rollback, and remove-
Milestone. When a milestone is established the state of the virtual machine is saved.
A rollback writes the state back where instances keeps their addresses. Heap objects
are saved on their first write access and written back on a rollback the same way. The
rollback mechanism works in-place, which means that Java and JNuke objects never
change their addresses because of a rollback. This allows a tool to work with references
to objects regardless of whether rollbacks are performed in the meanwhile.

Chapter 5

Experiments

This chapter is structured into two sections. The next section presents the results of
running the virtual machine on a number of example Java programs. Section 5.2 shows
how the systematic scheduler detects concurrency errors by means of a number of small
examples.

The testing platform used was an Intel Pentium IV with a processor of 2 GHz and
512 MB of RAM. The workstation runs Red Hat Linux 8.1 Beta 2 running kernel
2.4.20 with a back-port of the NPTL (Native POSIX thread library) [34] from Kernel
2.5. The new virtual machine, the JNuke VM, was measured against Sun’s JDK 1.4
and the former interpreter of JNuke. As Sun’s JDK compiles Java byte code to native
machine code with a just-in-time compiler, a comparison is not fair from that point
of view. However, it can show whether the virtual machine’s performance allows to
execute extensive programs.

The virtual machine and the interpreter were compiled with GCC 3.2.1 with the fol-
lowing settings: -O3 -march=pentium4 -mcpu=pentium4. All tests were run multi-
ple times; results were averaged.

5.1 Performance and memory usage of the VM

This section focuses on performance and memory footprint of the virtual machine. In
the first part, some basic tests consider execution performance of single-threaded ap-
plications. The second part illustrates that the virtual machine uses memory sparingly,
as opposed to the JNuke interpreter. The third part shows some benchmarks for multi-
threaded programs.

Single-threaded tests

There are eight different basic tests which consider various aspects of the virtual ma-
chine. They have in common that each test is single-threaded and therefore no side
effects due to the scheduling can interfere these tests. The tests are as follows:

MethodInvocation considers the performance of method invocations. Since Java
uses late binding, invocations of methods is a time-critical part. The test consists of
a class filled with 500 methods. Each of them is then called 4000 times (see Section
B.2).

46

5.1. PERFORMANCE AND MEMORY USAGE OF THE VM 47

ReadManyFields extensively tests read and write operations on fields. The test pro-
gram is shown in Section B.3. Class ReadManyFields contains 5000 static fields where
each field is written and read two hundred times.

Iteration consists of a loop repeated one hundred million times (see Section B.4).

Array iterates over an array of integer values. The array contains ten million com-
ponents where each component is written ten times. (see Section B.5).

MultiArray iterates over a six dimensional array (10×10×10×10×10×10) where
each component is written once (see Section B.6).

DoubleOp performs a couple of floating point operations in a loop with two million
iterations. The program is shown in Section B.7.

BubbleSort implements a simple bubble sort algorithm. All the tests above are quite
simple tests and not representative as each of them test more or less one aspect. Thus,
this test tries to be more representative. It sorts an array with ten thousand components.
The source is shown in Section B.8.

JASPA [5] is an extensive benchmark that performs sparse matrix multiplications
(see Section B.9). The JASPA project provides sources for F90, C and Java. Since
the JNuke VM does not support I/O yet, the program contains the input data statically
in a class file. The input matrix is real unsymmetric and filled with 2659 values and
contains 180×180 rows and columns. The matrix is obtained from Matrix Market
[11]. Like Bubble Sort, this test is quite representative as sparse matrix multiplications
appear frequently in large scale scientific and engineering applications.

Each of the eight tests above was run on the JNuke VM, the former interpreter and
Sun’s VM 1.4. The results are presented in Table 5.1 and Figure 5.1 on the next page.

As expected, Sun’s VM beats our custom virtual machine and the interpreter in
almost any discipline. Since byte-codes for iteration and other simple operations can be
compiled into very efficient machine code, Sun’s VM is very strong at such disciplines.
For instance, tests Iteration, Bubble Sort and JASPA are three benchmarks where Sun’s
VM is between fifty and hundred times faster than the JNuke VM. Byte codes for
method invocations or field accesses hardly profit of a just-in-time compiler. The JNuke
VM catches up a bit. However, Sun’s VM is still twenty times faster. Averaged over all
test cases, Sun’s VM is about thirty times faster than the JNuke VM. Sun’s VM allows
also to disable the just-in-time compiler1. Sun’s VM without just-in-time compiling is
still eight times faster. Since the JNuke VM is in an early stage and not fully optimized
yet, I am confident that it will catch up in the future. In particular, method invocations,
field resolution, and execution of primitive byte codes can be improved in many ways.

All eight test cases were also executed by the JNuke interpreter where the eighth
test, JASPA, crashes. The JNuke Interpreter can neither keep up with the JNuke VM
nor with Sun’s VM. In particular, the interpreter is very slow at method invocations and
field resolution. The JNuke VM is about 120 times faster in this discipline. Overall,

1Use option -Xint.

48 CHAPTER 5. EXPERIMENTS

the JNuke VM passes all tests about thirty times faster. Sun’s VM manages this even
thousand times faster.

Table 5.1 compares also the execution time of optimized and non-optimized register
byte code. Test MethodInvocation becomes slower as the optimization process by itself
consumes extra time. Averaged however, the benefit is about twelve percent.

Test Sun JVM JNuke JVM JNuke
with JIT w/o JIT RBC OptRBC Interpreter

MethodInvocation 0.51 0.51 11.37 13.09 1589.99
ReadManyFields 0.63 0.58 19.43 18.78 4422.92
Iteration 0.38 2.00 23.71 19.56 166.78
Array 0.87 4.74 57.91 44.79 1000.74
MultiArray 2.04 5.23 21.76 14.91 517.92
DoubleOp 9.19 10.55 25.65 24.71 152.03
BubbleSort 0.76 15.21 115.23 90.40 2155.76
JASPA 0.45 3.86 24.02 23.46 −

Total 14.83 42.68 299.08 249.70 10006.14
Geometric mean 0.81 3.12 28.76 25.31 794.16

Overhead 1.00 3.87 35.62 31.34 983.58

Table 5.1: Results of the basic tests in seconds

Memory consumption

Memory consumption is another aspect to analyze. For these purposes it was analyzed
how much memory is allocated for an example Java object whose class is shown in
Figure 5.2. The class contains 9 integer fields, 9 long fields, and 9 references. Integers
and references consume at least 4 bytes on an i386 platform. Long fields need at least
8 bytes of memory. Thus, altogether at least 148 bytes for one instance. Our custom
virtual machine adds a header of 16 bytes at the beginning of the block such that the
raw instance needs 164 bytes (without the instance descriptor, which is shared). The
interpreter wastes much more memory: an approximate size of 2280 bytes for each
instance was determined which is 14 times more.

The same applies to arrays as Figure 5.2 shows. An array of integer values with
100’000 components takes at least 400 kilobytes of memory. Our custom virtual ma-
chine adds a header of 16 bytes whereas the interpreter needs about 2 megabytes mem-
ory for the same array. This is four times more.

JNuke VM JNuke Interpreter

new SampleClass() 164 Bytes 2280 Bytes
new int[100000] 400 kilobytes 2000 kilobytes

Table 5.2: Comparison of memory footprint between the JNuke VM and the former
interpreter of JNuke.

5.1. PERFORMANCE AND MEMORY USAGE OF THE VM 49

Figure 5.1: Benchmark results as a chart.

public class SampleClass {
int a1, a2, a3, a4, a5, a6, a7, a8, a9;
long l1, l2, l3, l4, l5, l6, l8, l9;
Object o1, o2, o3, o4, o5, o6, o7, o8;

}

Figure 5.2: Example class with a couple of fields in order to compare the memory
consumption between the JNuke VM and the intepreter

50 CHAPTER 5. EXPERIMENTS

Multi-threaded tests

This section tests the performance of multi-threaded programs. The test program are
presented in Appendix B. Since the former interpreter does not support threading,
the JVM of Sun and our custom JVM only pit one’s strength against each other. We
consider four programs:

Dining philosophers is a classic synchronization problem. The problem consists of
three philosophers sitting at a table who do nothing but think and eat. Between each
philosopher, there is a single stick. In order to eat, a philosopher has to obtain both
sticks. A problem can arise if each philosopher grabs the stick on the right, then waits
for the stick on the left. In this case a deadlock has occurred, and all philosophers will
starve. The solution is that one philosopher has to acquire its sticks in the opposite
order. Since performance is measured, this implementation meets this criterion.

Producer-consumer problem is another classic synchronization problem which is
also called bounded buffer problem. There is a set of producers and consumers. Pro-
ducers write elements into a buffer as long the buffer is not full. Consumers consume
elements from the buffer as long the buffer is not empty. The producer-consumer prob-
lem illustrates the need for synchronization in systems where many processes share a
resource.

JGFCrypt performs IDEA (International Data Encryption Algorithm) encryption
and decryption on an array of three million components. JGFCrypt is part of the Java
Grande Forum Benchmark Suite [40]. The algorithm involves two principle loops,
whose iterations are independent and are divided between the threads in a block fashion
(see Section B.10).

JGFSeries is also part of the Java Grande Forum Benchmark Suite. It computes
the first ten thousand fourier coefficients of the function f (x) = (x + 1)x in multiple
threads. The most time consuming component of the benchmark is the loop over the
Fourier coefficients. Each iteration of the loop is independent of every other loop and
the work may be distributed simply between the threads. The work of this loop is
divided evenly between the threads in a block fashion, with each thread updating the
elements of its own block [40] (see Section B.11).

JGFSparseMatmult uses an unstructured sparse matrix stored in compressed-row
format with a prescribed sparsity structure. This test exercises indirection addressing
and non-regular memory references. A 50’000×50’000 sparse matrix is used for 200
iterations. The principle computation involves an outer loop over iterations and an inner
loop over the size of the principal arrays. The simplest parallelization mechanism is to
divide the loop across the array length between threads. Parallelizing this loop creates
the potential for more than one thread to up-date the same element of the result vector.
To avoid this the non zero elements are sorted by their row value. The loop has then
been parallelized by dividing the iterations into blocks, which are approximately equal,
but adjusted to ensure that no row is accessed by more than one thread [40] (see Section
B.12).

First, a Dining Philosopher program is considered with three dining philosophers
where each of them acquires their shared resources 30’000 times. The whole program

5.1. PERFORMANCE AND MEMORY USAGE OF THE VM 51

executes 28’564’800 byte codes where the resulting execution performance depends
upon the number of thread switches performed by the scheduler. Since the number of
thread switches is determined by the size of the execution slice each thread receives,
the Round Robin Scheduler was configured with different slices as Table 5.3 illustrates.
The test has shown, that if a thread is able to execute many byte codes without inter-
ruption the overall performance is better due to fewer thread switches. However, the
lost of efficiency between the first and the last test is 13% only. As a result, the number
of thread switches hardly affect the performance of the JNuke VM.

Time slice [µs] Bytecode slice Time [s] Thread switches Instr/sec

34 5 27.55 793216 1036834
125 100 24.46 195496 1167816
704 1000 24.32 34520 1174539

6984 10000 23.86 3416 1197183

Table 5.3: Results of the Dining Philosophers program where the scheduler allows each
thread to execute 5, 100, 1000, or even 10000 bytecodes without interruption.

The Producer-consumer program (Producer-consumer-1) contains a producer and a
consumer thread working on a buffer with one slot. Each thread performs 120’000 en-
queue or dequeue operations on this buffer. The main difference to the dining philoso-
phers program is that threads in the producer-consumer program are very often blocked.
Since the buffer has just one slot, the producer thread and consumer thread are alter-
nated by the scheduler. Threads always compete for this one slot. The dining philoso-
phers program, however, causes fewer lock collisions as n threads share n locks. The
consequences are shown in Table 5.4: As opposed to Sun’s VM, the JNuke VM catches
up if threads are often blocked. It seems that the JNuke VM takes advantage of user-
level scheduling instead of kernel level scheduling. When a thread is blocked a thread
switch occurs, where scheduling on user-level consumes less time.

The second producer-consumer program (Producer-consumer-2) contains one hun-
dred producers writing into one buffer slot one thousand times. There is one consumer
thread consuming all produced elements. The one consumer has to be alternated with
all producers. In worst case, it happens that the scheduler wakes up many producers
where each of them immediately goes to sleep again as the slot is still full. This is
enormous time-consuming as any thread switch carries weight. In particular, this ap-
plies to kernel-level threads. As a result, Sun’s VM needs without NPTL [34] about
six minutes for Producer-consumer-2. The JNuke VM passes this test in forty seconds.
Apparently, the NPTL scales much better than the current Pthreads-Lib of kernel 2.4.x.

The JGF benchmarks are larger and more representative than the previous examples
(see Table 5.4). The Sun VM executes JGFCrypt about fifty times faster and JGFSeries
about twenty times faster. With disabled just-in-time compiler, the Sun VM is still
twenty times faster for JGFCrypt and eight times faster for JGFSeries. Averaged over
all multi-threaded tests, Sun’s VM with enabled just-in-time compiler is about seven-
teen times faster than the JNuke VM. Sun’s VM with disable just-in-time compiler is
still seven times faster.

52 CHAPTER 5. EXPERIMENTS

Benchmark Sun JVM JNuke VM
with JIT w/o JIT

Dining philosophers 1.46 4.64 23.86
Producer-consumer-1 4.5 7.18 23.28
Producer-consumer-2 7.70 12.41 40.48
Producer-consumer-2 (w/o NPTL) 371.1 602.34 40.48
JGFCrypt (2 threads) 3.31 8.80 167.92
JGFCrypt (20 threads) 3.22 8.29 162.55
JGFCrypt (200 threads) 3.28 8.51 155.10
JGFSeries (2 threads) 22.32 61.78 510.52
JGFSeries (20 threads) 22.62 63.81 515.43
JGFSparseMatMult (2 threads) 5.79 20.17 537.36
JGFSparseMatMult (20 threads) 3.84 17.64 527.41

Geometric mean 7.89 20.10 135.70
Overhead 1.00 2.55 17.20

Table 5.4: Results of various multi-threaded benchmarks

5.2 ExitBlock and ExitBlock-RW

This section presents experiments of running ExitBlock and ExitBlock-RW on a number
of example Java programs. The programs presented here are small programs, but they
are scaled-down versions of what one would expect to encounter in real applications.
They all exhibit different types of concurrency errors which are detected. The listings
can be found in Appendix B.

Performance

The first program does not contain any errors but it is dedicated to measure how many
schedules ExitBlock-RW executes for a specified number of threads and locks per
thread. The program creates a number of threads and a number of locks. Each thread
acquires each lock once and does nothing else (see listing in Section B.13). Thus, there
are no inter-thread data dependencies. Table 5.5 lists the results of running the pro-
gram with various number of threads and locks. The number of schedules per second
is only reported for tests lasting longer than one second, otherwise the initialization of
the virtual machine would falsify the result.

This test is taken from the Rivet paper originally describing ExitBlock-RW [7].
This paper also provides results of running the target program with various number
of threads and locks. Since the Rivet virtual machine presumes a JDK1.1.5 which is
not available anymore, time comparisons cannot presented in this thesis. It is, however,
possible to compare the number of schedules executed, as shown in Table 5.6. It attracts
attention that the number of schedules are the same for tests with two threads. However,
for tests with more than two threads, the number of executed schedules are not the same
anymore. I enumerated the number of schedules for simple examples by hand in order
to proof whose implementation is right. The number of schedules enumerated by hand
always accorded to the number of schedules executed by our implementation. I assume
that the implementation of Rivet handles creation of new threads differently. This may
explain why the differences occur only for tests with more than two threads.

5.2. EXITBLOCK AND EXITBLOCK-RW 53

Threads Locks Test case Memory Schedules Time [s] Schedules/sec

2 1 17 764.4 kBytes 4 0.11
2 2 18 764.4 kBytes 5 0.11
2 100 19 2.7 MBytes 103 2.89 35.6
3 1 20 764.4 kBytes 9 0.11
3 50 21 1.8 MBytes 156 1.63 95.7
3 100 22 4.2 MBytes 306 9.77 31.3
4 20 23 1.2 MBytes 130 1.07 121.5

Table 5.5: Test case rv/exitblock/17 . . . 23 execute Performance.java for different
number of threads and locks.

Threads Locks Schedules
Rivet [7] JNuke

2 1 4 4
2 2 5 5
2 100 103 103
3 1 13 9
3 50 2757 156
3 100 10507 306
4 20 11155 130

Table 5.6: Comparison of executed schedules by Rivet’s systematic scheduler and our
systematic scheduler using ExitBlock-RW.

54 CHAPTER 5. EXPERIMENTS

Deadlock

Figure 5.3 on this page contains two threads acquiring two locks in a different order.
The first thread obtains the two locks in order (B, A), while the second thread obtains
them in the order (A, B). If the first thread obtains B and then the second thread obtains
A we have reached a deadlock, since each thread holds the lock the other thread seeks.
The reverse lock cycle detector correctly discovers this deadlock regardless of whether
ExitBlock or ExitBlock-RW is chosen. Figure 5.4 shows how the deadlock is reported.

T0:
1: synchronized(B) {
2: synchronized(A) {
3: }
4: }

T1:
5: synchronized(B) {
6: synchronized(A) {
7: }
8: }

Figure 5.3: Two threads, both containing nested synchronized regions where each
thread acquires the locks in a different order.

Deadlock found at LockAB.run ()V (line 15) (pc 9) (thread 1)
The according schedule is:
(JNukeSchedule

(JNukeThreadSwitch (from_thread 0) (to_thread 0)
(JNukeMethod "Main1.main" (JNukeSignature "V" (JNukeVector
"[Ljava/lang/String;"))) (pc 8) (line 9))

(JNukeThreadSwitch (before) (from_thread 0) (to_thread 1)
(JNukeMethod "Main1.main" (JNukeSignature "V" (JNukeVector
"[Ljava/lang/String;"))) (pc 15) (line 13))

)

Figure 5.4: The output produced by rv/rlcanalizer/4 testing the program shown in Sec-
tion B.14.

Deadlock3

The program shown in Figure 5.5 contains three threads where the first thread acquires
locks A and B, the second thread acquires locks B and C and finally the third thread
acquires lock C and A. The deadlock occurs when the first thread acquires A, the second
thread acquires B, and the third acquires C. Then none of the threads can proceed since
a different thread hold the lock it seeks.

T0:
synchronized(A) {

synchronized(B) {
}

}

T1:
synchronized(B) {
synchronized(C) {
}

}

T2:
synchronized(C) {
synchronized(A) {
}

}

Figure 5.5: Three threads, each acquiring two locks in a cycle order.

The ExitBlock algorithm explores 946 different schedules (see rv/exitblock/24) and
the reverse lock cycle analyzer is able to detect the deadlock shown in test case rv/rl-
canalizer/7. The ExitBlock-RW however, that explores 11 schedules, is not able to

5.2. EXITBLOCK AND EXITBLOCK-RW 55

detect the deadlock. This is because no data dependencies exist between any atomic
block. Therefore, the ExitBlock-RW algorithm alternates only the order in which each
thread comes to run where no other thread is re-enabled and scheduled during the exe-
cution.

DeadlockWait

The program presented in Section B.18 shows a common type of condition deadlocks.
A first thread holding two Locks A and B from a nested synchronized section performs
wait on B whereupon the thread releases the lock B but not A. Since the first thread still
holds Lock A no one else can obtain this lock while the first thread is sleeping. Thus,
a second thread aims to notify the first thread but blocks on lock A instead. ExitBlock
and ExitBlock-RW find the condition deadlock.

SplitSync

The fragment shown in Figure 5.6 demonstrates another timing-dependent bug. De-
pending on the schedule the invariant r.x == y may fail. By splitting the increment of
r.x into two synchronized statements, an error will occur if the two threads are inter-
leaved between the synchronized statements. Both threads will read the original value
of r.x, and both will then set it to one plus its original value, resulting in the loss of one
of the increments (see Section B.16).

T0 and T1:
0: synchronized (r) { y = r.x; }
1: synchronized (r) { r.x = y + 1; }

Figure 5.6: SplitSync example.

The program SplitSync was successfully tested by ExitBlock and also by ExitBlock-
RW. Both algorithms find the assertion violation at the second explored schedule where
ExitBlock executes 37 and Exitblock-RW executes 17 schedules.

Dining Philosophers

The dining philosophers program is a typical problem where condition deadlocks may
occur. The code example from Section B.17 is such an example where all the philoso-
phers try to acquire their forks in the same order. The condition deadlock occurs if
each philosopher has successfully acquired one fork and is waiting for the other one.
In this case, each thread is waiting for an infinite time. According Figure 5.7, which
shows the implementation of Fork.java, there are no inter-thread data dependencies.
Remember, entering a synchronized region is not considered as a write action to the
lock object.

The program has been tested with ExitBlock (rv/exitblock/29) and ExitBlock-RW
(rv/exitblock/30). ExitBlock executes 5871 schedules where the condition deadlock is
found after 843 explored schedules. ExitBlock-RW executes 51 schedules where the
condition deadlock is not detected due to lack of inter-thread data dependencies. The
number of schedules enormously explodes for ExitBlock so that it cannot applied to
realistic problems. While ExitBlock-RW is able to cut down the number of schedules,
the condition deadlock is not discovered.

