DEPENDABILITY ENGINEERING WITH TIME-DEPENDENT PETRI NETS

("THE PROBLEM IS CHOICE")

CONTENTS

- motivation
- time-dependent Petri nets
 - overview
 - influence of time on qualitative properties
 - zero test
- worst-case evaluation with duration interval nets
 - counter example
 - structural compression of well-formed net parts
 - non-well-formed, but 1-bounded, acyclic, ...
 - general procedure
- safety analysis with interval nets
 - unreachability of explicit error states
 - example - concurrent pushers
MODEL

CLASSES

PETRI NETS

PLACE/TRANSITION PETRI NET
(COLoured PN)

context checking by Petri net theory

verification by temporal logics

TIME-DEPENDENT PN

NON-STOCHASTIC PETRI NET

worst-case evaluation

STOCHASTIC PETRI NET

performance prediction

reliability prediction

WHICH KIND OF TIME MODEL? (1)

- atomic sequential program parts -> transitions
 -> time assigned to transitions

- as simple as possible
 -> timed nets, [Ramachandani 74]
 -> duration nets (D nets, DPN)

- duration nets
 -> constant times assigned to transitions
 -> token reservation
 -> firing consumes time
IMMEDIATE TRANSITIONS

- zero (insignificant) time consumption
- time deadlocks
 - time deadlock = state from which
 - no transient state is reachable
 - or: no state is reachable
 where the system clock is able to advance
 - infinitely many firings in zero times
 - inconsistent time constraints!

- How to avoid time deadlocks?
 - invariants?

HOW TO ANALYSE DURATION NETS?

- time is running
 - change of the fire rule
 - pn t may fire \rightarrow tpn t must fire
 - single step \rightarrow maximal step

- special case:
 - duration of all transitions = 1 time unit
 - reachability graph construction under the maximal step firing rule

- else: transformation into special case

\[\text{duration of all transitions} = 1 \text{ time unit} \]
\[\text{reachability graph construction under the maximal step firing rule} \]

\[d > 2 \]
\[\text{lock} \]
\[\text{d-2} \]
THE INFLUENCE OF TIME
EXAMPLE 1 (SYSTEM DEADLOCK),
PETRI NET

different initial marking!

EXAMPLE 1
SYSTEM DEADLOCK,
MAX STEP RG = RG(DPN)

DSt (pn) -> not DSt (tpn)
EXAMPLE 1
SYSTEM DEADLOCK, REACHABILITY GRAPH

INIT STATE

DEAD STATE

RG (pn)
19 nodes, 32 arcs

RG (tpn)
6 nodes, 6 arcs

THE INFLUENCE OF TIME, EXAMPLE 2

not BND (pn) -> BND (tpn)
not DTr (pn) -> DTr (tpn)
EXAMPLE 2, COVERABILITY GRAPH

- not BND, simultaneously unbounded in m1 and m2
- LIVE

EXAMPLE 2, MAX STEP RG = RG(TPN)

- BND,
 - $\text{cycle time}(p) = 2$
 - $\text{cycle time}(s) = 2$
 - $\text{cycle time}(c) = 1$
- not LIVE
 - $\text{TSCC does not contain S_wait_m2}$
 - $\text{S_wait_m2 is m}_0\text{-dead}$
EXAMPLES, SUMMARY

- example 1
 -> $DSt\ (pn)\ \rightarrow\ not\ DSt\ (tpn)$

- example 2
 -> $not\ BND\ (pn)\ \rightarrow\ BND\ (tpn)$
 -> $not\ DTr\ (pn)\ \rightarrow\ DTr\ (tpn)$

- generally

 $$

 \begin{array}{c}
 \text{PN} \\
 \text{prop}(pn) \\
 \text{RG}\ (pn)
 \end{array} \\
 \xrightarrow{T\rightarrow\text{TIME}} \\
 \begin{array}{c}
 \text{TPN} \\
 \text{prop}(tpn) \\
 \text{RG}\ (tpn)
 \end{array}
 $$

- BUT,
 for Petri net based system validation,
 we are only interested in the conclusions

 $$
 \begin{array}{c}
 \text{prop}(pn) \\
 \text{??}
 \end{array} \rightarrow \\
 \begin{array}{c}
 \text{prop}(tpn)
 \end{array}
 $$

THE INFLUENCE OF TIME ON QUALITATIVE PROPERTIES

TIME-INSENSITIVE RESULTS

- $BND\ (pn)\ \rightarrow\ BND\ (tpn)$
- $not\ DSt\ (pn)\ \rightarrow\ not\ DSt\ (tpn)$
- $DTr\ (pn)\ \rightarrow\ DTr\ (tpn)$

TIME-SENSITIVE RESULTS

- $not\ BND\ (pn)\ \rightarrow\ BND\ (tpn)$
- $DSt\ (pn)\ \rightarrow\ not\ DSt\ (tpn)$
- $not\ DTr\ (pn)\ \rightarrow\ DTr\ (tpn)$

GENERALLY

- \exists -properties: $\overline{\text{prop}}\ (pn)\ \rightarrow\ \overline{\text{prop}}\ (tpn)$
- \forall -properties: $\text{prop}\ (pn)\ \leftarrow\ \text{prop}\ (tpn)$
PROBE EFFECT

- **observation** -
 the system exhibits in test mode other (less) behavior than in standard operation mode

- **cause** -
 sw test means (debugger) affect the timing behavior

- **result** -
 masking of certain types of system behavior / bugs

 - $D\text{St} (pn)$ --- $not \ D\text{St} (tpn)$

 - $live(pn)$ --- $not \ live (tpn)$

 - $not \ B\text{ND} (pn)$ --- $B\text{ND} (tpn)$

- **consequence** -
 systematic & exhaustive testing of concurrent systems is generally impossible

- **wayout** -
 qualitative models considering any timing behavior

TIME-INARIANT NET STRUCTURES

- **time-invariant == time independently live**

- **D nets** [Starke 90]

 \rightarrow homogenous ES nets

 ![Diagram](image1)

- **generalization ?**

 \rightarrow behavioral ES nets ?