56 CHAPTER 5. EXPERIMENTS

public synchronized void acquire(Philosopher p)
throws InterruptedException {

while(owner != null) { wait(); }
owner = p;

}
public synchronized void release() {

owner = null;
notifyAll();

}

Figure 5.7: Implementation of Fork.java

Test Case Memory Time [s] Threads Schedules p-factor

rv/exitblock/30 767.0 kBytes 0.10 3 51 3.75
rv/exitblock/31 767.0 kBytes 0.13 4 75 3.11
rv/exitblock/32 1001.9 kBytes 0.92 10 1146 3.06
rv/exitblock/33 1.8 MBytes 309.24 20 305978 4.22

Figure 5.8: Dining Philosophers for 3, 4, 10 and 20 running threads.

Figure 5.8 shows the result of ExitBlock-RW applied to the Dining Philosopher
problem for 3, 4, 10 and finally 20 concurrent threads. Even though the condition
deadlock is undetected, this test is appropriate to examine growth factors of ExitBlock-
RW. The p-factor is defined as follows:

p = log(number_of_schedules)
log(number_of_threads)

It shows the polynomial dependency between the number of threads and the re-
sulting number of schedules. As all the p-factors are more or less the same, it can be
assumed that ExitBlock-RW is polynomial in the number of threads for this problem.
The memory consumption grows linearly.

BufferIf

The BufferIf program contains a bounded buffer that has an error in its enqueue method.
The program is shown as a whole in Section B.19 and as a simplified portion in Figure
5.9. The program is easy to understand: a producer inserts an element into the buffer
if the buffer is not full. Otherwise, it performs wait on the buffer object. This puts
the thread to sleep until another thread performs notifyAll on the same buffer object.
Similarly, any consumer performs wait if the buffer is empty. The consumer thus
sleeps until another thread performs notifyAll. When this happens the consumer
checks whether the buffer is still empty. If so, it performs wait again. Otherwise, the
consumer consumes one element from the buffer and leaves the method. The error is
that the enqueue method of the buffer does not re-check the condition on notification.
The program uses an if to test the condition that the buffer is full instead of a while
loop. This is a problem if more than one thread sleeps on the buffer object waiting for
enqueuing an element. Those threads are woken up by notifyAll when a consumer
has consumed one element as there is space for one new element again. Since the

5.2. EXITBLOCK AND EXITBLOCK-RW 57

condition is not rechecked at the enqueue method, it may happen that more than one
thread enqueues an element which causes a buffer overflow.

synchronized enqueue(Object x)
1: if(full) /* BUG */
2: wait();
3: /** insert element */
4: notifyAll();

synchronized dequeue()
5: while(empty)
6: wait();
7: /** consume element */
8: notifyAll();

Figure 5.9: Producer/Consumer example where the condition is not rechecked in the
enqueue method.

The sample program creates two producers and one consumer. Both, ExitBlock and
ExitBlock-RW discover many schedules where the assertion in the enqueue method
fails. Since we just check the assertion (jnuke.Assertion.check) when the assertion
fails (execution does not stop), the systematic scheduler encounters later in execution a
condition deadlock at the dequeue method. Iff the assertion fails, the consumer thread
sleeping in the dequeue method will never leave the while loop anymore. After all
producers are terminated, the consumer will be never woken up, which is properly
detected as a condition deadlock.

BufferWhile

The BufferWhile program is a modification of the BufferIf program from above. The
enqueue method uses a while loop now instead of an if statement in order to check
the condition (see Section B.20 for the source code). Even when two producer threads
are waiting and awakened by notifyAll, the assertion cannot fail as the condition is
rechecked by each thread. The thread that was scheduled first can enqueue the next
element whereupon the second scheduled thread is not able to escape the while loop.
The correctness is shown by ExitBlock and by ExitBlock-RW. There is, according to
the log, neither a condition deadlock nor an assertion violation.

5.2.1 Performance of the milestone/rollback mechanism

Table 5.7 presents how much time is consumed by the rollback/milestone mechanism.
It illustrates also the number of created milestones and the number of rollbacks per-
formed. Test case A and B are the results from the dining philosophers program with
ten or twenty threads, respectively. C, D, E executes Performance.java with different
number of threads and locks:

• C: two threads and hundred locks

• D: three threads and fifty locks

• E: three threads and hundred locks

58 CHAPTER 5. EXPERIMENTS

Test case Rollback Milestone Total Execution User
Number Time [s] Number Time[s] Time [s] Time [s]

A 4061 0.36 2915 0.15 0.92 0.41
B 644753 82.19 338653 31.84 309.24 195.21
C 10405 1.80 10302 0.72 2.89 0.37
D 8009 0.92 7853 0.38 1.63 0.33
E 31009 6.25 30703 2.45 9.77 1.07

Table 5.7: Time behaviour of the milestone/rollback mechanism

As Figure 5.10 shows, the milestone/rollback mechanism consumes for the dining
philosophers program (test A and B) between 40 and 55% of the total execution time.
Test C, D and E even need up to 90% of the execution time for the milestone/rollback
mechanism. The results do not surprise, as both test programs hardly contain any real
code. They primarily consist of code causing creation of milestones where there is
hardly any code in-between two milestones. Due to lack of time I could not test more
representative programs. However, we can consider time consumed by one rollback
or milestone creation, respectively. Table 5.8 presents these figures. In a previous test
(see Table 5.3), we stated that the virtual machine executes about one million instruc-
tions per second for the dining philosopher program (this is one instruction per µs). In
average, a rollback or a milestone creation cost about 100 µs for test case A and B.

Figure 5.10: Time consumption of the rollback/milestone mechanism

5.3 Summary

This chapter has shown that the JNuke VM executes programs about thrity times faster
than the former interpreter of JNuke. Sun’s virtual machine is much faster than our
custom virtual machine due to the just-in-time compiler. In average, it is about seven-

5.3. SUMMARY 59

Test case Rollback [µs] Milestone [µs]

A 88.6 51.6
B 127.4 94.0
C 172.9 69.9
D 114.8 48.4
E 201.5 79.8

Table 5.8: Time consumption for one rollback or milestone.

teen times faster. This depends on the mix of byte codes. Programs that mainly consist
of byte-codes for branching, calculation, etc. can be compiled into very efficient ma-
chine code. In such disciplines our custom virtual machine cannot compete with the
virtual machine of Sun. If a program, however, consists of complex bytes such as
method invocation, field accesses, or floating point operations, our custom virtual ma-
chine can catch up a bit due to efficient implementation of the heap manager and the
virtual tables. Our virtual machine profits of the user-level scheduling, which allows
an efficient implementation of thread switches. In a concurrent program where many
threads compete for a small set of locks, our custom virtual machine even beats Sun’s
virtual machine under some circumstances.

This chapter has also considered experiments with the systematic scheduler. It
has been shown that many types of common errors in concurrent Java programs can
be discovered. ExitBlock finds all the errors in the example programs. It enumerates
an enormous number of schedules such that it apparently cannot be applied to larger
examples. ExitBlock-RW also tests larger examples. However, some deadlocks are not
discovered due to lack of data dependencies. Therefore, Chapter 6 discusses among
other things approaches that enables ExitBlock-RW to detect any deadlock.

Chapter 6

Future Work

6.1 Future work on the virtual machine

The virtual machine is far from complete as three months of programming is a rather
short time to implement a whole virtual machine. At certain points the virtual machine
is either incomplete, not standards compliant enough, or not optimized. This section
names these deficiencies below.

Input/output

The virtual machine currently does not provide any I/O facilities. I/O classes use na-
tive methods which are not implemented yet. The implementation is straightforward.
One problem, however, arises for blocking I/O in connection with multi-threaded Java
programs. Since the virtual machine uses user-level instead of kernel-level threads, any
thread that performs a blocking operation would block all other threads. The virtual
machine is designed as one process which is preempted by the operating system on
blocking system calls. As a result, the whole virtual machine is blocked waiting for
data, regardless of whether other Java threads could run. Kernel-level threads, how-
ever, profit of the operating system which immediately preempts blocking threads and
put them on a system wait queue. As soon as the data are ready to deliver, the thread is
awaken again [3].

The virtual machine, therefore, needs similar mechanisms avoiding blocking of the
whole virtual machine. There are two different approaches:

• Replacing blocking system-calls such as read, write, connect, accept, sleep,
wait, etc. by non-blocking versions. The virtual machine uses select internally
to manage non-blocking I/O. A Thread invoking a blocking system call is dis-
abled until the virtual machine has completed the system call. A few user-level
pthreads implementations do the same [35]. The main advantage is that any
standard foundation library can be used with our virtual machine without any
modifications.

• Replacing classes of the foundation library providing blocking I/O. This ap-
proach is easier to implement; however, replacing parts of commercial foun-
dation libraries may give rise to copyright problems.

60

6.1. FUTURE WORK ON THE VIRTUAL MACHINE 61

Unlike our virtual machine, the Rivet virtual machine fully supports I/O operations as
it can make use of the underlying native libraries and virtual machine [7].

Java native interface

The virtual machine provides basic support for native methods. Native methods are im-
plemented in the virtual machine and statically registered there. Native methods cannot
be loaded from shared objects at runtime which would be standards compliant [20]. We
need a standards compliant Java native interface otherwise the Java foundation classes
(JFC) can hardly be used, since many of them uses native methods.

Java foundation classes (JFC)

Commercial java virtual machines usually provide their own implementation of the
JFC. The license, however, often forbids to use them with our virtual machine. There
is a project called GNU Classpath whose goal is to provide a free replacement for Sun’s
proprietary implementation [8]. Using GNU Classpath as the class library for our Java
virtual machine does not affect the licensing of the JVM. If we use GNU Classpath, the
JNuke VM may need some minor adjustments.

Dynamic loading and linking

A standards compliant virtual machine dynamically loads, links and initializes classes
and interfaces on demand. Loading is the process of finding the binary representation
of a class or interface type with a particular name. Linking is the process of taking a
class or interface and combining it into the runtime state of the Java virtual machine
so that it can be executed [26]. Loading and linking are currently done at startup of
the virtual machine by means of a list of class files to load. There is no possibility
to load and link classes or interfaces at run-time which is a desirable feature as the
runtime environment aborts if a required class file was not predetermined at the virtual
machine’s startup.

Standards compliant handling of NaN and infinity

Since the classloader currently omits values not a number and infinity [26], the virtual
machine does not execute programs correctly using these special values as they cannot
be represented at the moment.

Deterministic replay of a schedule

So far the virtual machine provides a round-robin scheduler, which cannot be used for
deterministic replay. Errors detected by a runtime-verification tool, such as ExitBlock
or Eraser [36], should be replayed on our virtual machine in order to reproduce an error.
So, we need a further scheduler which is able to execute a multi-threaded program
according a schedule history created by a runtime-verification tool. Schedule histories
can be recorded with JNukeSchedule. The desired replay scheduler can retrieve the
history from an instance of JNukeSchedule.

62 CHAPTER 6. FUTURE WORK

Writing of cx-files

Marcel Baur has written a Java bytecode instrumentation tool allowing deterministic
replays of schedules on an arbitrary virtual machine [1]. The schedule is described in a
cx-file. Class JNukeSchedule, that encapsulates a schedule, should be extended such
that cx-files can be generated.

Use of 32-bit registers on SPARC v8

SPARC v8 is a 32-bit architecture which insists on 8-byte alignment for 8-byte values.
If registers of the virtual machine consist of 4 bytes and an 8-byte value is stored
in a register that is 4-byte aligned, a bus error occurs on read or write of this address.
Therefore, registers on SPARC v8 consist of 8 bytes which makes sure that any register
is 8-byte aligned. This wastes memory. The solution is to split one 8-byte access into
two 4 byte accesses.

Just-in-time compiler

The experiments in Chapter 5 have shown that our custom virtual machine is much
slower than Sun’s virtual machine due to lack of a just-in-time compiler. A just-in-time
compiler, however, may come at a cost, as some flexibility get lost. However, most
tools for runtime verification are mainly interested in activities concerning locks, field
accesses, thread states and method invocations. As long as our custom virtual machine
provides this information to tools, a just-in-time compiler hardly affect the flexibility.
Since JNuke uses register byte code, writing of code generators for various platforms
is straightforward.

6.2 Future work on the milestone/rollback mechanism

There are Java instances whose state also depends on external properties where restor-
ing blocks of memory is not sufficient for a rollback. For instance, I/O classes can use
files. A proper rollback may consist of closing file handles or even make write accesses
undone. The milestone/rollback mechanism implemented in this thesis is not able to
do so. Such Java classes need to implement the rollback mechanism by themselves as
the virtual machine does not know enough about their accurate states.

One idea is that such classes implement a special interface as considered in Figure
6.1. Classes implementing this interface are bound to implement an according mile-
stone/rollback mechanism. The milestone/rollback mechanism of the virtual machine
omits classes derived from Revertable and delegates those tasks by invoking the cor-
responding method of the Revertable interface.

As a result, this approach enables almost any class, even those classes with native
states, to accurately establish milestones which can be reverted to. In particular, this is
interesting for I/O classes. The Rivet virtual machine does not provide such a facility.

6.3. FUTURE WORK ON EXITBLOCK-RW 63

public interface Revertable {
/** save current state */
void setMilestone();
/** revert to last state */
void rollback();
/** remove last saved state */
void removeMilestone();

}

Figure 6.1: Interface Revertable

6.3 Future Work on ExitBlock-RW

Handle a lock enter as a write to the lock object

Lock-cycle deadlocks may not be found due to lack of data dependencies. If, however,
a lock enter is considered to be a write to the lock object, ExitBlock-RW discovers more
lock-cycle deadlocks. The penalty in extra paths considered should not be too high as
synchronized sections often have data dependencies. A program usually acquires an
object lock if it aims to read or write the object. This often results in data dependencies.

Re-enable disabled threads on potential condition deadlocks

Threads once disabled are enabled in further branches only if data dependencies exist
between the disabled thread and the current thread. If the scheduler runs out of enabled
threads, it declares a condition deadlock unless there are disabled threads. The cur-
rent implementation of ExitBlock-RW aborts these paths without declaring a condition
deadlock. ExitBlock-RW, however, could execute those disabled threads nevertheless
to determine if it truly is a condition deadlock.

This idea combined with the idea from above may guarantee complete deadlock
detection even for ExitBlock-RW. Note that this has not been proven.

Allowing to define start point, depth and width of the depth-first
search

ExitBlock and ExitBlock-RW allow to define classes or package which are assumed
thread-safe1. For large applications the number of considered schedules is still too
high all the same. It should be possible to test parts of an application allowing to define
start point, depth and width of the depth-first search. This allows to test particular
aspects and parts of a program separately.

Heuristic or randomized branching behaviour

Exhaustive testing often last too long. Since timing-dependent errors usually occur on
several paths, they may be discovered even some branches are omitted. A heuristic
algorithm should prune paths which lead to similar behaviours. The most difficult
part is to develop a strategy that decides which branches to omit. Static analysis of

1see JNukeExitBlock_addSafeClasses.

64 CHAPTER 6. FUTURE WORK

the target program may help to find critical sections in a program which finally helps to
find paths of interest. Randomized branching behaviour relies on the same observation.
Since timing-dependent errors occur on several paths, randomized branching should
also find most errors.

Explore several paths at a time

Since the depth-first search of ExitBlock and ExitBlock-RW work strictly sequentially,
there is no profit of multi-processor environments. Applying a divide-and-conquer
strategy in order to explore the tree of schedules, allows it to implement massive paral-
lelization of the problem. When a milestone is created the enabled set can be divided
into n subsets. Then n− 1 additional processes are forked [3]. Each process is ac-
countable for its own subset of enabled threads creating own branches. This results in
execution of multiple paths at the same time. Since each process has its own address
space bothering of other processes is impossible. It is not that difficult to build a sys-
tematic scheduler using multi-processing. The number of processes should be tuned
to the number of processing units available. Usual symmetric multiprocessing systems
typically have 2, 4, 8 or even more processing units. As child processes in Unix share
unmodified memory pages, each child process needs just a little memory. The para-
lyzed divide-and-conquer strategy can also be applied to clustered environments [6]
that may allow exhaustive testing of even larger programs with ExitBlock-RW. As an
example, consider the program in Figure 6.2 and one possible parallelization, shown in
Figure 6.3.

T0:
1: t1 = new LockAB (A, B);
2: t1.start();
3: synchronized (B) {
4: synchronized (A) {
5: }
6: }

T1:
7: synchronized (A) {
8: synchronized(B) {
9: }
10: }

Figure 6.2: Sample multi-threaded program with two threads.

6.4 Summary

This chapter has shown some future work on the virtual machine, the milestone/roll-
back mechanism, and the ExitBlock-RW algorithm. The virtual machine is incomplete
at some points. This concerns I/O, special values as NaN and infinity, and the Java na-
tive interface. This chapter has also considered a possible implementation of a just-in-
time compiler. Access to the the internal execution environment should be still possible
whereupon the execution speed is increased. We hope that our custom virtual machine
can then achieve a performance similar to the one of Sun’s virtual machine.

This chapter also has discussed some modifications on ExitBlock-RW allowing
more accurate deadlock detection. It was also considered how heuristics and random-
ized algorithms may help to reduce the number of schedules to be considered. Another
idea was to profit of multi-processing environments by applying a divide-and-conquer
strategy to the depth-first search.

6.4. SUMMARY 65

T0, T1

T0, T1

{1,2}

T0, T1

{3,4,5}

{6}

T1

T1

{7,8,9}

()

{10}

T1

T1, T0

{7,8,9}

{10}

T0

T0

{3,4,5}

{6}

()

T1

{7}

T0

{3}

Process 0

Process 1

Process 2

Figure 6.3: Example parallelization of the program shown in Figure 6.2.

Chapter 7

Conclusions

The execution order of concurrent programs is nondeterministic due to the apparent
randomness in the way threads are scheduled. Techniques for testing sequential pro-
grams consist of test suites where the target program is run on different representative
sets of inputs. A concurrent program may pass such a test suite in spite of concurrent
errors. As only a fraction of the possible schedules is covered, the test suite cannot
cover the behaviour of the entire program. Therefore, a behaviour-complete systematic
scheduler is needed. This presumes a virtual machine that exposes its internal exe-
cution environment in a consistent way. The systematic scheduler performs a depth-
first search to enumerate possible schedules. So the virtual machine provides a mile-
stone/rollback mechanism that allows to establish milestones, which can be reverted
to. We have built such a mechanism on top of a custom virtual machine.

There are two systematic schedulers implemented in this thesis: ExitBlock and
ExitBlock-RW. Both consider only interleavings of synchronized sections, assuming
that a target program follows a mutual-exclusion locking discipline. ExitBlock-RW
additionally avoids interleaving of synchronized sections without data-dependencies.
The number of schedules considered by ExitBlock grows exponentially in the number
of threads and locks per thread. This allows only to test very small examples. The
number of schedules considered by ExitBlock-RW grows polynomially in the number
of locks per thread.

The milestone/rollback mechanism achieves good performance and low memory
footprint. Our custom virtual machine is fast enough to execute one schedule even
though Sun’s JVM is much faster. Exhaustive testing of large programs, however,
needs a faster virtual machine. A just-in-time compiler would find a remedy. Good
heuristics or randomized procedures combined with a multi-process depth-first search
may help as well. In addition, users often debug just a part of a program. Thus, the
systematic scheduler should allow to limit the scope of the depth-first search.

Since our systematic scheduler is able to discover numerous timing-dependent er-
rors (deadlocks and assertion violations), it is worth spending more time for behaviour-
complete testing, assuming we manage to reduce the number of schedules to be con-
sidered and increase performance of the virtual machine.

66

Appendix A

API Documentation

This chapter contains the complete API documentation extracted from the source code.
The following table lists all existing classes used either for the virtual machine or the
systematic scheduler. Figure A.1 on the next page shows a complete UML diagram
of the virtual machine and the systematic scheduler. It helps to understand the virtual
machine and to see the relationships between classes.

Name Page Description

JNukeArrayInstanceDesc 69 Describes an array instance
JNukeExitBlock 70 ExitBlock and Exitblock-RW algorithms
JNukeHeapLog 71 Records modification of Java instances
JNukeHeapManager 72 Manages Java instances
JNukeInstanceDesc 77 Describes a class or object instance
JNukeLock 78 Represents an instance lock
JNukeLockManager 80 Manages instance locks
JNukeRBCInstruction 81 Executes register byte codes
JNukeRLCAnalyzer 90 Reverse lock chain analyzer algorithm
JNukeRRScheduler 90 Implements the round robin scheduler
JNukeRuntimeEnvironment 91 The runtime environment
JNukeSchedule 96 Records thread switches during execution
JNukeStackFrame 97 Represents a stack frame of the call stack
JNukeThread 99 Represents a Java thread
JNukeVirtualTable 104 Contains a virtual table for a Java class
JNukeVMState 106 Holds a VM state for reporting purposes
JNukeWaitList 108 Represents a wait list
JNukeWaitsetManager 109 Manages wait sets of instances

Table A.1: List of JNuke classes which are part of the virtual machine or the systematic
scheduler.

67

68
A

PPE
N

D
IX

A
.

A
PI

D
O

C
U

M
E

N
TA

T
IO

N

RuntimeEnvironment

RBCInstructionHeapManager WaitsetManager LockManager

Lock
0..n

1

WaitList
0..n

1

InstanceDescArrayInstanceDesc
0..n

1

0..n

1

JNukeThread
0..n

1

StackFrame
0..n

1

RRScheduler

Schedule

VirtualTable

2

1

ExitBlockRLCAnalyzer

Systematic Scheduler

JNuke Virtual Machine

Figure
A

.1:
U

M
L

diagram
of

the
virtualm

achine
and

the
system

atic
scheduler

A.1. JNUKEARRAYINSTANCEDESC 69

A.1 JNukeArrayInstanceDesc

Describes array instances of the same type. It provides methods for component access
and array instance creation.

JNukeArrayInstanceDesc_createInstance

void * createInstance (JNukeObj * this, int size)

Creates an array instance (one dimension only). Returns the pointer to the newly cre-
ated array instance.
in:
size – number of elements

JNukeArrayInstanceDesc_dereferenceType

JNukeObj * dereferenceType (JNukeObj * this)

Dereferences the type of the array ([[I becomes [I, ...). The dereferenced type is re-
turned as UCSString. Note that it is up to the client to release the UCSString’s memory.
Thus, it is best to insert this string into the constant pool.

JNukeArrayInstanceDesc_getEntryOffset

int getEntryOffset (JNukeObj * this, int n)

Determines the offset for the n-th component of the array.
in:
n – n-th element (0...)

JNukeArrayInstanceDesc_getEntrySize

int getEntrySize (JNukeObj * this)

Returns the size of one component in bytes. This number is at least as large as the
alignment, determined by the underlying architecture.

JNukeArrayInstanceDesc_getLength

int getLength (void *instance)

Returns the length of the array instance. Length means the number of components. It
equals to the length operator of the Java language. Method getLength returns -1 if the
instance is NULL.

JNukeArrayInstanceDesc_getType

JNukeObj * getType (JNukeObj * this)

Returns the type of the array as UCSString.

70 APPENDIX A. API DOCUMENTATION

JNukeArrayInstanceDesc_new

JNukeObj * new (JNukeMem * mem, JNukeObj * heapMgr, JNukeObj * type)

Constructor for JNukeArrayInstanceDesc.
in:
heapMgr – the corresponding heap manager.
type – type of the array as UCSString.

A.2 JNukeExitBlock

JNukeExitBlock implements the ExitBlock and ExitBlock-RW algorithm.

JNukeExitBlock_addOnEndOfPathListener

void addOnEndOfPathListener (JNukeObj * this, JNukeObj * listenerObj,
JNukeExitBlockEndOfPathListener (listenerFunc))

Registers a listener that is called when an end of a path is reached. For instance, this
call back can be used to print out a schedule or to analyze the executed schedule.

JNukeExitBlock_addOnLockAcquirementFailedListener

void addOnLockAcquirementFailedListener (JNukeObj * this, JNukeObj *
listenerObj, JNukeExitBlockLockListener (listenerFunc))

Registers a listener that is called when a lock could not be acquired. Limitation: there
can be only one such listener at the same time.
in:
listenerObj – object reference to the listener
listenerFunc – function pointer to the call back function

JNukeExitBlock_addSafeClasses

void addSafeClasses (JNukeObj * this, const char *path)

Classes that are considered safe can be marked as such. In such classes no milestones
are created. As a result this reduces the number of executed schedules. The argument
can either contains a class or even whole packages. Consider following examples:
java/lang/String, java, or java/lang.
in:
path – this is either a class or a package

JNukeExitBlock_getSchedule

JNukeObj * getSchedule (const JNukeObj * this)

Returns the schedule (instance of JNukeSchedule). The returned schedule includes
all thread switches until the current point of execution. Such schedule can be used to
replay a schedule in order to reproduce an discovered error.

A.3. JNUKEHEAPLOG 71

JNukeExitBlock_init

void init (JNukeObj * this, JNukeObj * rtenv)

Initializes the ExitBlock algorithm. Needs to be called prior to the start of the virtual
machine.
in:
rtenv – the runtime environment

JNukeExitBlock_new

JNukeObj * new (JNukeMem * mem)

JNukeExitBlock_setLog

void setLog (JNukeObj * this, FILE * log, int logLevel)

Sets the file stream used for the log. The argument logLevel determines how verbose
the log will be. 0 means non verbose whereas 1 is verbose.

JNukeExitBlock_setMode

void setMode (JNukeObj * this, JNukeExitBlockMode mode)

ExitBlock supports both ExitBlock and ExitBlock-RW. Thus, the argument mode can
be set either to JNukePureExitBlock or JNukeExitBlockRW.

A.3 JNukeHeapLog

Class JNukeHeapLog is a class which records heap modifications. It can record fields
or entire instances. Based on the recorded modifications JNukeHeapLog allows to
restore the state of the heap.

JNukeHeapLog_count

int count (const JNukeObj * this)

Returns the number of log entries

JNukeHeapLog_logFieldWriteAccess

void logFieldWriteAccess (JNukeObj * this, void **obj_root, int offset,
int size)

Called when a field access shall be logged. A log entry is created and stored iff neither
the field nor the whole object has been recorded before.
in:
obj_root – pointer to root of the object
offset – offset from obj_root
size – number of bytes to save

72 APPENDIX A. API DOCUMENTATION

JNukeHeapLog_logObjectCreation

void logObjectCreation (JNukeObj * this, void *root)

Called when a object creation shall be logged. Write accesses to such objects are not
recorded then as they are removed at a rollback by all means.
in:
root – pointer to root of the object

JNukeHeapLog_logObjectWriteAccess

void logObjectWriteAccess (JNukeObj * this, void **obj, int size)

Called when an object write access has to be logged. A log entry is created and stored
iff neither the field nor the whole object has been recorded before.
in:
obj_root – pointer to root of the object
size – number of bytes to save

JNukeHeapLog_new

JNukeObj * new (JNukeMem * mem)

JNukeHeapLog_rollback

void rollback (JNukeObj * this)

Backs up the heap according the recorded heap log.

JNukeHeapLog_setHeapManager

void setHeapManager (JNukeObj * this, JNukeObj * manager)

Sets the heap manager
in:
manager – JNukeHeapManager reference

A.4 JNukeHeapManager

Class JNukeHeapManager provides methods for instance creation and for field ac-
cesses of instances. The heap manager can record heap modifications in connection
with the class JNukeHeapLog. This allows to back up the heap at any time to a previ-
ous state.

A.4. JNUKEHEAPMANAGER 73

JNukeHeapManager_aLoad

int aLoad (JNukeObj * this, void *obj, int n, JNukeRegister * value)

Loads a value from an array instance into the target register. The method fails if the
index is out of bounds. The result is 0, then. Otherwise, 1.
in:
obj – pointer to the array instance
n – array offset
value – pointer to the target register

JNukeHeapManager_aStore

int aStore (JNukeObj * this, void *obj, int n, JNukeRegister * value)

Writes a value to an array instance at the declared offset. Fails if the array index is out
of bounds. The result is 0 then. Otherwise, 1.
in:
obj (JNukePtr) pointer to array instance –
n – array offset
value – pointer to a register
out:
if method fails return value is 0. Otherwise, 1.
Method fails iff n is out of array range

JNukeHeapManager_addReadAccessListener

void addReadAccessListener (JNukeObj * this, JNukeObj * listenerObj,
JNukeHeapManagerActionListener (l))

Registers a listener that is notified when a heap objects was read
in:
listenerObj – listener object
l – listener function pointer

JNukeHeapManager_addWriteAccessListener

void addWriteAccessListener (JNukeObj * this, JNukeObj * listenerObj,
JNukeHeapManagerActionListener (l))

Registers a listener that is notified when a heap objects was written
in:
l – listener

JNukeHeapManager_countArrayInstances

int countArrayInstances (JNukeObj * this)

Returns the number of array instances managed by the heap manager

74 APPENDIX A. API DOCUMENTATION

JNukeHeapManager_countObjectInstances

int countObjectInstances (JNukeObj * this)

Returns the number of objects instances managed by the heap manager

JNukeHeapManager_createArray

void * createArray (JNukeObj * this, JNukeObj * type, int dimension,
int *sizes)

Creates an (multi-)array with declared dimension.
in:
type – type as UCSString ("[L", "[[[[I",)
dimension – depth of creation recursion
sizes – array of integers providing size of each dimension
out:
Returns the pointer to the allocated memory block. NULL if method failed.

JNukeHeapManager_createObject

void * createObject (JNukeObj * this, JNukeObj * class)

Creates an object instance of a class.
in:
class – name of class (UCSString)
out:
Returns a pointer to the allocated memory block. NULL if method failed.

JNukeHeapManager_deleteLatestArrayInstances

void deleteLatestArrayInstances (JNukeObj * this, int n)

Deletes the n latest object instances. Called by the HeapLog when a rollback is per-
formed.

JNukeHeapManager_deleteLatestObjectInstances

void deleteLatestObjectInstances (JNukeObj * this, int n)

Deletes the n latest object instances. Called by the HeapLog when a rollback is per-
formed.

JNukeHeapManager_getClassInstanceDesc

JNukeObj * getClassInstanceDesc (JNukeObj * this, JNukeObj * class)

Finds a class instance descriptor by name.
in:
class – name of class (UCSString)

A.4. JNUKEHEAPMANAGER 75

out:
Returns the pointer to corresponding JNukeInstanceDesc. NULL if no descriptor was
found.

JNukeHeapManager_getField

int getField (JNukeObj * this, JNukeObj * class, JNukeObj * field, void
*obj, JNukeRegister * value)

Reads a field of an object instance. The result is written into the declared register. The
method fails if the desired field does not exist.
in:
class – name of class (UCSString)
field – name of field (UCSString)
obj – this pointer of target object
value – pointer to the target register

JNukeHeapManager_getHeapLog

JNukeObj * getHeapLog (const JNukeObj * this)

Returns the current heap log. If no log is defined, NULL is returned.

JNukeHeapManager_getObjectInstanceDesc

JNukeObj * getObjectInstanceDesc (JNukeObj * this, JNukeObj * class)

Finds an object instance descriptor. Returns NULL if no corresponding descriptor ex-
ists.
in:
class – name of class (UCSString)

JNukeHeapManager_getStatic

int getStatic (JNukeObj * this, JNukeObj * class, JNukeObj * field, JNukeRegister
* value)

Reads a static field of a class instance. The result is written into the target register.
in:
class (UCString) – name of class
field (UCString) – name of field
value – pointer to the target register

out:
If method fails, return value is 0. Otherwise, 1.

76 APPENDIX A. API DOCUMENTATION

JNukeHeapManager_new

JNukeObj * new (JNukeMem * mem, JNukeObj * classPool)

out:

JNukeHeapManager_putField

int putField (JNukeObj * this, JNukeObj * class, JNukeObj * field, void
*obj, JNukeRegister * value)

Writes a field of an object instance. If method fails return value is 0. Otherwise, 1.
in:
class – name of class (UCSString)
field – name of field (UCSString)
obj – this pointer of target object
value – pointer to the source register

JNukeHeapManager_putStatic

int putStatic (JNukeObj * this, JNukeObj * class, JNukeObj * field, JNukeRegister
* value)

Writes a static field of a class instance.
in:
class – name of class (UCString)
field – name of field (UCString)
value – pointer to the source register
out:
if method fails return value is 0. Otherwise, 1.

JNukeHeapManager_setHeapLog

void setHeapLog (JNukeObj * this, JNukeObj * heapLog)

Sets the the heap log.
in:
heapLog – reference to heap log to use. If reference is NULL, no log is written.

JNukeHeapManager_setLoggingGranularity

void setLoggingGranularity (JNukeObj * this, enum JNukeLoggingGranularity
granularity)

Sets the logging granularity. This is either JNukeFieldGranularity or JNukeObject-
Granularity.

A.5. JNUKEINSTANCEDESC 77

A.5 JNukeInstanceDesc

Describes class and object instances of the same type. It provides methods for calcula-
tion of field offsets, but also methods used for creation of instances.

JNukeInstanceDesc_createInstance

void * createInstance (JNukeObj * this)

Factory method that creates an instance according the description. Returns the pointer
to newly created instance.

JNukeInstanceDesc_getClass

JNukeObj * getClass (JNukeObj * this)

Returns the class description corresponding to the descriptor.

JNukeInstanceDesc_getClassInstance

void * getClassInstance (const JNukeObj * this)

Returns the pointer to the class instance.

JNukeInstanceDesc_getFieldInfo

int getFieldInfo (JNukeObj * this, JNukeObj * class, JNukeObj * field,
int *offset, int *size)

Returns the offset and size for a given field. The unit of an offset is either 4 or 8 bytes,
respectively. This depends on the platform.
in:
class – name of class (UCSString)
field – name of field (UCSString)

out:
offset – offset in slots (4 or 8 byte slots)
size – size in bytes

JNukeInstanceDesc_getSize

int getSize (JNukeObj * this)

Returns the used memory in bytes for an instance of this descriptor.

JNukeInstanceDesc_getVirtualTable

JNukeObj * getVirtualTable (const JNukeObj * this)

Returns the virtual table of this instance

78 APPENDIX A. API DOCUMENTATION

JNukeInstanceDesc_new

JNukeObj * new (JNukeMem * mem, enum instance_desc_types type, JNukeObj
* classDesc, JNukeObj * classPool)

Creates a new instance descriptor.
in:
heapMgr – the heap manager
classDesc – the class description

JNukeInstanceDesc_setClassInstance

void setClassInstance (JNukeObj * this, void *classInstance)

Sets the class instance.

JNukeInstanceDesc_setVirtualTable

void setVirtualTable (JNukeObj * this, JNukeObj * vtable)

Sets the virtual table of this instance.

A.6 JNukeLock

Represents an object lock. A lock has an owner thread, a corresponding object, and a
wait list with threads that aims to acquire this lock, too.

JNukeLock_acquire

JNukeObj * acquire (void *object, JNukeObj * thread)

Tries to obtain a lock at this object for this thread. If a lock could be obtained, the
reference to the lock is returned.
in:
thread – thread that would like to obtain the look
object – instance that should be locked.

JNukeLock_getN

int getN (const JNukeObj * this)

Returns the number of times the current owner has acquired the lock.

JNukeLock_getObject

void * getObject (const JNukeObj * this)

Ech lock belongs to an object. This method returns this object.

A.6. JNUKELOCK 79

JNukeLock_getOwner

JNukeObj * getOwner (const JNukeObj * this)

Returns the current owner thread.

JNukeLock_new

JNukeObj * new (JNukeMem * mem)

JNukeLock_release

int release (JNukeObj * this)

Releases a lock. Returns the number of times the lock is still locked by its owner.

JNukeLock_releaseAll

void releaseAll (JNukeObj * this)

Performs a complete lock release such that the lock can be reacquired again by other
threads.

JNukeLock_removeMilestone

int removeMilestone (JNukeObj * this)

Removes the current milestone from the top of the stack.

JNukeLock_resumeAll

void resumeAll (JNukeObj * this)

Awakens all threads from the wait set. The wait set is flushed. This is usually used
by notifyAll (awaken threads from the wait set even though the current object is still
locked by another thread)

JNukeLock_resumeNext

void resumeNext (JNukeObj * this)

Awakens the next thread waiting on the lock.

JNukeLock_rollback

int rollback (JNukeObj * this)

Backs up a lock state. Returns 1 if there was at least one milestone remaining. Other-
wise, rollback() returns with 0.

80 APPENDIX A. API DOCUMENTATION

JNukeLock_setMilestone

void setMilestone (JNukeObj * this)

Creates a milestone. This means that the state of the current lock is copied and pushed
on to a stack of prior lock states. A prior lock state can be restored by performing
rollback() on this lock.

A.7 JNukeLockManager

JNukeLockManager manages all objects locks and provides locking primitives, such
as acquireObjectLock and releaseObjectLock.

JNukeLockManager_acquireObjectLock

int acquireObjectLock (JNukeObj * this, void *object, JNukeObj * thread)

Acquires a lock on given object for a given thread. If the object is either unlocked or
already locked by this thread the result is 1. Otherwise, the result is zero and the thread
is appended to the waitset. Further, this thread lost its readyToRun flag.

JNukeLockManager_addOnLockAcquirementFailedListener

void addOnLockAcquirementFailedListener (JNukeObj * this, JNukeObj *
listenerObj, JNukeLockManagerActionListener (listenerFunc))

Registers a listener that is called when a lock could not be acquired. Limitation: there
can be only one such listener at the same time.
in:
listenerObj – object reference of the listener
listenerFunc – function pointer to the call back function

JNukeLockManager_addOnLockAcquirementSucceedListener

void addOnLockAcquirementSucceedListener (JNukeObj * this, JNukeObj *
listenerObj, JNukeLockManagerActionListener (listenerFunc))

Registers a listener that is called when a lock could be acquired. Limitation: there can
be only one such listener at the same time.
in:
listenerObj – object reference of the listener
listenerFunc – function pointer to the call back function

JNukeLockManager_addOnLockReleasedListener

void addOnLockReleasedListener (JNukeObj * this, JNukeObj * listenerObj,
JNukeLockManagerActionListener (listenerFunc))

Registers a listener that is called when a lock was released. Limitation: there can be
only one such listener at the same time.

A.8. JNUKERBCINSTRUCTION 81

in:
listenerObj – object reference of the listener
listenerFunc – function pointer to the call back function

JNukeLockManager_new

JNukeObj * new (JNukeMem * mem)

JNukeLockManager_releaseObjectLock

void releaseObjectLock (JNukeObj * this, void *object)

Releases an object lock. If the recurive lock counter becomes zero the lock is removed
from the thread’s lock set.

JNukeLockManager_releaseThreadLocks

int releaseThreadLocks (JNukeObj * this, JNukeObj * thread)

Releases completely all locks belonging to the given thread

JNukeLockManager_removeMilestone

void removeMilestone (JNukeObj * this)

Removes the current milestone.

JNukeLockManager_rollback

void rollback (JNukeObj * this)

Backs up the state of any lock.
Note: call this rollback prior to the rollback of the heap manager. Otherwise, it may
happen that an object is removed from heap and this rollback attempts to write to an
object that has been deleted just before.

JNukeLockManager_setMilestone

void setMilestone (JNukeObj * this)

Sets a milestone which means that JNukeLock_setMilestone is called at any lock.

A.8 JNukeRBCInstruction

JNukeRBCInstruction is a static class providing handlers for register byte codes. The
runtime environment delegates the execution of byte codes to this class.

82 APPENDIX A. API DOCUMENTATION

JNukeRBCInstruction_executeALoad

enum JNukeExecutionFailure executeALoad (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes an array store operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
Possible JNukeExecutionFailure value:
– none
– null_pointer_exception
– array_index_out_of_bound_exception

JNukeRBCInstruction_executeAStore

enum JNukeExecutionFailure executeAStore (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes an array store operation
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
Possible JNukeExecutionFailure value:
– none
– null_pointer_exception
– array_index_out_of_bound_exception

JNukeRBCInstruction_executeArrayLength

enum JNukeExecutionFailure executeArrayLength (JNukeXByteCode * xbc,
int *pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes the Java operator length applied to an array
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:

A.8. JNUKERBCINSTRUCTION 83

JNukeExecutionFailure value (either none or null_pointer_exception)

JNukeRBCInstruction_executeAthrow

enum JNukeExecutionFailure executeAthrow (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes a throw operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value: none or null_pointer_exception

JNukeRBCInstruction_executeCheckcast

enum JNukeExecutionFailure executeCheckcast (JNukeXByteCode * xbc, int
*pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a check cast operation.
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (either none or class_cast_exception)

JNukeRBCInstruction_executeCond

enum JNukeExecutionFailure executeCond (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes a condition operation. If the branch is taken, the program counter is accord-
ingly set to the target.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value "none"

84 APPENDIX A. API DOCUMENTATION

JNukeRBCInstruction_executeConst

enum JNukeExecutionFailure executeConst (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes a constant value assignment.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value that is always "none"

JNukeRBCInstruction_executeGetField

enum JNukeExecutionFailure executeGetField (JNukeXByteCode * xbc, int
*pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a load field operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
Possible JNukeExecutionFailure value:
– none
– null_pointer_exception
– no_such_field_error

JNukeRBCInstruction_executeGetStatic

enum JNukeExecutionFailure executeGetStatic (JNukeXByteCode * xbc, int
*pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a get static field operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
Possible JNukeExecutionFailure value:
– none
– no_such_field_error

A.8. JNUKERBCINSTRUCTION 85

JNukeRBCInstruction_executeInstanceof

enum JNukeExecutionFailure executeInstanceof (JNukeXByteCode * xbc, int
*pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a instanceof operation.
Instanceof calls Checkcast. The difference between these two operations is the be-
haviour on null pointers. InstanceOf writes false into the result register und Checkcast
succeeds. Operation instanceOf does not throw any cast failure exception. It writes
either true or false into the result register.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (always none)

JNukeRBCInstruction_executeInvokeSpecial

enum JNukeExecutionFailure executeInvokeSpecial (JNukeXByteCode * xbc,
int *pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes an invocation of a special method.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (either none or no_such_method_error)

JNukeRBCInstruction_executeInvokeStatic

enum JNukeExecutionFailure executeInvokeStatic (JNukeXByteCode * xbc,
int *pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes an invocation of a static method.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (either none or no_such_method_error)

86 APPENDIX A. API DOCUMENTATION

JNukeRBCInstruction_executeInvokeVirtual

enum JNukeExecutionFailure executeInvokeVirtual (JNukeXByteCode * xbc,
int *pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes an invocation of a virtual method.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (either none or no_such_method_error)

JNukeRBCInstruction_executeMonitorEnter

enum JNukeExecutionFailure executeMonitorEnter (JNukeXByteCode * xbc,
int *pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a MonitorEnter operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (either none, null_pointer_exception,
or failed)

JNukeRBCInstruction_executeMonitorExit

enum JNukeExecutionFailure executeMonitorExit (JNukeXByteCode * xbc,
int *pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a MonitorExit operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (either none, null_pointer_exception
or failed)

A.8. JNUKERBCINSTRUCTION 87

JNukeRBCInstruction_executeNew

enum JNukeExecutionFailure executeNew (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes a new operation (used for creation of objects).
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value "none"

JNukeRBCInstruction_executeNewArray

enum JNukeExecutionFailure executeNewArray (JNukeXByteCode * xbc, int
*pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes the newArray operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value "none"

JNukeRBCInstruction_executePrim

enum JNukeExecutionFailure executePrim (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes a primitive operation. This can be an operation as follows: add, sub, mul, div,
neg, mod, shift and logical ops, or cmp.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value. If a division by zero has been encountered
division_by_zero is returned. Otherwise, the result is "none".

88 APPENDIX A. API DOCUMENTATION

JNukeRBCInstruction_executePutField

enum JNukeExecutionFailure executePutField (JNukeXByteCode * xbc, int
*pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a store field operation
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
Possible JNukeExecutionFailure value:
– none
– null_pointer_exception
– no_such_field_error

JNukeRBCInstruction_executePutStatic

enum JNukeExecutionFailure executePutStatic (JNukeXByteCode * xbc, int
*pc, JNukeRegister regs[], JNukeObj * rtenv)

Executes a put static field operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
Possible JNukeExecutionFailure value:
– none
– no_such_field_error

JNukeRBCInstruction_executeReturn

enum JNukeExecutionFailure executeReturn (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes a Return operation.
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment

out:
JNukeExecutionFailure value (either none or failed)

A.8. JNUKERBCINSTRUCTION 89

JNukeRBCInstruction_executeSwitch

enum JNukeExecutionFailure executeSwitch (JNukeXByteCode * xbc, int *pc,
JNukeRegister regs[], JNukeObj * rtenv)

Executes a tableswitch or lookupswitch operation
in:
xbc – xbytecode
pc – current pc
regs – registers
rtenv – runtime environment
out:
Sets the according target offset. It returns always "none"

JNukeRBCInstruction_extractContentType

JNukeObj * extractContentType (const char *arrayType, int dim, JNukeObj
* classPool)

For instance: [[[[LMyClass; —> MyClass

JNukeRBCInstruction_getClass

JNukeObj * getClass (JNukeObj * classPool, JNukeObj * classString)

Finds the JNukeClass instance that fits to the class string
in:
class – (UCSString)

out:
JNukeClass instance (NULL if failed)

JNukeRBCInstruction_getJavaLangString

void getJavaLangString (JNukeRegister regs[], int resReg, int cur_pc,
JNukeObj * string, JNukeObj * rtenv)

Returns a java.lang.String according to the declared UCSString. If the string has been
used in the Java program yet, the string is taken from a pool. Otherwise, a new instance
of java/lang/String is created and delivered.

JNukeRBCInstruction_gotoExceptionHandler

void gotoExceptionHandler (void *exception, int *pc, JNukeObj * issuer_method,
JNukeObj * rtenv)

Finds an exception handler. If such a handler could be found the runtime environment
is set to that point. If a handler could not be found in the current method exitMethod()
is performed until a handler could be found. If the top level is reached and no handler
was found the exception is printed out such as any VM it does.

90 APPENDIX A. API DOCUMENTATION

JNukeRBCInstruction_isSuper

int isSuper (JNukeObj * super, JNukeObj * sub, JNukeObj * classPool)

Tests whether super is supertype of sub

A.9 JNukeRLCAnalyzer

JNukeRLCAnalyzer implements a reverse lock chain analyzer which detects lock-cycle
deadlocks. This class is either used on top of ExitBlock or ExitBlock-RW.

JNukeRLCAnalyzer_init

void init (JNukeObj * this, JNukeObj * rtenv, JNukeObj * exitBlock)

in:
rtenv – reference to the runtime environment
exitBlock – reference to the exit block scheduler

JNukeRLCAnalyzer_new

JNukeObj * new (JNukeMem * mem)

JNukeRLCAnalyzer_setLog

void setLog (JNukeObj * this, FILE * log)

Sets the file stream used for logging.

A.10 JNukeRRScheduler

JNukeRRScheduler is a basic scheduler scheduling threads in a round-robin order. It
grants each thread a fixed time slice.

JNukeRRScheduler_enableTracking

void enableTracking (JNukeObj * this)

Enables the tracking of context switches. Each thread context switch will be written to
a log which can be retrieved with getSchedule.

JNukeRRScheduler_getSchedule

JNukeObj * getSchedule (const JNukeObj * this)

Returns the schedule (JNukeSchedule) which contains a complete history of thread
context switches.

A.11. JNUKERUNTIMEENVIRONMENT 91

JNukeRRScheduler_init

void init (JNukeObj * this, int maxTTL, JNukeObj * rtenv)

Initializes the the scheduler. Method init() registers the scheduler as a listener of the
declared runtime environment. Further, init() registers a thread state changed listener.
This enables the scheduler to schedule another thread if the current thread comes to an
end.
in:
maxTTL – maximum time to live for a running thread
rtenv – JNukeRuntimeEnvironment

JNukeRRScheduler_new

JNukeObj * new (JNukeMem * mem)

JNukeRRScheduler_setLog

void setLog (JNukeObj * this, FILE * log)

Sets the log file stream.

A.11 JNukeRuntimeEnvironment

JNukeRuntimeEnvironment holds the runtime environment and drives the execution of
register byte code in an execution loop.

JNukeRuntimeEnvironment_addJavaString

void addJavaString (JNukeObj * this, JNukeObj * string, void *javaString)

Adds a java string into internal pool of java strings.
in:
string – UCSString
javaString – reference to the corresponding java/lang/String object

JNukeRuntimeEnvironment_addOnExecuteListener

void addOnExecuteListener (JNukeObj * this, int bc_mask, JNukeObj * listenerObj,
JNukeExecutionListener (l))

Registers a listener for a declared set of bytecodes. The listener is notified when such
a byte code is scheduled to execute. bc_mask is a bit mask of RBC_xyz_mask values.
Note that it is possible to install different listeners for different byte codes.
in:
bc_mask – bitmask of RBC_xyz_mask
l – listener

92 APPENDIX A. API DOCUMENTATION

JNukeRuntimeEnvironment_addOnExecutedListener

void addOnExecutedListener (JNukeObj * this, int bc_mask, JNukeObj *
listenerObj, JNukeExecutionListener (l))

Registers a listener for a declared set of bytecodes. The listener is notified after execu-
tion of such a byte code. bc_mask is a bit mask of RBC_xyz_mask values.
in:
bc_mask – bitmask of RBC_xyz_mask
l – listener

JNukeRuntimeEnvironment_addThreadStateListener

void addThreadStateListener (JNukeObj * this, JNukeObj * listenerObj,
JNukeThreadStateChangedListener (l))

Registers a listener that get notified when the current running thread changes its thread
state. This happens if the current thread has executed wait or join. Also this happens if
the current thread could not obtain a lock or has even died.
in:
l – listener

JNukeRuntimeEnvironment_createThread

JNukeObj * createThread (JNukeObj * this)

Creates a JNuke thread and memorize the thread in the list of threads.
out:
Retruns the reference to the therad (JNukeThread).

JNukeRuntimeEnvironment_exitMethod

int exitMethod (JNukeObj * this)

Returns from the current method to the caller method and re-loads the context of the
caller. Returns 1 if there is a caller method. Otherwise, 0.

JNukeRuntimeEnvironment_findJavaString

void * findJavaString (JNukeObj * this, JNukeObj * string)

Finds a java string in the pool of java strings.
in:
string – UCSString
out:
Returns a reference to the corresponding java/lang/String object.

A.11. JNUKERUNTIMEENVIRONMENT 93

JNukeRuntimeEnvironment_getClassPool

JNukeObj * getClassPool (JNukeObj * this)

Returns the class pool.

JNukeRuntimeEnvironment_getCounter

int getCounter (JNukeObj * this)

Returns the total number of executed byte codes.

JNukeRuntimeEnvironment_getCurrentLineNumber

int getCurrentLineNumber (const JNukeObj * this)

Returns the current line number of the executed target program.

JNukeRuntimeEnvironment_getCurrentMethod

JNukeObj * getCurrentMethod (const JNukeObj * this)

Returns current method.

JNukeRuntimeEnvironment_getCurrentRegisters

JNukeRegister * getCurrentRegisters (JNukeObj * this, int *maxStack)

Returns the current register set.

JNukeRuntimeEnvironment_getCurrentThread

JNukeObj * getCurrentThread (JNukeObj * this)

Returns the currently running thread.

JNukeRuntimeEnvironment_getErrorLog

FILE * getErrorLog (const JNukeObj * this)

Returns the error log stream.

JNukeRuntimeEnvironment_getHeapManager

JNukeObj * getHeapManager (JNukeObj * this)

Returns the heap manager .

JNukeRuntimeEnvironment_getLockManager

JNukeObj * getLockManager (const JNukeObj * this)

Returns the reference to the lock manager.

94 APPENDIX A. API DOCUMENTATION

JNukeRuntimeEnvironment_getLog

FILE * getLog (const JNukeObj * this)

Returns the log stream.

JNukeRuntimeEnvironment_getNumberOfByteCodes

int getNumberOfByteCodes (JNukeObj * this)

Returns the number of byte codes of the current method.

JNukeRuntimeEnvironment_getPC

int getPC (const JNukeObj * this)

Returns the program counter.

JNukeRuntimeEnvironment_getThreads

JNukeObj * getThreads (const JNukeObj * this)

Returns a vector of existing threads.

JNukeRuntimeEnvironment_getVMState

void getVMState (JNukeObj * this, JNukeObj * vmstate)

Writes the current state of the virtual machine into the second argument that has to be
a valid instance of JNukeVMState (see vmstate.c).

JNukeRuntimeEnvironment_getWaitSetManager

JNukeObj * getWaitSetManager (JNukeObj * this)

Returns the wait set manager.

JNukeRuntimeEnvironment_init

int init (JNukeObj * this, JNukeObj * heapMgr, JNukeObj * classPool)

Sets up the environment. Must be called after creation of an environment. init() creates
the main thread, executes any <clinit> methods, and looks up for a main method. If a
main method could be found this method is set as the current method. Otherwise, the
init() fails and returns zero. The user may call run() after this to start the previously
found main() method.

JNukeRuntimeEnvironment_interrupt

void interrupt (JNukeObj * this)

Interrupts the excution loop immediately.

A.11. JNUKERUNTIMEENVIRONMENT 95

JNukeRuntimeEnvironment_loadDefaultClasses

int loadDefaultClasses (JNukeObj * this, JNukeObj * classPool, const
char *classpath)

This method loads some default classes which are used to print out boolean values such
that test cases are at least able to print success or failure behaviour.

JNukeRuntimeEnvironment_loadUserClasses

int loadUserClasses (JNukeObj * this, JNukeObj * classPool, const char
*classpath, int n, const char **extraClasses)

Loads user classes given as argument.
in:
classPool – reference to the class pool.
classpath – path to the user classes
n – number of extra user classes to load
extraClasses – array of additional user classes to load (absolut paths)

JNukeRuntimeEnvironment_new

JNukeObj * new (JNukeMem * mem)

JNukeRuntimeEnvironment_removeMilestone

int removeMilestone (JNukeObj * this)

Removes the last milestone.

JNukeRuntimeEnvironment_rollback

int rollback (JNukeObj * this)

Backs up the last stored state of the virtual machine.

JNukeRuntimeEnvironment_run

int run (JNukeObj * this)

Executes the current method from current PC. One usually has to call init() or set-
Method() prior to call run(). Otherwise, an assertion is thrown since no byte code is to
execute.

JNukeRuntimeEnvironment_setErrorLog

void setErrorLog (JNukeObj * this, FILE * file)

Sets the error log stream.
in:
file – file stream

96 APPENDIX A. API DOCUMENTATION

JNukeRuntimeEnvironment_setLog

void setLog (JNukeObj * this, FILE * file)

Sets the log stream.
in:
file – file stream

JNukeRuntimeEnvironment_setMethod

JNukeObj * setMethod (JNukeObj * this, JNukeObj * method)

Sets declared method as the current method. Returns a new stack frame used for this
method.

JNukeRuntimeEnvironment_setMilestone

void setMilestone (JNukeObj * this)

Sets a milestone which saves the whole state of the virtual machine.

JNukeRuntimeEnvironment_setPC

void setPC (JNukeObj * this, int pc)

Sets the program counter manually.

JNukeRuntimeEnvironment_setScheduler

void setScheduler (JNukeObj * this, JNukeObj * scheduler)

Sets the scheduler.

JNukeRuntimeEnvironment_switchThread

void switchThread (JNukeObj * this, JNukeObj * nextThread)

Safes the context and performs a thread context switch.
in:
nextThread – Thread instance switch to

A.12 JNukeSchedule

JNukeSchedule is a container recording thread switches during execution used for later
replay or further analysis. JNukeRRScheduler and JNukeExitBlock use this class for
this purpose.

A.13. JNUKESTACKFRAME 97

JNukeSchedule_append

void append (JNukeObj * this, JNukeObj * vmstate, JNukeObj * next_thread)

Appends a new context switch according the arguments.
in:
vmstate – a valid reference to a vmstate (see rtenv.c and vmstate.c)
next_thread – depicts the next thread that is going to be scheduled

JNukeSchedule_clear

void clear (JNukeObj * this)

Clears the history.

JNukeSchedule_concat

void concat (JNukeObj * this, JNukeObj * sched)

Concats two schedules where entries of the second schedule are copyied.

JNukeSchedule_count

int count (const JNukeObj * this)

Returns the number of schedule entries.

JNukeSchedule_get

JNukeContextSwitchInfo * get (const JNukeObj * this, int index)

Returns the schedule entry at given index.

JNukeSchedule_getHistory

JNukeIterator getHistory (const JNukeObj * this)

Returns an iterator to the list of context switches.

JNukeSchedule_new

JNukeObj * new (JNukeMem * mem)

A.13 JNukeStackFrame

JNukeStackFrame holds the register set of the according method context.

JNukeStackFrame_decRefCounter

int decRefCounter (JNukeObj * this)

Decrements the reference counter.

98 APPENDIX A. API DOCUMENTATION

JNukeStackFrame_getMaxLocals

int getMaxLocals (const JNukeObj * this)

Returns the number of local variables in the method of this stackframe.

JNukeStackFrame_getMaxStack

int getMaxStack (const JNukeObj * this)

Returns the maximum stack height which corresponds to the number of registers.

JNukeStackFrame_getMethodDesc

JNukeObj * getMethodDesc (const JNukeObj * this)

Returns the method descriptor.

JNukeStackFrame_getMonitorLock

JNukeObj * getMonitorLock (const JNukeObj * this)

If the method of this stackframe is a synchronized method, getMonitorLock returns the
corresponding lock.

JNukeStackFrame_getRefCounter

int getRefCounter (const JNukeObj * this)

Returns the reference counter.

JNukeStackFrame_getRegisters

JNukeRegister * getRegisters (const JNukeObj * this)

Returns the register set.

JNukeStackFrame_getResultRegister

void getResultRegister (JNukeObj * this, int *resReg, int *resLen)

Returns the result register and its length.

JNukeStackFrame_getReturnPoint

int getReturnPoint (const JNukeObj * this)

Returns the return point. Returns -1 iff no return point is defined.

JNukeStackFrame_new

JNukeObj * new (JNukeMem * mem)

A.14. JNUKETHREAD 99

JNukeStackFrame_removeMilestone

int removeMilestone (JNukeObj * this)

Removes the last milestone.

JNukeStackFrame_rollback

int rollback (JNukeObj * this)

Backs up a stackframe state. Returns 1 if there was at least one milestone remaining.
Otherwise, rollback() returns with 0.

JNukeStackFrame_setMethodDesc

void setMethodDesc (JNukeObj * this, JNukeObj * methoddesc)

Sets the method description. The register set is created according the number of regis-
ters and locals from the descriptor.

JNukeStackFrame_setMilestone

void setMilestone (JNukeObj * this)

Sets a milestone at the current stack frame. The register set is cloned and copyied to
the stack.

JNukeStackFrame_setMonitorLock

void setMonitorLock (JNukeObj * this, JNukeObj * lock)

Sets the monitor lock, called when the virtual machine enters a synchronized method.

JNukeStackFrame_setResultRegister

void setResultRegister (JNukeObj * this, int resReg, int resLen)

Sets the result register and its length.

JNukeStackFrame_setReturnPoint

void setReturnPoint (JNukeObj * this, int rp)

Sets the return point.

A.14 JNukeThread

JNukeThread stores information about the state of a Java thread (call stack, flags, etc.).
Each Java thread is assigned to one JNukeThread instance.

JNukeThread_addLock

void addLock (JNukeObj * this, JNukeObj * lock)

Adds a lock.

100 APPENDIX A. API DOCUMENTATION

JNukeThread_canReacquireLocks

int canReacquireLocks (JNukeObj * this)

If a thread sleeps because of an invocation of wait(), the thread has to check whether it
is able to reacquire its locks. This method returns 1 if this is possible. Otherwise, the
result is 0 which means that the current thread has to go to sleep again.

JNukeThread_createStackFrame

JNukeObj * createStackFrame (JNukeObj * this, JNukeObj * method)

Creates a new stack frame on top of the call stack. Returns the stack frame.

JNukeThread_decLockCounter

int decLockCounter (JNukeObj * this)

Decrements the lock counter.

JNukeThread_getCurrentMethod

JNukeObj * getCurrentMethod (const JNukeObj * this)

Returns the method of the top stack frame.

JNukeThread_getCurrentRegisters

JNukeRegister * getCurrentRegisters (const JNukeObj * this)

Returns a reference to the current register set.

JNukeThread_getCurrentStackFrame

JNukeObj * getCurrentStackFrame (const JNukeObj * this)

Returns the top stack frame.

JNukeThread_getJavaThread

void * getJavaThread (const JNukeObj * this)

Returns the memory reference to the real Java instance of java/lang/Thread.

JNukeThread_getLastHeldLock

JNukeObj * getLastHeldLock (const JNukeObj * this)

Returns the last lock held.

JNukeThread_getLocks

JNukeIterator getLocks (const JNukeObj * this)

Returns a vector of locks owned by this thread.

A.14. JNUKETHREAD 101

JNukeThread_getNumberOfLocks

int getNumberOfLocks (const JNukeObj * this)

Returns the number of locks owned by this thread.

JNukeThread_getPC

int getPC (const JNukeObj * this)

Returns the current program counter of this thread.

JNukeThread_getPos

int getPos (const JNukeObj * this)

Returns the position of this thread in the runtime environement’s thread vector.

JNukeThread_getStackLevel

int getStackLevel (const JNukeObj * this)

Returns the height of the call stack.

JNukeThread_incLockCounter

int incLockCounter (JNukeObj * this)

Increments the number of locks owned by this thread.

JNukeThread_interrupt

void interrupt (JNukeObj * this)

Interrupts a thread. The interrupt flag is set to true. If another thread has joined this
thread InterruptedException is thrown.

JNukeThread_isAlive

int isAlive (const JNukeObj * this)

Says whether the thread is alive.

JNukeThread_isInterrupted

int isInterrupted (const JNukeObj * this, int clearFlag)

Says whether the thread has been interrupted.

JNukeThread_isReadyToRun

int isReadyToRun (const JNukeObj * this)

Returns the value of the flag readyToRun.

102 APPENDIX A. API DOCUMENTATION

JNukeThread_isWaiting

int isWaiting (const JNukeObj * this)

Returns the value of the flag waiting.

JNukeThread_isYielded

int isYielded (const JNukeObj * this, int clearFlag)

Returns 1 if the current thread is yielded. Otherwise, 0.

JNukeThread_join

void join (JNukeObj * this, JNukeObj * thread)

Adds a thread to the join list of this thread.

JNukeThread_new

JNukeObj * new (JNukeMem * mem)

JNukeThread_pendingInterruptedException

int pendingInterruptedException (const JNukeObj * this, int clear)

Returns 1, if the current thread has to handle a InterruptedException. A sleeping thread
that has invoked either join or wait, has to check this after being rescheduled.

JNukeThread_popStackFrame

JNukeObj * popStackFrame (JNukeObj * this)

Removes the top stackframe and returns the pointer to this stackframe.

JNukeThread_reacquireLocks

int reacquireLocks (JNukeObj * this)

Has to be called prior to schedule a thread in order that locks that need to be locked can
be acquired again. If the locks could be acquired the result is 1. Otherwise, the result
is 0 and the thread is put back to the wait set of this lock.

JNukeThread_removeLock

void removeLock (JNukeObj * this, JNukeObj * lock)

Removes a lock from the thread’s lock list.

JNukeThread_removeMilestone

int removeMilestone (JNukeObj * this)

Removes the last milestone.

A.14. JNUKETHREAD 103

JNukeThread_rollback

int rollback (JNukeObj * this)

Backs up the the thread state. If there is at least one milestone this method returns with
1. Otherwise, 0.

JNukeThread_setAlive

void setAlive (JNukeObj * this, int alive)

Sets the flag alive. If the flag is set to 0 all joined threads are woken up.

JNukeThread_setJavaThread

void setJavaThread (JNukeObj * this, void *thread)

Assigns this thread a real Java thread instance.

JNukeThread_setJoining

void setJoining (JNukeObj * this)

Sets the flag joining to true.

JNukeThread_setMilestone

void setMilestone (JNukeObj * this)

Sets a milestone for this thread and for each stackframe which belongs to this thread.

JNukeThread_setPC

void setPC (JNukeObj * this, int pc)

Sets the current program counter.

JNukeThread_setPos

void setPos (JNukeObj * this, int pos)

The runtime environment keeps a vector of threads. The position in this vector is
unique. Method setPos is called by the runtime environment in order to inform the
thread about its position in this vector. This position can be used as thread identifier.

JNukeThread_setReadyToRun

void setReadyToRun (JNukeObj * this, int readyToRun)

Sets this thread readyToRun. Usually, this succeeds and the return value 1. However,
if the thread is sleeping and is not able to relock its locks the method returns with 0 and
the thread is not set ready to run.

104 APPENDIX A. API DOCUMENTATION

JNukeThread_setRuntimeEnvironment

void setRuntimeEnvironment (JNukeObj * this, JNukeObj * renv)

Sets the runtime environment.

JNukeThread_setWaiting

void setWaiting (JNukeObj * this, void *object, int n)

Sets this thread waiting.
in:
object – object on which wait() was performed.
n – number of times the object lock was acquired.

JNukeThread_yield

void yield (const JNukeObj * this)

Yields a thread, which means, that the current thread gives other threads the chance to
run.

A.15 JNukeVirtualTable

JNukeVirtualTable contains a table with method descriptors and references to the ac-
tual implementations. Each Java class has a JNukeVirtualTable assigned to its instance
descriptor (JNukeInstanceDesc). Class JNukeVirtualTable provides methods for reso-
lution of virtual, static, and special methods.

JNukeVirtualTable_build

void build (JNukeObj * this, JNukeObj * class, JNukeObj * clPool)

Builds a virtual table out of the declared class. Called once for each class.
in:
class – (JNukeClass)

JNukeVirtualTable_finalize

void finalize (JNukeObj * this, JNukeObj * vtables)

Completes the vtable by inserting each method of any super vtables into the local
method map
in:
vtables – Vector of all existing vtables

A.15. JNUKEVIRTUALTABLE 105

JNukeVirtualTable_findSpecial

JNukeObj * findSpecial (const JNukeObj * this, JNukeObj * func, int *isNative)

Find a special method by its complete signature.
in:
func – the method desriptor

out:
A pointer to JNukeMethod that points to the according method
If no corresponding method could be found the method fails. That
means NULL is returned

JNukeVirtualTable_findSpecialByName

JNukeObj * findSpecialByName (const JNukeObj * this, const char *class_name,
const char *method_name, const char *signature, int *native)

Finds a special method described by a class name, method name, and a signature. This
method is used if no method descriptor is available.
in:
class_name – char buffer
method_name – char buffer
signature – char buffer

out:
Returns a pointer to JNukeMethod that points to the according method
If no corresponding method could be found the method fails. That
means NULL is returned

JNukeVirtualTable_findVirtual

JNukeObj * findVirtual (const JNukeObj * this, JNukeObj * func, int *isNative)

Finds a virtual machine by its complete signature.
in:
func – the method descriptor

out:
Returns a pointer to JNukeMethod that points to the according method
If no corresponding method could be found the method fails. That
means NULL is returned.

JNukeVirtualTable_findVirtualByName

JNukeObj * findVirtualByName (const JNukeObj * this, const char *method_name,
const char *signature, int *native)

Finds a virtual method described by a method name and a signature. This method is
used if no method descriptor is available.

106 APPENDIX A. API DOCUMENTATION

in:
method_name – char buffer
signature – char buffer

out:
Returns a pointer to JNukeMethod that points to the according method
If no corresponding method could be found the method fails. That
means NULL is returned

JNukeVirtualTable_getClass

JNukeObj * getClass (const JNukeObj * this)

Returns the class description assigned with this virtual table.

JNukeVirtualTable_getMethods

JNukeObj * getMethods (const JNukeObj * this)

Returns the map of methods.

JNukeVirtualTable_new

JNukeObj * new (JNukeMem * mem)

A.16 JNukeVMState

This class holds a snapshot of the state of the VM. At the moment, this is the current
method, program counter, and the current line. This class can be extended (or sub-
classed) if necessary (current register set, current set of threads, ...). A JNukeVMState
instance may be used for storing historical VM states for logging or reporting of inter-
esting states.

Usage

Creation of a snapshot of the current VM:

vmstate = JNukeVMState_new (this->mem);
JNukeVMState_snapshot (vmstate, rtenv);

JNukeVMState_getCounter

int getCounter (const JNukeObj * this)

Returns the byte code counter

A.16. JNUKEVMSTATE 107

JNukeVMState_getCurrentThreadId

int getCurrentThreadId (const JNukeObj * this)

Returns the id of the current thread

JNukeVMState_getLineNumber

int getLineNumber (const JNukeObj * this)

Returns the line number

JNukeVMState_getMethod

JNukeObj * getMethod (const JNukeObj * this)

Returns the method that was being executed at the time when the snapshot was taken.

JNukeVMState_getPC

int getPC (const JNukeObj * this)

Returns the program counter

JNukeVMState_new

JNukeObj * new (JNukeMem * mem)

JNukeVMState_setCounter

void setCounter (JNukeObj * this, int counter)

Sets the byte code counter

JNukeVMState_setCurrentThreadId

void setCurrentThreadId (JNukeObj * this, int threadId)

Sets the id of the current thread

JNukeVMState_setLineNumber

void setLineNumber (JNukeObj * this, int lineNumber)

Sets the line number

JNukeVMState_setMethod

void setMethod (JNukeObj * this, JNukeObj * method)

Sets the method of this vmstate.

108 APPENDIX A. API DOCUMENTATION

JNukeVMState_setPC

void setPC (JNukeObj * this, int pc)

Sets the program counter

JNukeVMState_snapshot

void snapshot (JNukeObj * this, JNukeObj * rtenv)

Takes a snapshot of the current runtime environment

A.17 JNukeWaitList

Each Java instance is assigned to a wait list. Threads that call wait on an instance are
inserted into the wait list of the instance. A thread in a wait list lies dormant until it is
either awakened by notify or notifyAll.

JNukeWaitList_count

int count (JNukeObj * this)

Removes the number of thread in the wait list.

JNukeWaitList_insert

void insert (JNukeObj * this, JNukeObj * thread)

Inserts a thread into the wait list (and sets the readyToRun flag to 0)

JNukeWaitList_new

JNukeObj * new (JNukeMem * mem)

JNukeWaitList_removeMilestone

void removeMilestone (JNukeObj * this)

Removes the last milestone.

JNukeWaitList_resumeAll

void resumeAll (JNukeObj * this)

Wakes all threads in the wait list up (which means that they become ready to run).
Threads woken up are removed from the wait list.

JNukeWaitList_resumeNext

JNukeObj * resumeNext (JNukeObj * this)

Wakes up the thread sleeping for the longest time

A.18. JNUKEWAITSETMANAGER 109

JNukeWaitList_rollback

void rollback (JNukeObj * this)

Backs up the last state of the wait list.

JNukeWaitList_setMilestone

void setMilestone (JNukeObj * this)

Sets a milestone.

A.18 JNukeWaitsetManager

Class JNukeWaitsetManager manages all wait lists. Its interface provides among other
things the three methods wait, notify, and notifyAll.

JNukeWaitSetManager_new

JNukeObj * new (JNukeMem * mem)

JNukeWaitSetManager_notify

JNukeObj * notify (void *object)

Wakes up the next sleeping thread from the wait list assigned to this object

JNukeWaitSetManager_notifyAll

void notifyAll (void *object)

Awakens all sleeping threads that are in the wait set assigned to this object.

JNukeWaitSetManager_removeMilestone

void removeMilestone (JNukeObj * this)

Removes the last milestone.

JNukeWaitSetManager_rollback

void rollback (JNukeObj * this)

Backs up to the last state of the wait set manager.

JNukeWaitSetManager_setMilestone

void setMilestone (JNukeObj * this)

Sets a milestone.

110 APPENDIX A. API DOCUMENTATION

JNukeWaitSetManager_wait

int wait (JNukeObj * this, void *object, JNukeObj * thread)

Performs a wait operations. This means that the current thread releases the object
lock completely and is going to sleep in the wait queue. If the this thread is not the
owner of the lock, which is illegal according the Java spec, this method returns with 0.
Otherwise, 1.

Appendix B

Code Examples

B.1 JNukeHeapManagerActionEvent

Listing B.1 : The struct JNukeHeapManagerActionEvent

struct JNukeHeapManagerActionEvent
{
/** the heap manager that has issued this event */
JNukeObj *issuer;

/** base pointer to the instance */
void *instance;

/** the offset to the field. addr = instance + offset */
int offset;

/** size of the field (4 or 8 bytes) */
int size;

/** reference to the instance descriptor */
JNukeObj *instanceDesc;

/** name of the class. NULL for arrays */
JNukeObj *class;

/** name of the field. NULL for arrays */
JNukeObj *field;

};

B.2 MethodInvocation

Listing B.2 : MethodInvocation.java: performs many method invocations

class MethodInvocation {
int foo0(int i) { return i + 1; }
int foo1(int i) { return i + 1; }
int foo2(int i) { return i + 1; }
int foo3(int i) { return i + 1; }
...
int foo499(int i) { return i + 1; }

111

112 APPENDIX B. CODE EXAMPLES

public static void main(String[] args) {
Test7 t = new Test7();
int j = 0;
int i;

for (i=0; i<4000; i++)
{
j += t.foo0(i);
j += t.foo1(i);
...
j += t.foo499(i);

}
}

}

B.3 ReadManyFields

Listing B.3 : ReadManyFields.java: performs read and write field accesses

class ReadManyFields {
static long a;
static long a1;
static long a2;
...
static long a5000;

public static void main(String[] args) {
for (int i=0; i<200; i++)
{
a = a + 4;
a1 = a1 + 4;
a2 = a2 + 4;
...
a5000 = a5000 + 4;

}
}

}

B.4 Iteration

Listing B.4 : Iteration.java: a loop with 100’000’000 iterations

int i;
for (i = 0; i < 100000000; i++)
{
}

B.5. ARRAY 113

B.5 Array

Listing B.5 : Array.java: iteration over an array of 10’000’000 elements

int i,j;
int a[] = new int[10000000];

for (j=0; j < 10; j++)
{
for (i=0; i < 10000000; i++)
{
a[i] = i + j;

}
}

B.6 MultiArray

Listing B.6 : MultiArray1.java: iteration of a six dimensional array
int a,b,c,d,e,f;
int array[][][][][][] = new int[10][10][10][10][10][10];

for (a=0; a < 10; a++) {
for (b=0; b < 10; b++) {
for (c=0; c < 10; c++) {
for (d=0; d < 10; d++) {
for (e=0; e < 10; e++) {
for (f=0; f < 10; f++) {
array[a][b][c][d][e][f] = a + b + c + d + e + f;

}
}

}
}

}
}

B.7 DoubleOp

Listing B.7 : DoubleOp.java: double operations performed in a loop

public class DoubleOp {
double a,b,c,d,e,f;

void go() {
int i;

for (i=0; i < 1000000 * 2; i++) {
a = i * 0.002 + c;
b = (float) a * (float) 2.0;
c = (b - a - b) * i;
d = b + a;
e = 3.141 * d + a + b;
f = 0.0;

}
}

public static void main(String[] args) {

114 APPENDIX B. CODE EXAMPLES

Test8 test = new Test8();
test.go();

}

}

B.8 BubbleSort

Listing B.8 : BubbleSort.java: an example implementation of bubble sort.

class BubbleSort {

public static void main(String[] args) {
int max = 10000;
int i, j, t, n = max - 1;
boolean s = false;
int[] a = new int[max];

for (i = 0; i < max; i++)
{
a[i] = max - i;

}

for (i = 0; i < n; i++)
{
s = false;
for (j=n; j>i; j--)
{
if (a[j] < a[j-1])
{
t = a[j];
a[j] = a[j-1];
a[j-1] = t;
s = true;

}
}

if (!s)
break;

}

boolean res = true;
for (i = 0; i < max; i++)
{

res = res && a[i] == i + 1;
}

System.out.println(res);
}

}

B.9. JASPA 115

B.9 JASPA

Listing B.9 : MccaJaspa.java: Jaspa benchmark with matrix mcca

public class MccaJaspa{
public static final double CPU_MIN = 2.0;

public static void main (String[] args) throws Exception
{

int nrun, nz, n;
long endTime;
long startTime = 0;
int[] irn;
int[] jcn;
double[] val;

n = 180;
nz = 2659;
irn = irn_values;
jcn = jcn_values;
val = new double[nz];
for (int j = 0; j < nz; j++) {

val[j] = 1.0;
}

int[] ia = new int[n+2]; //extra space for FORTRAN style
int[] ja = new int[nz+1]; //extra space for FORTRAN style
double[] a = new double[nz+1]; //extra space for FORTRAN style
ijval2csr(n,nz,irn,jcn,val,ia,ja,a);
int m = n;

int nz1;
double[] c;
for (nrun = 1;;nrun++){
nz1 = spmatmul_size(n, m, ia,ja, ia, ja);

// allocate space for the multiplication
int[] ic = new int[n+2]; //extra space for FORTRAN style
int[] jc = new int[nz1+1]; //extra space for FORTRAN style
c = new double[nz1+1]; //extra space for FORTRAN style
spmatmul_double(n,m,a,ia,ja,a,ia,ja,c,ic,jc);
if (nrun > 100) break;
}

// check the answer: average entry value
double avg = 0;
for (int j = 1; j <= nz1; j++) {
avg = avg + c[j];
}

}//end main

public static void ijval2csr(int n, int nz,
int[] irn, int[] jcn, double[] val,
int[] ia, int[] ja, double[] a) {

int i,ii,jj;

// convert to compact sparse row format
int[] nrow = new int[n+2];//extra space for FORTRAN style

for (i = 1; i <= n+1; i++) {
nrow[i] = 0;

116 APPENDIX B. CODE EXAMPLES

}
for (i = 0; i < nz; i++) {

nrow[irn[i]] = nrow[irn[i]] + 1;
}

ia[1] = 1;// [1]: fortran style
for (i = 1; i <= n; i++) {

ia[i+1] = ia[i] + nrow[i];
}

for (i = 1; i <= n+1; i++) {
nrow[i] = ia[i];

}

for (i = 0; i < nz; i++) {
ii = irn[i];
jj = jcn[i];
ja[nrow[ii]] = jj;
a[nrow[ii]] = val[i];
nrow[ii] = nrow[ii] + 1;

}
}//end method ijval2csr

static int spmatmul_size(int n, int m,
int[] ia,int[] ja,
int[] ib,int[] jb)

{
int i,j,k,nz,icol_add;

int[] mask = new int[m+1]; //m=1 rather than m: fortran style

for (i = 1; i <= m; i++) mask[i] = -1; // start from 1: fortran style

nz = 0;

for (i = 1; i <= n; i++) // fortran style
{
for (j = ia[i]; j < ia[i+1]; j++)

{
int neigh = ja[j];
for (k = ib[neigh]; k < ib[neigh+1]; k++)

{
icol_add = jb[k];
if (mask[icol_add] != i)

{
nz++;
mask[icol_add] = i; // add mask
}

}
}

}

return nz;
}

static void spmatmul_double(
int n, int m,

B.9. JASPA 117

double[] a, int[] ia,int[] ja,
double[] b, int[] ib,int[] jb,
double[] c, int[] ic,int[] jc)

{
int nz;
int i,j,k,l,icol,icol_add;
double aij;
int neighbour;

int[] mask = new int[m+1]; // extra space for FORTRAN like array indexing

for (l = 1; l <= m; l++) mask[l] = 0; // starting from one for FORTRAN like array index

ic[0] = 1;
nz = 0;
for (i = 1; i <= n; i++) { // starting from one for FORTRAN like array index

for (j = ia[i]; j < ia[i+1]; j++){
neighbour = ja[j];
aij = a[j];
for (k = ib[neighbour]; k < ib[neighbour+1]; k++){

icol_add = jb[k];
icol = mask[icol_add];
if (icol == 0) {
jc[++nz] = icol_add;
c[nz] = aij*b[k];
mask[icol_add] = nz;
}
else {
c[icol] += aij*b[k];
}

}
}
for (j = ic[i]; j < nz + 1; j++) mask[jc[j]] = 0;
ic[i+1] = nz+1;

}

}

static int spmatmul_flops(int n, int m,
int[] ia,int[] ja,
int[] ib,int[] jb)

{
int i,j,k,nz,icol_add,flops;

int[] mask = new int[m+1]; //m=1 rather than m: fortran style

for (i = 1; i <= m; i++) mask[i] = -1; // start from 1: fortran style

nz = 0;
flops = 0;

for (i = 1; i <= n; i++) // fortran style
{
for (j = ia[i]; j < ia[i+1]; j++)

{
int neigh = ja[j];
for (k = ib[neigh]; k < ib[neigh+1]; k++)

{

118 APPENDIX B. CODE EXAMPLES

icol_add = jb[k];
flops += 2;
if (mask[icol_add] != i)

{
nz++;
mask[icol_add] = i; // add mask
}

}
}

}
flops += nz;
return flops;
}

static int jcn_values[] = { ... }; /* input data */

static int irn_values[] = { ... }; /* input data */
}//end Spmatmul class

B.10 JGFCrypt

Listing B.10 : JGFCryptBenchSizeA.java: main class

/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

public class JGFCryptBenchSizeA{

public static int nthreads;

public static void main(String argv[]){

nthreads = 2;

JGFCryptBench cb = new JGFCryptBench(nthreads);
cb.JGFrun(0);

}
}

B.10. JGFCRYPT 119

Listing B.11 : JGFCryptBench.java: benchmark driver

/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

public class JGFCryptBench extends IDEATest {

private int size;
private int datasizes[]={3000000,20000000,50000000};
public static int nthreads;

public JGFCryptBench(int nthreads)
{
this.nthreads=nthreads;
}

public void JGFsetsize(int size){
this.size = size;

}

public void JGFinitialise(){
array_rows = datasizes[size];
buildTestData();

}

public void JGFkernel(){
Do();

}

public void JGFvalidate(){
boolean error;

error = false;
for (int i = 0; i < array_rows; i++){
error = (plain1 [i] != plain2 [i]);
if (error){

System.out.println("Validation failed");
System.out.println("Original Byte " + i + " = " + plain1[i]);
System.out.println("Encrypted Byte " + i + " = " + crypt1[i]);
System.out.println("Decrypted Byte " + i + " = " + plain2[i]);
//break;
}

}
}

120 APPENDIX B. CODE EXAMPLES

public void JGFtidyup(){
freeTestData();

}

public void JGFrun(int size){

JGFsetsize(size);
JGFinitialise();
JGFkernel();
JGFvalidate();
JGFtidyup();

}
}

Listing B.12 : IDEARunner.java: worker thread

class IDEARunner implements Runnable {

int id,key[];
byte text1[],text2[];

public IDEARunner(int id, byte [] text1, byte [] text2, int [] key) {
this.id = id;
this.text1=text1;
this.text2=text2;
this.key=key;
}

/*
* run()
*
* IDEA encryption/decryption algorithm. It processes plaintext in
* 64-bit blocks, one at a time, breaking the block into four 16-bit
* unsigned subblocks. It goes through eight rounds of processing
* using 6 new subkeys each time, plus four for last step. The source
* text is in array text1, the destination text goes into array text2
* The routine represents 16-bit subblocks and subkeys as type int so
* that they can be treated more easily as unsigned. Multiplication
* modulo 0x10001 interprets a zero sub-block as 0x10000; it must to
* fit in 16 bits.
*/

public void run() {
int ilow, iupper, slice, tslice, ttslice;

tslice = text1.length / 8;
ttslice = (tslice + JGFCryptBench.nthreads-1) / JGFCryptBench.nthreads;
slice = ttslice*8;

ilow = id*slice;
iupper = (id+1)*slice;
if(iupper > text1.length) iupper = text1.length;

int i1 = ilow; // Index into first text array.
int i2 = ilow; // Index into second text array.

B.10. JGFCRYPT 121

int ik; // Index into key array.
int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps.
int r; // Eight rounds of processing.

for (int i =ilow ; i <iupper ; i +=8)
{

ik = 0; // Restart key index.
r = 8; // Eight rounds of processing.

// Load eight plain1 bytes as four 16-bit "unsigned" integers.
// Masking with 0xff prevents sign extension with cast to int.

x1 = text1[i1++] & 0xff; // Build 16-bit x1 from 2 bytes,
x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte first.
x2 = text1[i1++] & 0xff;
x2 |= (text1[i1++] & 0xff) << 8;
x3 = text1[i1++] & 0xff;
x3 |= (text1[i1++] & 0xff) << 8;
x4 = text1[i1++] & 0xff;
x4 |= (text1[i1++] & 0xff) << 8;

do {
// 1) Multiply (modulo 0x10001), 1st text sub-block
// with 1st key sub-block.

x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);

// 2) Add (modulo 0x10000), 2nd text sub-block
// with 2nd key sub-block.

x2 = x2 + key[ik++] & 0xffff;

// 3) Add (modulo 0x10000), 3rd text sub-block
// with 3rd key sub-block.

x3 = x3 + key[ik++] & 0xffff;

// 4) Multiply (modulo 0x10001), 4th text sub-block
// with 4th key sub-block.

x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);

// 5) XOR results from steps 1 and 3.

t2 = x1 ^ x3;

// 6) XOR results from steps 2 and 4.
// Included in step 8.

// 7) Multiply (modulo 0x10001), result of step 5
// with 5th key sub-block.

t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff);

// 8) Add (modulo 0x10000), results of steps 6 and 7.

t1 = t2 + (x2 ^ x4) & 0xffff;

// 9) Multiply (modulo 0x10001), result of step 8
// with 6th key sub-block.

122 APPENDIX B. CODE EXAMPLES

t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff);

// 10) Add (modulo 0x10000), results of steps 7 and 9.

t2 = t1 + t2 & 0xffff;

// 11) XOR results from steps 1 and 9.

x1 ^= t1;

// 14) XOR results from steps 4 and 10. (Out of order).

x4 ^= t2;

// 13) XOR results from steps 2 and 10. (Out of order).

t2 ^= x2;

// 12) XOR results from steps 3 and 9. (Out of order).

x2 = x3 ^ t1;

x3 = t2; // Results of x2 and x3 now swapped.

} while(--r != 0); // Repeats seven more rounds.

// Final output transform (4 steps).

// 1) Multiply (modulo 0x10001), 1st text-block
// with 1st key sub-block.

x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);

// 2) Add (modulo 0x10000), 2nd text sub-block
// with 2nd key sub-block. It says x3, but that is to undo swap
// of subblocks 2 and 3 in 8th processing round.

x3 = x3 + key[ik++] & 0xffff;

// 3) Add (modulo 0x10000), 3rd text sub-block
// with 3rd key sub-block. It says x2, but that is to undo swap
// of subblocks 2 and 3 in 8th processing round.

x2 = x2 + key[ik++] & 0xffff;

// 4) Multiply (modulo 0x10001), 4th text-block
// with 4th key sub-block.

x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);

// Repackage from 16-bit sub-blocks to 8-bit byte array text2.

text2[i2++] = (byte) x1;
text2[i2++] = (byte) (x1 >>> 8);
text2[i2++] = (byte) x3; // x3 and x2 are switched
text2[i2++] = (byte) (x3 >>> 8); // only in name.
text2[i2++] = (byte) x2;
text2[i2++] = (byte) (x2 >>> 8);
text2[i2++] = (byte) x4;
text2[i2++] = (byte) (x4 >>> 8);

} // End for loop.

B.10. JGFCRYPT 123

} // End routine.

} // End of class

Listing B.13 : IDETest.java: IDEA encryption/decryption

/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* Original version of this code by *
* Gabriel Zachmann (zach@igd.fhg.de) *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

/**
* Class IDEATest
*
* This test performs IDEA encryption then decryption. IDEA stands
* for International Data Encryption Algorithm. The test is based
* on code presented in Applied Cryptography by Bruce Schnier,
* which was based on code developed by Xuejia Lai and James L.
* Massey.

**/

import java.util.*;

class IDEATest
{

// Declare class data. Byte buffer plain1 holds the original
// data for encryption, crypt1 holds the encrypted data, and
// plain2 holds the decrypted data, which should match plain1
// byte for byte.

int array_rows;

byte [] plain1; // Buffer for plaintext data.
byte [] crypt1; // Buffer for encrypted data.
byte [] plain2; // Buffer for decrypted data.

124 APPENDIX B. CODE EXAMPLES

short [] userkey; // Key for encryption/decryption.
int [] Z; // Encryption subkey (userkey derived).
int [] DK; // Decryption subkey (userkey derived).

void Do()
{

Runnable thobjects[] = new Runnable [JGFCryptBench.nthreads];
Thread th[] = new Thread [JGFCryptBench.nthreads];

// Encrypt plain1.
for(int i=0;i<JGFCryptBench.nthreads;i++) {

thobjects[i] = new IDEARunner(i,plain1,crypt1,Z);
th[i] = new Thread(thobjects[i]);
th[i].start();

}

// thobjects[0] = new IDEARunner(0,plain1,crypt1,Z);
// thobjects[0].run();

for(int i=0;i<JGFCryptBench.nthreads;i++) {
try {
th[i].join();
}
catch (InterruptedException e) {}

}

// Decrypt.
for(int i=0;i<JGFCryptBench.nthreads;i++) {

thobjects[i] = new IDEARunner(i,crypt1,plain2,DK);
th[i] = new Thread(thobjects[i]);
th[i].start();

}

for(int i=0;i<JGFCryptBench.nthreads;i++) {
try {
th[i].join();
}
catch (InterruptedException e) {}

}

}

/*
* buildTestData
*
* Builds the data used for the test -- each time the test is run.
*/

void buildTestData()
{

// Create three byte arrays that will be used (and reused) for
// encryption/decryption operations.

B.10. JGFCRYPT 125

plain1 = new byte [array_rows];
crypt1 = new byte [array_rows];
plain2 = new byte [array_rows];

Random rndnum = new Random(136506717L); // Create random number generator.

// Allocate three arrays to hold keys: userkey is the 128-bit key.
// Z is the set of 16-bit encryption subkeys derived from userkey,
// while DK is the set of 16-bit decryption subkeys also derived
// from userkey. NOTE: The 16-bit values are stored here in
// 32-bit int arrays so that the values may be used in calculations
// as if they are unsigned. Each 64-bit block of plaintext goes
// through eight processing rounds involving six of the subkeys
// then a final output transform with four of the keys; (8 * 6)
// + 4 = 52 subkeys.

userkey = new short [8]; // User key has 8 16-bit shorts.
Z = new int [52]; // Encryption subkey (user key derived).
DK = new int [52]; // Decryption subkey (user key derived).

// Generate user key randomly; eight 16-bit values in an array.

for (int i = 0; i < 8; i++)
{

// Again, the random number function returns int. Converting
// to a short type preserves the bit pattern in the lower 16
// bits of the int and discards the rest.

userkey[i] = (short) rndnum.nextInt();
}

// Compute encryption and decryption subkeys.

calcEncryptKey();
calcDecryptKey();

// Fill plain1 with "text."
for (int i = 0; i < array_rows; i++)
{
plain1[i] = (byte) i;

// Converting to a byte
// type preserves the bit pattern in the lower 8 bits of the
// int and discards the rest.

}
}

/*
* calcEncryptKey
*
* Builds the 52 16-bit encryption subkeys Z[] from the user key and
* stores in 32-bit int array. The routing corrects an error in the
* source code in the Schnier book. Basically, the sense of the 7-
* and 9-bit shifts are reversed. It still works reversed, but would
* encrypted code would not decrypt with someone else’s IDEA code.
*/

private void calcEncryptKey()
{

int j; // Utility variable.

126 APPENDIX B. CODE EXAMPLES

for (int i = 0; i < 52; i++) // Zero out the 52-int Z array.
Z[i] = 0;

for (int i = 0; i < 8; i++) // First 8 subkeys are userkey itself.
{

Z[i] = userkey[i] & 0xffff; // Convert "unsigned"
// short to int.

}

// Each set of 8 subkeys thereafter is derived from left rotating
// the whole 128-bit key 25 bits to left (once between each set of
// eight keys and then before the last four). Instead of actually
// rotating the whole key, this routine just grabs the 16 bits
// that are 25 bits to the right of the corresponding subkey
// eight positions below the current subkey. That 16-bit extent
// straddles two array members, so bits are shifted left in one
// member and right (with zero fill) in the other. For the last
// two subkeys in any group of eight, those 16 bits start to
// wrap around to the first two members of the previous eight.

for (int i = 8; i < 52; i++)
{

j = i % 8;
if (j < 6)
{

Z[i] = ((Z[i -7]>>>9) | (Z[i-6]<<7)) // Shift and combine.
& 0xFFFF; // Just 16 bits.

continue; // Next iteration.
}

if (j == 6) // Wrap to beginning for second chunk.
{

Z[i] = ((Z[i -7]>>>9) | (Z[i-14]<<7))
& 0xFFFF;

continue;
}

// j == 7 so wrap to beginning for both chunks.

Z[i] = ((Z[i -15]>>>9) | (Z[i-14]<<7))
& 0xFFFF;

}
}

/*
* calcDecryptKey
*
* Builds the 52 16-bit encryption subkeys DK[] from the encryption-
* subkeys Z[]. DK[] is a 32-bit int array holding 16-bit values as
* unsigned.
*/

private void calcDecryptKey()
{

int j, k; // Index counters.
int t1, t2, t3; // Temps to hold decrypt subkeys.

t1 = inv(Z[0]); // Multiplicative inverse (mod x10001).
t2 = - Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey.
t3 = - Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey.

B.10. JGFCRYPT 127

DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001).
DK[50] = t3;
DK[49] = t2;
DK[48] = t1;

j = 47; // Indices into temp and encrypt arrays.
k = 4;
for (int i = 0; i < 7; i++)
{

t1 = Z[k++];
DK[j--] = Z[k++];
DK[j--] = t1;
t1 = inv(Z[k++]);
t2 = -Z[k++] & 0xffff;
t3 = -Z[k++] & 0xffff;
DK[j--] = inv(Z[k++]);
DK[j--] = t2;
DK[j--] = t3;
DK[j--] = t1;

}

t1 = Z[k++];
DK[j--] = Z[k++];
DK[j--] = t1;
t1 = inv(Z[k++]);
t2 = -Z[k++] & 0xffff;
t3 = -Z[k++] & 0xffff;
DK[j--] = inv(Z[k++]);
DK[j--] = t3;
DK[j--] = t2;
DK[j--] = t1;

}

/*
* mul
*
* Performs multiplication, modulo (2**16)+1. This code is structured
* on the assumption that untaken branches are cheaper than taken
* branches, and that the compiler doesn’t schedule branches.
* Java: Must work with 32-bit int and one 64-bit long to keep
* 16-bit values and their products "unsigned." The routine assumes
* that both a and b could fit in 16 bits even though they come in
* as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit.
* Also, because the routine stores mod (2**16)+1 results in a 2**16
* space, the result is truncated to zero whenever the result would
* zero, be 2**16. And if one of the multiplicands is 0, the result
* is not zero, but (2**16) + 1 minus the other multiplicand (sort
* of an additive inverse mod 0x10001).

* NOTE: The java conversion of this routine works correctly, but
* is half the speed of using Java’s modulus division function (%)
* on the multiplication with a 16-bit masking of the result--running
* in the Symantec Caje IDE. So it’s not called for now; the test
* uses Java % instead.
*/

private int mul(int a, int b) throws ArithmeticException
{

128 APPENDIX B. CODE EXAMPLES

long p; // Large enough to catch 16-bit multiply
// without hitting sign bit.

if (a != 0)
{

if(b != 0)
{

p = (long) a * b;
b = (int) p & 0xFFFF; // Lower 16 bits.
a = (int) p >>> 16; // Upper 16 bits.

return (b - a + (b < a ? 1 : 0) & 0xFFFF);
}
else

return ((1 - a) & 0xFFFF); // If b = 0, then same as
// 0x10001 - a.

}
else // If a = 0, then return

return((1 - b) & 0xFFFF); // same as 0x10001 - b.
}

/*
* inv
*
* Compute multiplicative inverse of x, modulo (2**16)+1 using
* extended Euclid’s GCD (greatest common divisor) algorithm.
* It is unrolled twice to avoid swapping the meaning of
* the registers. And some subtracts are changed to adds.
* Java: Though it uses signed 32-bit ints, the interpretation
* of the bits within is strictly unsigned 16-bit.
*/

private int inv(int x)
{

int t0, t1;
int q, y;

if (x <= 1) // Assumes positive x.
return(x); // 0 and 1 are self-inverse.

t1 = 0x10001 / x; // (2**16+1)/x; x is >= 2, so fits 16 bits.
y = 0x10001 % x;
if (y == 1)

return((1 - t1) & 0xFFFF);

t0 = 1;
do {

q = x / y;
x = x % y;
t0 += q * t1;
if (x == 1) return(t0);
q = y / x;
y = y % x;
t1 += q * t0;

} while (y != 1);

return((1 - t1) & 0xFFFF);
}

/*
* freeTestData
*
* Nulls arrays and forces garbage collection to free up memory.

B.11. JGFSERIES 129

*/

void freeTestData()
{

plain1 = null;
crypt1 = null;
plain2 = null;
userkey = null;
Z = null;
DK = null;

}
}

B.11 JGFSeries

Listing B.14 : JGFSeriesBenchSizeA.java: main class

/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

public class JGFSeriesBenchSizeA{

public static int nthreads;

public static void main(String argv[]){
nthreads = 2;

JGFSeriesBench se = new JGFSeriesBench(nthreads);
se.JGFrun(0);

}
}

130 APPENDIX B. CODE EXAMPLES

Listing B.15 : JGFSeriesBench.java: benchmark driver

/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

public class JGFSeriesBench extends SeriesTest {

public static int nthreads;
private int size;
private int datasizes[]={10000,100000,1000000};
//private int datasizes[]={10,100,1000};

public JGFSeriesBench(int nthreads) {
this.nthreads=nthreads;

}

public void JGFsetsize(int size){
this.size = size;

}

public void JGFinitialise(){
array_rows = datasizes[size];
buildTestData();

}

public void JGFkernel(){
Do();

}

public void JGFvalidate(){
double ref[][] = {{2.8729524964837996, 0.0},

{1.1161046676147888, -1.8819691893398025},
{0.34429060398168704, -1.1645642623320958},
{0.15238898702519288, -0.8143461113044298}};

for (int i = 0; i < 4; i++){
for (int j = 0; j < 2; j++){

double error = Math.abs(TestArray[j][i] - ref[i][j]);
if (error > 1.0e-12){
/*System.out.println("Validation failed for coefficient " +
j + "," + i);
System.out.println("Computed value = " + TestArray[j][i]);
System.out.println("Reference value = " + ref[i][j]);*/

}
}

}

B.11. JGFSERIES 131

}

public void JGFtidyup(){
freeTestData();

}

public void JGFrun(int size){

JGFsetsize(size);
JGFinitialise();
JGFkernel();
JGFvalidate();
JGFtidyup();

}
}

Listing B.16 : SeriesRunner.java: worker thread

//This is the Thread

class SeriesRunner implements Runnable {

int id;

public SeriesRunner(int id){
this.id=id;
}

public void run() {

double omega; // Fundamental frequency.
int ilow,iupper,slice;

//int array_rows=SeriesTest.array_rows;

// Calculate the fourier series. Begin by calculating A[0].

if (id==0) {
SeriesTest.TestArray[0][0]=TrapezoidIntegrate((double)0.0, //Lower bound.

(double)2.0, // Upper bound.
1000, // # of steps.
(double)0.0, // No omega*n needed.
0) / (double)2.0; // 0 = term A[0].

}

// Calculate the fundamental frequency.
// (2 * pi) / period...and since the period
// is 2, omega is simply pi.

omega = (double) 3.1415926535897932;

slice = (SeriesTest.array_rows + JGFSeriesBench.nthreads-1)/JGFSeriesBench.nthreads;

ilow = id*slice;
if(id==0) ilow=id*slice+1;

132 APPENDIX B. CODE EXAMPLES

iupper = (id+1)*slice;
if (iupper > SeriesTest.array_rows) iupper=SeriesTest.array_rows;

for (int i = ilow; i < iupper; i++)
{

// Calculate A[i] terms. Note, once again, that we
// can ignore the 2/period term outside the integral
// since the period is 2 and the term cancels itself
// out.

SeriesTest.TestArray[0][i] = TrapezoidIntegrate((double)0.0,
(double)2.0,
1000,
omega * (double)i,

1); // 1 = cosine term.

// Calculate the B[i] terms.

SeriesTest.TestArray[1][i] = TrapezoidIntegrate((double)0.0,
(double)2.0,
1000,
omega * (double)i,
2); // 2 = sine term.

}

}

/*
* TrapezoidIntegrate
*
* Perform a simple trapezoid integration on the function (x+1)**x.
* x0,x1 set the lower and upper bounds of the integration.
* nsteps indicates # of trapezoidal sections.
* omegan is the fundamental frequency times the series member #.
* select = 0 for the A[0] term, 1 for cosine terms, and 2 for
* sine terms. Returns the value.
*/

private double TrapezoidIntegrate (double x0, // Lower bound.
double x1, // Upper bound.
int nsteps, // # of steps.
double omegan, // omega * n.
int select) // Term type.

{
double x; // Independent variable.
double dx; // Step size.
double rvalue; // Return value.

// Initialize independent variable.

x = x0;

// Calculate stepsize.

dx = (x1 - x0) / (double)nsteps;

// Initialize the return value.

B.11. JGFSERIES 133

rvalue = thefunction(x0, omegan, select) / (double)2.0;

// Compute the other terms of the integral.

if (nsteps != 1)
{

--nsteps; // Already done 1 step.
while (--nsteps > 0)
{

x += dx;
rvalue += thefunction(x, omegan, select);

}
}

// Finish computation.

rvalue=(rvalue + thefunction(x1,omegan,select) / (double)2.0) * dx;
return(rvalue);

}

/*
* thefunction
*
* This routine selects the function to be used in the Trapezoid
* integration. x is the independent variable, omegan is omega * n,
* and select chooses which of the sine/cosine functions
* are used. Note the special case for select=0.
*/

private double thefunction(double x, // Independent variable.
double omegan, // Omega * term.
int select) // Choose type.

{

// Use select to pick which function we call.

switch(select)
{

case 0: return(Math.pow(x+(double)1.0,x));

case 1: return(Math.pow(x+(double)1.0,x) * Math.cos(omegan*x));

case 2: return(Math.pow(x+(double)1.0,x) * Math.sin(omegan*x));
}

// We should never reach this point, but the following
// keeps compilers from issuing a warning message.

return (0.0);
}
}

134 APPENDIX B. CODE EXAMPLES

Listing B.17 : SeriesTest.java: performs calculation

/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* Original version of this code by *
* Gabriel Zachmann (zach@igd.fhg.de) *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

/**
* Class SeriesTest
*
* Performs the transcendental/trigonometric portion of the
* benchmark. This test calculates the first n fourier
* coefficients of the function (x+1)^x defined on the interval
* 0,2 (where n is an arbitrary number that is set to make the
* test last long enough to be accurately measured by the system
* clock). Results are reported in number of coefficients calculated
* per sec.
*
* The first four pairs of coefficients calculated shoud be:
* (2.83777, 0), (1.04578, -1.8791), (0.2741, -1.15884), and
* (0.0824148, -0.805759).
*/

public class SeriesTest
{

// Declare class data.

static int array_rows;
public static double [] [] TestArray; // Array of arrays.

/*
* buildTestData
*
*/

// Instantiate array(s) to hold fourier coefficients.

void buildTestData()
{

// Allocate appropriate length for the double array of doubles.

B.11. JGFSERIES 135

TestArray = new double [2][array_rows];
}

/*
* Do
*
* This consists of calculating the
* first n pairs of fourier coefficients of the function (x+1)^x on
* the interval 0,2. n is given by array_rows, the array size.
* NOTE: The # of integration steps is fixed at 1000.
*/

void Do()
{

int i,j;
Runnable thobjects[] = new Runnable [JGFSeriesBench.nthreads];
Thread th[] = new Thread [JGFSeriesBench.nthreads];

//Start Threads

for(i=0;i<JGFSeriesBench.nthreads;i++) {
thobjects[i] = new SeriesRunner(i);
th[i] = new Thread(thobjects[i]);
th[i].start();
}

for(i=0;i<JGFSeriesBench.nthreads;i++) {
try {

th[i].join();
}

catch (InterruptedException e) {}
}

}
void freeTestData()
{

TestArray = null; // Destroy the array.
}
}

136 APPENDIX B. CODE EXAMPLES

B.12 JGFSparseMatmult

Listing B.18 : JGFSparseMatmultBenchSizeA.java: main class
/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

public class JGFSparseMatmultBenchSizeA{

public static int nthreads;

public static void main(String argv[]){

nthreads = 2;

JGFSparseMatmultBench smm = new JGFSparseMatmultBench(nthreads);
smm.JGFrun(0);

}
}

Listing B.19 : JGFSparseMatmultBench.java: benchmark driver
/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *

B.12. JGFSPARSEMATMULT 137

* *
**/
import java.util.Random;

public class JGFSparseMatmultBench extends SparseMatmult {

public static int nthreads;

private int size;
private static final long RANDOM_SEED = 10101010;

private static final int datasizes_M[] = {50000,100000,500000};
private static final int datasizes_N[] = {50000,100000,500000};
private static final int datasizes_nz[] = {250000,500000,2500000};
private static final int SPARSE_NUM_ITER = 200;
/*private static final int datasizes_M[] = {5000,10000,50000};
private static final int datasizes_N[] = {5000,10000,50000};
private static final int datasizes_nz[] = {25000,50000,250000};
private static final int SPARSE_NUM_ITER = 1; */

Random R = new Random(RANDOM_SEED);

double [] x;
double [] y;
double [] val;
int [] col;
int [] row;
int [] lowsum;
int [] highsum;

public JGFSparseMatmultBench(int nthreads) {
this.nthreads = nthreads;
}

public void JGFsetsize(int size){
this.size = size;

}

public void JGFinitialise(){

x = RandomVector(datasizes_N[size], R);
y = new double[datasizes_M[size]];

val = new double[datasizes_nz[size]];
col = new int[datasizes_nz[size]];
row = new int[datasizes_nz[size]];

int [] ilow = new int[nthreads];
int [] iup = new int[nthreads];
int [] sum = new int[nthreads+1];
lowsum = new int[nthreads+1];
highsum = new int[nthreads+1];
int [] rowt = new int[datasizes_nz[size]];
int [] colt = new int[datasizes_nz[size]];
double [] valt = new double[datasizes_nz[size]];
int sect;

for (int i=0; i<datasizes_nz[size]; i++) {

// generate random row index (0, M-1)
row[i] = Math.abs(R.nextInt()) % datasizes_M[size];

138 APPENDIX B. CODE EXAMPLES

// generate random column index (0, N-1)
col[i] = Math.abs(R.nextInt()) % datasizes_N[size];

val[i] = R.nextDouble();

}

// reorder arrays for parallel decomposition

sect = (datasizes_M[size] + nthreads-1)/nthreads;

for (int i=0; i<nthreads; i++) {
ilow[i] = i*sect;
iup[i] = ((i+1)*sect)-1;
if(iup[i] > datasizes_M[size]) iup[i] = datasizes_M[size];

}

for (int i=0; i<datasizes_nz[size]; i++) {
for (int j=0; j<nthreads; j++) {
if((row[i] >= ilow[j]) && (row[i] <= iup[j])) {
sum[j+1]++;

}
}

}

for (int j=0; j<nthreads; j++) {
for (int i=0; i<=j; i++) {

lowsum[j] = lowsum[j] + sum[j-i];
highsum[j] = highsum[j] + sum[j-i];

}
}

for (int i=0; i<datasizes_nz[size]; i++) {
for (int j=0; j<nthreads; j++) {
if((row[i] >= ilow[j]) && (row[i] <= iup[j])) {
rowt[highsum[j]] = row[i];
colt[highsum[j]] = col[i];
valt[highsum[j]] = val[i];
highsum[j]++;

}
}

}

for (int i=0; i<datasizes_nz[size]; i++) {
row[i] = rowt[i];
col[i] = colt[i];
val[i] = valt[i];

}

}

public void JGFkernel(){

SparseMatmult.test(y, val, row, col, x, SPARSE_NUM_ITER, lowsum, highsum);

}

public void JGFvalidate(){

double refval[] = {75.02484945753453,150.0130719633895,749.5245870753752};
double dev = Math.abs(ytotal - refval[size]);

B.12. JGFSPARSEMATMULT 139

if (dev > 1.0e-10){
/*System.out.println("Validation failed");
System.out.println("ytotal = " + ytotal + " " + dev + " " + size);*/

}

}

public void JGFtidyup(){

}

public void JGFrun(int size){

JGFsetsize(size);
JGFinitialise();
JGFkernel();
JGFvalidate();
JGFtidyup();

}

private static double[] RandomVector(int N, java.util.Random R)
{

double A[] = new double[N];
for (int i=0; i<N; i++)
A[i] = A[i] = R.nextDouble() * 1e-6;

return A;
}

}

Listing B.20 : SparseRunner.java: worker thread

class SparseRunner implements Runnable {

int id,nz,row[],col[],NUM_ITERATIONS;
double val[],x[];
int lowsum[];
int highsum[];

public SparseRunner(int id, double val[], int row[],int col[], double x[], int NUM_ITERATIONS,int nz, int lowsum[], int highsum[]) {
this.id = id;
this.x=x;
this.val=val;
this.col=col;
this.row=row;
this.nz=nz;
this.NUM_ITERATIONS=NUM_ITERATIONS;
this.lowsum = lowsum;
this.highsum = highsum;

}

public void run() {

for (int reps=0; reps<NUM_ITERATIONS; reps++) {
for (int i=lowsum[id]; i<highsum[id]; i++) {
SparseMatmult.yt[row[i]] += x[col[i]] * val[i];

140 APPENDIX B. CODE EXAMPLES

}
}

}
}

Listing B.21 : SparseMatmult.java: performs the matrix multiplications

/**
* *
* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
* *
* produced by *
* *
* Java Grande Benchmarking Project *
* *
* at *
* *
* Edinburgh Parallel Computing Centre *
* *
* email: epcc-javagrande@epcc.ed.ac.uk *
* *
* adapted from SciMark 2.0, author Roldan Pozo (pozo@cam.nist.gov) *
* *
* This version copyright (c) The University of Edinburgh, 2001. *
* All rights reserved. *
* *
**/

public class SparseMatmult
{

public static double ytotal = 0.0;
public static double yt[];

/* 10 iterations used to make kernel have roughly
same granulairty as other Scimark kernels. */

public static void test(double y[], double val[], int row[],
int col[], double x[], int NUM_ITERATIONS, int lowsum[], int highsum[])

{
int nz = val.length;
yt=y;

SparseRunner thobjects[] = new SparseRunner[JGFSparseMatmultBench.nthreads];
Thread th[] = new Thread[JGFSparseMatmultBench.nthreads];

for(int i=0;i<JGFSparseMatmultBench.nthreads;i++) {
thobjects[i] = new SparseRunner(i,val,row,col,x,NUM_ITERATIONS,nz,lowsum,highsum);
th[i] = new Thread(thobjects[i]);
th[i].start();

}

for(int i=0;i<JGFSparseMatmultBench.nthreads;i++) {
try {
th[i].join();
} catch (InterruptedException e) {}

B.13. PERFORMANCE 141

}

for (int i=0; i<nz; i++) {
ytotal += yt[row[i]];

}

}
}

B.13 Performance

Listing B.22 : The performance program copied from Figure 4.1 of [7] creates a speci-
fied number of threads and a specified number of locks per thread to measure how many
paths the ExitBlock-RW algorithm must search
public class Performance implements Runnable {
static Lock[] locks;
static int nThreads;
static int nLocks;

public static void main(String[] args) {
nThreads = 2; /* depends on the test */
nLocks = 1; /* depends on the test */
locks = new Lock[nLocks];

for (int i=0; i<nLocks; i++)
locks[i] = new Lock();

for (int i=0; i < nThreads; i++)
new Performance();

}

public Performance() {
new Thread(this).start();

}

public void run() {
for (int i=0; i <nLocks; i++)
synchronized (locks[i]) {}

}
}

B.14 Deadlock

Listing B.23 : Simple deadlocking example where two threads tries to acquire the
same two locks in a different order.
public class Deadlock {
private static Integer A = new Integer(0);
private static Integer B = new Integer(0);

public static void main(String[] args) {
Thread t1;

t1 = new LockAB(A,B);

142 APPENDIX B. CODE EXAMPLES

t1.start();

synchronized(B) {
synchronized(A) { }

}
}

}

B.15 Deadlock3

Listing B.24 : A deadlock example where three threads deadlock since the locks are
acquired in a cycle order

public class Deadlock3 implements Runnable {
static Lock a = new Lock();
static Lock b = new Lock();
static Lock c = new Lock();

public static void main(String[] args)
{
new Deadlock3(0);
new Deadlock3(1);
new Deadlock3(2);

}

int order;

public Deadlock3(int order) {
this.order = order;
new Thread(this).start();

}

public void run() {
if (order == 0)
{
synchronized (a) {
synchronized (b) {
}

}
} else if (order == 1)
{
synchronized (b) {
synchronized (c) {
}

}
} else {
synchronized (c) {
synchronized (a) {
}

}
}

}
}

B.16. SPLITSYNC 143

B.16 SplitSync

Listing B.25 : SplitSync.java: assertion failure due to insufficient locking

public class SplitSync implements Runnable {

static Resource resource = new Resource();

public static void main(String[] args) {
new SplitSync();
new SplitSync();

}

public SplitSync() {
new Thread(this).start();

}

public void run() {
int y;

synchronized (resource) {
y = resource.x;

}

synchronized (resource) {
jnuke.Assertion.check(resource.x == y);
resource.x = y + 1;

}
}

}

Assertion failed at SplitSync.run ()V (line 21) (pc 26)
(thread 1)

(JNukeExitBlock (JNukeSchedule
(JNukeThreadSwitch (from_thread 0) (to_thread 0)

(JNukeMethod "SplitSync.<init>" (JNukeSignature
"V" (JNukeVector))) (pc 7) (line 17))

...
)

Figure B.1: A portion of the output produced by the SplitSync problem. The asser-
tion violation is detected, the according current position and the scheduler history are
printed out.

B.17 Dining Philosopher

Listing B.26 : Fork.java: class used by dining philosophers

public class Fork {

Philosopher owner = null;

public synchronized void acquire(Philosopher p)
throws InterruptedException {

while(owner != null) { wait(); }
owner = p;

144 APPENDIX B. CODE EXAMPLES

}

public synchronized void release() {
owner = null;
notifyAll();

}
}

Listing B.27 : Philosopher.java: class representing a philosopher

public class Philosopher extends Thread
{
Fork l;
Fork r;
int n;
String name;

public Philosopher(String name, int n, Fork l, Fork r, boolean
takeRightFirst)

{
if (takeRightFirst)
{
this.l = r;
this.r = l;

} else {
this.l = l;
this.r = r;

}

this.n = n;
this.name = name;

}

public void run() {
int i;

for (i = 0; i < n; i++)
{
try {
l.acquire(this);
r.acquire(this);
r.release();
l.release();

} catch (InterruptedException e) { return; }
}

}
}

Listing B.28 : DiningPhilo.java: dinining philosophers with three threads

public class DiningPhilo {

public static void main(String[] args) throws InterruptedException {
Fork f1 = new Fork();

B.18. DEADLOCKWAIT 145

Fork f2 = new Fork();
Fork f3 = new Fork();

Philosopher p1 = new Philosopher("sophokles", 1, f1, f2, false);
Philosopher p2 = new Philosopher("euripides", 1, f2, f3, false);
Philosopher p3 = new Philosopher("anaximandres", 1, f3, f1, false);

p1.start();
p2.start();
p3.run();

}
}

B.18 DeadlockWait

Listing B.29 : DeadlockWait: condition deadlock due to a unreleaesed lock

public class DeadlockWait implements Runnable {

static Lock a = new Lock();
static Lock b = new Lock();

public static void main(String[] args) {
new DeadlockWait(true);
new DeadlockWait(false);

synchronized(a) { a.i = 0; a.j = 0; }
synchronized(b) { b.i = 0; b.j = 0; }

}

boolean ab;

public DeadlockWait(boolean ab) {
this.ab = ab;
new Thread(this).start();

}

public void run() {
if (ab) {
synchronized (a) {
synchronized (b) {
try {
a.i = b.i; a.j = 2;
b.j = a.j; b.i = a.j;
b.wait(); }

catch (InterruptedException i) {}
}
a.i = 0; a.j = 0;

}
} else {
synchronized (a) {
a.i = 1; a.j = 1;

}

synchronized (b) {
b.i = 1; b.j = 1;
b.notifyAll();

}
}

}

146 APPENDIX B. CODE EXAMPLES

}

B.19 BufferIf

Listing B.30 : Sample bounded buffer class containing a timing-dependent error. The
enq function should use a while instaed of an if. With an if, if the enqueueing thread
is woken up but some other thread executes before it takes control and changes the
condition, the enqueueing thread will go ahead and execute even though the condition
is false.]Buffer.java: bounded buffer with an error in its enqueue method.]Sample
bounded buffer class containing a timing-dependent error. The enq function should use
a while instaed of an if. With an if, if the enqueueing thread is woken up but some
other thread executes before it takes control and changes the condition, the enqueueing
thread will go ahead and execute even though the condition is false.

public class Buffer {
static final int BUFSIZE = 2;
private int first, last;
private Object[] els;

public Buffer() {
first = 0;
last = 0;
els = new Object[BUFSIZE];

}

public synchronized void enq(Object x) throws InterruptedException {
if ((last+1) % BUFSIZE == first) /* BUG */
this.wait();

jnuke.Assertion.check((last+1) % 2 != first);

els[last] = x;

last = (last+1) % BUFSIZE;

this.notifyAll();
}

public synchronized Object deq() throws InterruptedException {

while (first == last)
this.wait();

Object val = els[first];

first = (first+1) % BUFSIZE;
this.notifyAll();

return val;
}

}

B.20. BUFFERWHILE 147

Listing B.31 : Producer.java: producer thread writing into the buffer

public class Producer implements Runnable {
private Buffer buffer;

public Producer(Buffer b) {
buffer = b;

}

public void run() {
try {
for (int i=0; i<2; i++)
buffer.enq(this);

} catch (InterruptedException i) {}
}

}

Listing B.32 : Consumer.java: consumer thread reading from the buffer

public class Consumer implements Runnable {
private Buffer buffer;

public Consumer(Buffer b) {
buffer = b;

}

public void run() {
try {
for (int i=0; i<4; i++)
buffer.deq();

} catch (InterruptedException i) {}
}

}

Listing B.33 : BufferIf: producer-consumer problem with two producers and one
consumer thread

public class BufferIf {
static final int IP = 2;

public static void main(String[] args) {
Buffer b = new Buffer();

new Thread(new Producer(b)).start();
new Thread(new Producer(b)).start();
new Thread(new Consumer(b)).start();

}
}

B.20 BufferWhile

148 APPENDIX B. CODE EXAMPLES

Listing B.34 : A correct bounded buffer where the invariant is rechecked when the
producer thread is rescheduled.]Buffer2.java: bounded buffer with a correct enqueue
method]A correct bounded buffer where the invariant is rechecked when the producer
thread is rescheduled.

public class Buffer2 {

static final int BUFSIZE = 2;
private int first, last;
private Object[] els;

public Buffer() {
first = 0;
last = 0;
els = new Object[BUFSIZE];

}

public synchronized void enq(Object x) throws InterruptedException {

while ((last+1) % BUFSIZE == first) /* fixed */
this.wait();

jnuke.Assertion.check((last+1) % 2 != first);

els[last] = x;
last = (last+1) % BUFSIZE;
this.notifyAll();

}

public synchronized Object deq() throws InterruptedException {
while (first == last)
this.wait();

Object val = els[first];
first = (first+1) % BUFSIZE;
this.notifyAll();

return val;
}

}

Appendix C

Test Cases

This chapter lists all test cases of the virtual machine and the runtime verification tools.
The table below shows the number of test cases.

Test suite Number of test cases

Virtual machine 231
Runtime verification 56

Total 287

vm/instancedesc

Number Description

0 Calculation of field offsets for a simple class
1 Calculation of field offsets for a class with static fields
2 Calculation of field offsets for a class with multi-inheritance
3 Handling of shadowed variables

Table C.1: Test cases of JNukeInstanceDesc

vm/arrayinstancedesc

Number Description

0 Creation of array instance descriptors
1 Dereferencing of array types
2 Offset calculation
3 Creation of instances

Table C.2: Test cases of JNukeArrayInstanceDesc

149

150 APPENDIX C. TEST CASES

vm/heapmgr

Number Description
0 Creation of a heap manager
1 Iteration of the instance descriptors
2 Creation of an instance of a simple class
3 Creation of (multidimensional) array instances
4 Read and write array components
5 Read and write components of a two dimensional array
6 C array for performance comparisons. Allows comparison to test case 4 and 5.
7 Out of bounds read and write operations
8 Rollback of an array instance
9 misc

10 Rollback of an array instance
11 Rollback of an instance with class and object fields
12 Component type dereferencing
13 read and write action listener test
14 read and write action listener test

Table C.4: Test cases of JNukeHeapMgr

vm/heaplog

Number Description

0 Logging of field write and read access
1 Logging of field write and read access
2 Creation of a number of objects in connection with several rollbacks
3 Creation of a number of arrays in connection with several rollbacks
4 Release of an non-empty heap log

Table C.5: Test cases of JNukeHeapLog

vm/native

Number Description

0 Tests endianess issues

Table C.6: Test cases of JNukeNative

151

vm/thread

Number Description

0 Creates threads, set and test some flags
1 Creation of stack-frames
2 Creation of stack-frames
3 One thread joins another one
4 Sets a thread waiting and tries to reacquire the locks
5 Creation of a milestone
6 Creation of one milestone. One rollback is performed
7 Milestone/Rollback test with a thread owning locks
8 Milestone/Rollback test in connection with stack frames
9 Reference Counting of stack frames

10 Milestone/Rollback test in connection with stack frames
11 Performing of several milestone/rollback operations
12 Milestone/Rollback test in connection with thread’s lock list
13 Last hold lock test used for reverse lock chain analysis
14 toString

Table C.7: Test cases of JNukeThread

vm/stackframe

Number Description

0 Creation, cloning, release of a stack frame
1 Sets a milestone
2 Sets a milestone, performs one rollback
3 Sets a milestone, performs one rollback
4 One milestone, performing several rollbacks

Table C.8: Test cases of JNukeStackFrame

vm/waitlist

Number Description

0 Inserts threads and performs resumeAll
1 Inserts threads and resumes each
2 Cloning of a wait list
3 Sets a milestone
4 One milestone and one rollback
5 Creates one milestone, performs then several rollbacks

Table C.9: Test cases of JNukeWaitList

152 APPENDIX C. TEST CASES

vm/lock

Number Description

0 One lock, several threads compete for this lock
1 One thread acquiring several locks
2 resume threads waiting on a lock
3 Creation of several milestones
4 Creation of milestones, several rollbacks
5 Creation of several milestones, no rollback

Table C.10: Test cases of JNukeLock

vm/lockmgr

Number Description

0 Acquires and releases objects locks
1 Thread dies that still owns locks. Locks are released
2 Create one milestone. One rollback is performed
3 Milestone/rollback with changed locks
4 Creation of several milestone. Several rollbacks are performed
5 Listener test

Table C.11: Test cases of JNukeLockMgr

vm/waitsetmgr

Number Description

0 Sets two threads waiting
1 Sets two threads waiting; awaken each by notify
2 Sets two threads waiting; awaken each by notify
3 Sets two threads waiting; awaken threads by notifyAll
4 Sets a milestone
5 Sets a milestone; performs one rollback
6 Two awaken threads competing for a lock
7 One waiting threads which is notified.

Table C.12: Test cases of JNukeWaitsetMgr

153

vm/vtable

Number Description

0 Creates a vtable of a simple class
1 Creates a vtable of a class with a super class
2 Creates the vtable for java/lang/System
3 Creates the vtable for java/io/PrintStream
4 Creates the vtable for java/lang/String

Table C.13: Test cases of JNukeVirtualTable

vm/rtenvironment

Table C.14: Test cases of JNukeRuntimeEnvironment

Number Description
0 Loops of 100’000 iterations
1 Reads and writes static fields
2 Reads and writes static fields
3 Creates object and reads instance fields
4 Creates object and reads instance fields
5 Array iteration
6 Creates array of different types
7 Creates a two dimensional array
8 Tests table switch operation
9 Tests lookup switch operation

10 Tests checkcast and instanceof operator
11 Tests monitorEnter and monitorExit operations
12 Sorts an array with Bubble-Sort
13 Reads many fields of an object
14 Creates many objects
15 Reads a shadowed fields
16 Invocation of virtual and static methods
17 Invocation of virtual methods
18 Calls derived virtual methods
19 Calls a static initializer
20 Native call test
21 Performs system.out.println(...)
22 A program with constant string values
23 Invocation of many static methods
24 Creates some thread instances
25 Creates some thread instances
26 Throws null pointer exceptions
27 Throws and catches array index out of bounds exceptions
28 Throws and catches division by zero exceptions
29 Throws and catches class cast exceptions
30 Creates four milestones

154 APPENDIX C. TEST CASES

Number Description
31 Creates a couple of milestone; performs rollbacks
32 Creates four milestone; performs one rollback
33 Tests rollback/milestone in connection with threads
34 Tests rollback/milestone in connection with the heap manager
35 Tests rollback/milestone in connection with locks
36 Tests null pointer exception and out of bounds exception at Object.arraycopy
37 Tests IllegalMonitorStateExceptions and NullPointerExceptions (wait, notify[All])
38 Tests ClassDefNotFoundError
39 Invocation of methods. Tests parameter and return value handling
40 Compliance test for integer overflows
41 Basic test for register operations
42 Performs float and double cast operations
43 Performs left and right shift operations
44 Performs left and right shift operations for long values
45 Performs and, or, and xor operations
46 Tests jnuke.Assertion
47 Performs further float and double cast operations
48 Performs misc float and double operations
49 Performs negative operations
50 dupX
51 Tests NoClassDefFoundError
52 Experiment from Chapter 5
53 Experiment from Chapter 5
54 Experiment from Chapter 5
55 Experiment from Chapter 5
56 Experiment from Chapter 5
57 Experiment from Chapter 5
58 Experiment from Chapter 5
59 Experiment from Chapter 5
60 Experiment from Chapter 5
61 Experiment from Chapter 5
62 Experiment from Chapter 5
63 Throws NoSuchFieldError and NoSuchMethodException
64 Throws an internal error which is not caught. Output written to error file.

155

vm/rrscheduler

Number Description

0 Two threads, one joins to other one
1 Two threads, one joins to other one
2 Interruption of a thread
3 Invocation of synchronized methods
4 Invocation of synchronized methods
5 Recursive invocation of synchronized methods
6 MonitorEnter and monitorExit test
7 Acquires recursive monitor locks
8 Producer/consumer example
9 Dining philosopher

10 Calls start() twice causing a IllegalThreadStateException
11 Performs InterruptedException while one thread joins another join
12 Multi-threaded example with a condition deadlock (is detected)
13 BufferIf example
14 Dining philosopher each eating 3000 times (TTL=5)
15 Dining philosopher each eating 3000 times (TTL=100)
16 Dining philosopher each eating 3000 times (TTL=1000)
17 Dining philosopher each eating 3000 times (TTL=10000)
18 Dining philosopher each eating 3000 times (TTL=100000)
19 Producer/Consumer example (120’000 iterations, 3 threads)
20 Producer/Consumer example (120’000 iterations, 100 threads)
21 JGFCrypt with 2 threads
22 JGFCrypt with 20 threads
23 JGFCrypt with 200 threads
24 JGFSeries with 2 threads
25 JGFSparseMatmult with 2 threads
26 JGFSparseMatmult with 20 threads
27 JGFSeries with 20 threads

Table C.15: Test cases of JNukeRRScheduler

vm/vmstate

Number Description

0 Creates and destroys a virtual machine state
1 Clones and compares virtual machine states
2 Clones and hashes virtual machine states
3 Takes a real snapshot of a runtime environment

Table C.16: Test cases of JNukeVMState

156 APPENDIX C. TEST CASES

rv/exitblock

Table C.17: Test cases of JNukeExitBlock

Number Description

0 ExitBlock: explores schedules for two threads
1 ExitBlock: two threads acquiring locks in opposite order
2 ExitBlock: three threads acquiring some locks
3 ExitBlock: two threads acquiring some locks
4 ExitBlock: two threads acquiring some locks
5 The same as #0. Additionally, schedules are printed
6 The same as #1. Additionally, schedules are printed
7 The same as #2. Additionally, schedules are printed
8 The same as #3. Additionally, schedules are printed
9 The same as #4. Additionally, schedules are printed

10 ExitBlock: ignoring of yield
11 ExitBlock: discovering of a condition deadlock
12 ExitBlock: deadlocking dining philosophers (two philosophers)
13 ExitBlock: non-deadlocking dining philosophers (two philosophers)
14 ExitBlock: one thread joins another one
15 ExitBlock: one thread joins another one
16 ExitBlock: three deadlocking dining philosophers.
17 ExitBlock-RW: Performance.java from Chapter 5 (1 thread, 1 lock)
18 ExitBlock-RW: Performance.java from Chapter 5 (2 threads, 2 locks)
19 ExitBlock-RW: Performance.java from Chapter 5 (2 threads, 100 locks)
20 ExitBlock-RW: Performance.java from Chapter 5 (3 threads, 1 lock)
21 ExitBlock-RW: Performance.java from Chapter 5 (3 threads, 50 locks)
22 ExitBlock-RW: Performance.java from Chapter 5 (3 threads, 100 locks)
23 ExitBlock-RW: Performance.java from Chapter 5 (4 threads, 20 locks)
24 ExitBlock: Deadlock3 example from Chapter 5
25 ExitBlock-RW: Deadlock3 example from Chapter 5
26 ExitBlock: SplitSync example from Chapter 5
27 ExitBlock-RW: SplitSync example from Chapter 5
28 ExitBlock-RW: two dining philosophers
29 ExitBlock: three deadlocking dining philosophers
30 ExitBlock-RW: three deadlocking dining philosophers (from Chapter 5)
31 ExitBlock-RW: four deadlocking dining philosophers (from Chapter 5)
32 ExitBlock-RW: ten deadlocking dining philosophers (from Chapter 5)
33 ExitBlock-RW: twenty deadlocking dining philosophers (from Chapter 5)
34 ExitBlock: DeadlockWait example from Chapter 5
35 ExitBlock-RW: DeadlockWait example from Chapter 5
36 ExitBlock: BufferIf example from Chapter 5
37 ExitBlock-RW: BufferIf example from Chapter 5
38 ExitBlock: Tests output of strings in connection with rollbacks
39 ExitBlock: BufferWhile example from Chapter 5
40 ExitBlock-RW: BufferWhile example from Chapter 5
41 ExitBlock: BufferIfNotify example from Chapter 5
42 ExitBlock-RW: BufferIfNotify example from Chapter 5

157

43 ExitBlock: tests notify()
44 ExitBlock: tests throwing of assertions and immediate abort of execution
45 ExitBlock-RW: tests throwing of assertions and immediate abort of execution
46 Misc

rv/revlockalg

Number Description

0 ExitBlock:Creates and destroys a reverse lock chain analyzer instance
1 ExitBlock: Detects a deadlock due to locks held in reverse order
2 ExitBlock: Detects a deadlock due to locks held in reverse order
3 ExitBlock: Example with correct locking order. No deadlock therefore.
4 The test as #1; instead ExitBlock-RW is used
5 The test as #2; instead ExitBlock-RW is used
6 The test as #3; instead ExitBlock-RW is used
7 ExitBlock: Lock cycle with three threads
8 ExitBlock-RW: Lock cycle with three threads

Table C.18: Test cases of JNukeRLCAnalyzer

Appendix D

Miscellaneous

D.1 Supported platforms

The virtual machine has been tested on following architectures:

• Linux i386

• Mac-OS X

• Alpha Tru64 Unix

• SPARC v8 and v9

Following compilers are tested and supported:

• GCC 2.95.3

• GCC 3.2.1

D.2 Code coverage

The virtual machine has a code coverage of 100% as Table D.1 shows:

Filename Coverage [%] Filename Coverage [%]

arrayinstdesc.c 100 rtenv.c 100
black.c 100 schedule.c 100
heaplog.c 100 stackframe.c 100
heapmgr.c 100 thread.c 100
instancedesc.c 100 vmstate.c 100
lock.c 100 vtable.c 100
lockmgr.c 100 waitlist.c 100
native.c 100 waitsetmgr.c 100
rbcinstr.c 100 black.c 100
rrscheduler.c 100 eraserinfo.c 100
revlockalg.c 100 exitblock.c 100

Table D.1: Code coverage of the virtual machine computed by gcov.

158

D.3. IMPLEMENTED JAVA FOUNDATION CLASSES 159

D.3 Implemented Java foundation classes

Some test cases need Java foundation classes. At the moment, classes like java/lang/String,
java/lang/Math, etc. are borrowed from the Sun JDK 1.3. However, some classes of
the Java foundation classes have been implemented by myself. Most of them are not
complete as they contain only members used by the test cases. The classes are located
at jnuke/log/vm/rtenvironment/classpath and are listed below:

Package Java class Package Java class

java/io PrintStream java/lang LinkageError
java/lang ArithmeticException java/lang NoClassDefFoundError
java/lang ArrayIndexOutOfBoundsException java/lang NoSuchMethodException
java/lang Class java/lang NullPointerException
java/lang ClassCastException java/lang Object
java/lang Error java/lang Runnable
java/lang Exception java/lang RuntimeException
java/lang IllegalArgumentException java/lang Thread
java/lang IllegalMonitorStateException java/lang Throwable
java/lang IllegalThreadStateException java/lang NoSuchFieldError
java/lang IndexOutOfBoundsException java/lang System
java/lang InterruptedException jnuke Assertion

Table D.2: Self-implementd Java foundation classes.

Listings

B.1 The struct JNukeHeapManagerActionEvent 111
B.2 MethodInvocation.java: performs many method invocations 111
B.3 ReadManyFields.java: performs read and write field accesses . . . 112
B.4 Iteration.java: a loop with 100’000’000 iterations 112
B.5 Array.java: iteration over an array of 10’000’000 elements 113
B.6 MultiArray1.java: iteration of a six dimensional array 113
B.7 DoubleOp.java: double operations performed in a loop 113
B.8 BubbleSort.java: an example implementation of bubble sort. 114
B.9 MccaJaspa.java: Jaspa benchmark with matrix mcca 115
B.10 JGFCryptBenchSizeA.java: main class 118
B.11 JGFCryptBench.java: benchmark driver 119
B.12 IDEARunner.java: worker thread 120
B.13 IDETest.java: IDEA encryption/decryption 123
B.14 JGFSeriesBenchSizeA.java: main class 129
B.15 JGFSeriesBench.java: benchmark driver 130
B.16 SeriesRunner.java: worker thread 131
B.17 SeriesTest.java: performs calculation 134
B.18 JGFSparseMatmultBenchSizeA.java: main class 136
B.19 JGFSparseMatmultBench.java: benchmark driver 136
B.20 SparseRunner.java: worker thread 139
B.21 SparseMatmult.java: performs the matrix multiplications 140
B.22 Performance.java: performance test for ExitBlock-RW 141
B.23 Deadlock.java: deadlocking java program with two threads. 141
B.24 Deadlock3.java: a deadlocking program with three threads 142
B.25 SplitSync.java: assertion failure due to insufficient locking 143
B.26 Fork.java: class used by dining philosophers 143
B.27 Philosopher.java: class representing a philosopher 144
B.28 DiningPhilo.java: dinining philosophers with three threads 144
B.29 DeadlockWait: condition deadlock due to a unreleaesed lock 145
B.30 Buffer.java: bounded buffer with an error in its enqueue method. . 146
B.31 Producer.java: producer thread writing into the buffer 147
B.32 Consumer.java: consumer thread reading from the buffer 147
B.33 BufferIf: producer-consumer problem with two producers and one

consumer thread . 147
B.34 Buffer2.java: bounded buffer with a correct enqueue method 148

160

List of Algorithms

1 Handler triggered on a lock exit . 15
2 Handler triggered on death of current thread 15
3 Implementation of rollback . 16
4 Handler triggered when a lock could not be obtained 16
5 Handler triggered for join and wait 18
6 Handler triggered on invocation of notify 19
7 Implementation of rollback with additions for notify handling. . . . 19
8 Reverse lock chain analyzer . 24

161

List of Tables

1.1 Overview on different ways to implement a milestone/rollback mechanim 3

2.1 Number of finalizers in the foundation classes of Sun’s JDK 1.3 . . . 10

3.1 Registration methods of the virtual machine 41

5.1 Results of the basic tests in seconds 48
5.2 Comparison of memory footprint . 48
5.3 The Dining Philosophers program using various scheduler settings . . 51
5.4 Results of various multi-threaded benchmarks 52
5.5 Results of Performance.java for different number of threads and locks 53
5.6 Comparison of executed schedules by ExitBlock-RW (Rivet vs. JNuke) 53
5.7 Time behaviour of the milestone/rollback mechanism 58
5.8 Time consumption for one rollback or milestone. 59

A.1 List of JNuke classes which are part of the virtual machine or the sys-
tematic scheduler. 67

C.1 Test cases of JNukeInstanceDesc 149
C.2 Test cases of JNukeArrayInstanceDesc 149
C.4 Test cases of JNukeHeapMgr . 150
C.5 Test cases of JNukeHeapLog . 150
C.6 Test cases of JNukeNative . 150
C.7 Test cases of JNukeThread . 151
C.8 Test cases of JNukeStackFrame . 151
C.9 Test cases of JNukeWaitList . 151
C.10 Test cases of JNukeLock . 152
C.11 Test cases of JNukeLockMgr . 152
C.12 Test cases of JNukeWaitsetMgr . 152
C.13 Test cases of JNukeVirtualTable 153
C.14 Test cases of JNukeRuntimeEnvironment 153
C.15 Test cases of JNukeRRScheduler 155
C.16 Test cases of JNukeVMState . 155
C.17 Test cases of JNukeExitBlock . 156
C.18 Test cases of JNukeRLCAnalyzer 157

D.1 Code coverage of the virtual machine computed by gcov. 158
D.2 Self-implementd Java foundation classes. 159

162

List of Figures

1.1 The system stack from the Java program to the hardware. 2
1.2 An example of Optimized Register Based Bytecode 5

2.1 Three threads each containing a single synchronized region. 11
2.2 Tree of schedules for the three thread of Figure 2.1. 12
2.3 Two Threads, both containing nested synchronized regions 12
2.4 Tree of schedules explored by ExitBlock for the threads in Figure 2.3 . 13
2.5 Flow chart showing event handling for ExitBlock 14
2.6 Condition deadlock occurring when notify is performed prior to wait 17
2.7 Tree of schedules produced by the program in Figure 2.6. 17
2.8 Tree explored by ExitBlock-RW for the thread in Figure 2.3 21
2.9 Two threads with a potential deadlock. 22
2.10 Tree of schedules explored by ExitBlock for the threads in Figure 2.9. 23
2.11 Lock dependency graph for the program presented in Figure 2.9 . . . 23
2.12 Reverse lock chain analysis for the situation illustrated in Figure 2.11. 24
2.13 Queue example with an apparent condition deadlock 25

3.1 Big picture of the VM containing subsystems 27
3.2 A class with two descriptors: one for the unique class instance and one

for all object instances . 29
3.3 Three different array instances sharing descriptors 30
3.4 Struct used for the instance header 30
3.5 An example class with a couple of fields 31
3.6 The calculated offsets of the class from Listing 3.5 31
3.7 Memory layout of two arrays int[3][2][3] and int[2] 32
3.8 A Java example where two arrays are changed at run-time. 32
3.9 Arguments for methods add(Read|Write)AccessListener 33
3.10 Arguments for methods (acquire|release)ObjectLock 34
3.11 Relationship between the Lock Manager, locks, instances and threads. 34
3.12 Lock manager event represented by JNukeLockManagerActionEvent 35
3.13 JNukeWaitSetManager and JNukeWaitList 36
3.14 The runtime environment with related classes. 36
3.15 Two example additions reading from and writing to the register set . . 37
3.16 Flowchart of the execution loop. 39
3.17 Two classes A and B, each with a vtable for fast method resolution . . 40
3.18 A pluggable scheduler placed on top of the virtual machine 40

4.1 Sample sequence of setMilstone, rollback and removeMilestone. 44

163

164 LIST OF FIGURES

4.2 Illustrates the delegation of the milestone/rollback mechanism 44
4.3 Implementation of JNukeLock_setMilestone 45
4.4 Implementation of JNukeLock_rollback 45

5.1 Benchmark results as a chart. 49
5.2 SampleClass.java: example class with various fields. 49
5.3 Two threads acquiring two locks in the opposite order 54
5.4 The output shows where the deadlock occurs 54
5.5 Three threads, each acquiring two locks in a cycle order. 54
5.6 SplitSync example. 55
5.7 Implementation of Fork.java . 56
5.8 Dining Philosophers for 3, 4, 10 and 20 running threads. 56
5.9 Producer/Consumer example where the condition is not rechecked in

the enqueue method. 57
5.10 Time consumption of the rollback/milestone mechanism 58

6.1 Interface Revertable . 63
6.2 Sample multi-threaded program with two threads. 64
6.3 Example parallelization of the program shown in Figure 6.2. 65

A.1 UML diagram of the virtual machine and the systematic scheduler . . 68

B.1 A portion of the output produced by the SplitSync problem 143

Bibliography

[1] Email address of Marcel Baur. mbaur@iiic.ethz.ch.

[2] C. Artho and A. Biere. Applying Static Analysis to Large-Scale, Multi-threaded
Java Programs. In D. Grant, editor, Proc. 13th ASWEC, pages 68–75. IEEE Com-
puter Society, 2001.

[3] M. J. Bach. Unix operating system. Prentice Hall, 1986.

[4] Bandera. http://www.cis.ksu.edu/santos/bandera.

[5] JASPA Benchmark. http://www.dl.ac.uk/tcsc/staff/huyf/software/jaspa/.

[6] Beowulf. http://www.beowulf.org/.

[7] D. Bruening. Systematic Testing of Multithreaded Java Programs. Master’s the-
sis, MIT, 1999.

[8] GNU Classpath. http://www.gnu.org/software/classpath/classpath.html.

[9] Matthew B. Dwyer and John Hatcliff. Slicing software for model construction. In
Partial Evaluation and Semantic-Based Program Manipulation, pages 105–118,
1999.

[10] ESC/Java. http://research.compaq.com/src/esc/.

[11] Matrix MCCA from Matrix Market. http://math.nist.gov/matrixmarket/data/harwell-
boeing/astroph/mcca.html.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[13] Patrice Godefroid. Partial-Order Method for the Verification of Concurrent Sys-
tems - An approach to the State-Explosion Problem, volume 1032 of Lecture Notes
in Computer Science . Springer-Verlag, 1996.

[14] Patrice Godefroid. Model checking for programming languages using Verisoft.
In Proceedings of the 24th ACM Symposium on Principles of Programming Lan-
guages, pages 174–186, January 1997. Paris, France.

[15] NASA Ames Research Group. http://ase.arc.nasa.gov/.

[16] K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In
Proc. First International Workshop on Runtime Verification (RV’01), volume 55
of ENTCS, pages 97–114, France, 2001. Elsevier Science.

165

166 BIBLIOGRAPHY

[17] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs using
JAVA pathfinder. International Journal on Software Tools for Technology Trans-
fer, 2(4):366–381, 2000.

[18] IBM. http://www.ibm.com.

[19] Intel. IA-32 Intel Architecture Software Delevoper’s Manual.
http://www.intel.com/design/Pentium4/manuals/24547010.pdf.

[20] Release January. Java native interface specification.

[21] Jlint. http://artho.lcom/jlint.

[22] Jlint. http://www.ispras.ru/ knizhnik/jlint/readme.html.

[23] Java PathFinder (JPF). http://ase.arc.nasa.gov/jpf/.

[24] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-mac: a
run-time assurance tool for java programs.

[25] kissme Java Virtual Machine. http://kissme.sourceforge.net/.

[26] T. Lindholm and A. Yellin. The Java Virtual Machine Specification, Second Edi-
tion. Addison-Wesley, 1999.

[27] CACAO Java Virtual Machine. http://www.complang.tuwien.ac.at/java/cacao/.

[28] Japhar Java Virtual Machine. http://www.japhar.org.

[29] KAFFE Java Virtual Machine. http://www.kaffe.org.

[30] LaTTe Java Virtual Machine. http://www.cs.rochester.edu/u/wei/runtime.html.

[31] The Sable Java Virtual Machine. http://www.sablevm.com.

[32] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

[33] POSIX. http://www.knosof.co.uk/posix.html.

[34] Native posix thread library (NPTL). http://people.redhat.com/drepper/nptl-
design.pdf.

[35] MIT Pthreads. http://www.humanfactor.com/pthreads/mit-pthreads.html.

[36] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[37] Spin. http://spinroot.com/spin/whatispin.html.

[38] R. Staerk, J. Schmid, and E. Boe<rger. Java and the Java Virtual Machine.
Springer, 2001.

[39] S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In
SPIN Model Checking and Software Verification, volume 1885 of LNCS, pages
224–244. Springer, 2000.

BIBLIOGRAPHY 167

[40] Java Grande Forum Benchmark Suite. http://www.epcc.ed.ac.uk/javagrande/threads/contents.html.

[41] SUN. http://www.sun.com.

[42] A. S. Tanenbaum. Modern operating systems. Prentice Hall, 1992.

[43] Visual Threads. http://h18000.www1.hp.com/products/software/visualthreads/index.html.

[44] valgrind. http://developer.kde.org/ sewardj/.

[45] Verisoft. http://www.bell-labs.com/project/verisoft/.

[46] vmware. http://www.vmware.com.