- **troubblemaker** - confusing combination of channel and control flow conflicts

 ![Diagram](image2)

 \rightarrow “The problem is choice!”
CONFUSION

- concurrency and conflict overlap
 - $t_1 \# t_2$ and $t_2 \# t_3$, but t_1 concurrent to t_3

- **case 1**: $t_1 < t_3$
 - $t_2 \# t_3$ disappears, firing of t_3 does not involve a conflict decision

- **case 2**: $t_3 < t_1$
 - $t_2 \# t_3$ exists, firing of t_3 involves a conflict decision

- the interleaving sequences of concurrency may encounter different amount of decisions

- an observer outside of the system does not know whether a decision took place or not

ARE THERE TIME-INvariant SOFTWARE STRUCTURES?
INFLUENCE OF COMMUNICATION PATTERNS ON NET STRUCTURE CLASSES

<table>
<thead>
<tr>
<th>addressing waiting\</th>
<th>direct / semi-direct-by-sender</th>
<th>indirect / semi-direct-by-receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic</td>
<td>EFC</td>
<td>ES</td>
</tr>
<tr>
<td>non-deterministic</td>
<td>ES</td>
<td>ICP</td>
</tr>
</tbody>
</table>

- simplified view
 -> provided, pre- and postprocesses do not access the same communication object from different control points

- known to be time-independently live [Starke 90]
 i.e. a live net remains live under any constant delay timing.

INFLUENCE OF COMMUNICATION PATTERNS ON CONFLICT STRUCTURES

<table>
<thead>
<tr>
<th>\addressing waiting</th>
<th>direct / semi-direct-by-sender</th>
<th>indirect / semi-direct-by-receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>deterministic</td>
<td>no dynamic</td>
<td>channel & control flow conflicts appear only separately</td>
</tr>
<tr>
<td>non-deterministic</td>
<td>channel conflicts</td>
<td>confusing combination of channel & control flow conflicts possible</td>
</tr>
</tbody>
</table>
WHICH KIND OF TIME MODEL? (2)

- adequate characterization of time consumption
 - alternatives, iterations
 - time nets, [Merlin 74]
 - interval nets, I nets

- structural simplicity, e.g. alternative as
 - duration net (with token reservation)
 - (constant times)
 - (firing consumes time)
 - interval net (no token reservation)
 - (interval times)
 - (firing itself timeless)

- duration interval net, DI net
 - interval times
 - with token reservation
 - firing consumes time

<table>
<thead>
<tr>
<th>Non-stochastic T-Time-Dependent Petri Nets, Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>firing principle</td>
</tr>
<tr>
<td>times</td>
</tr>
<tr>
<td>constant</td>
</tr>
<tr>
<td>timed nets [Ramchandani 74]</td>
</tr>
<tr>
<td>interval</td>
</tr>
<tr>
<td>time nets [Merlin 74]</td>
</tr>
</tbody>
</table>

D NETS

DI NETS

I NETS
RELATION OF TIME-DEPENDENT PETRI NETS (TRANSITION \rightarrow \text{TIME})

I NETS

D NETS \leftrightarrow DI NETS

DI NET -> I / D NET

\[
\begin{align*}
&\text{DI NET} \\
p_1 &\xrightarrow{t_1} [1,2] p_2 \\
&\text{I NET} \\
p_1 &\xrightarrow{t_1_{\text{free}}} [0,0] t_1_{\text{run}} \xrightarrow{t_1} [1,2] p_2 \\
&\text{D NET} \\
p_1 &\xrightarrow{t_1_{\text{free}}} [0,0] t_1_1, t_1_2 \xrightarrow{t_1_{\text{run}}} [1,2] t_1_1, t_1_2, t_2_{\text{free}} \xrightarrow{t_2} [3,5] p_2
\end{align*}
\]
ZERO TEST FOR TURING POWER

PETRI NET?

\[
\begin{align*}
\text{test} & \rightarrow p \rightarrow \text{tFalse} \\
\text{tTrue} & \rightarrow p\text{True} \\
\text{tFalse} & \rightarrow p\text{False}
\end{align*}
\]

I NET

\[
\begin{align*}
\text{test} & \rightarrow p \rightarrow \text{tFalse} \\
\text{tTrue} & \rightarrow p\text{True} \\
\text{tFalse} & \rightarrow p\text{False}
\end{align*}
\]

\[
\begin{align*}
\text{tTrue} & \rightarrow [1,1] \\
\text{tFalse} & \rightarrow [2,2]
\end{align*}
\]

D NET

\[
\begin{align*}
\text{p} & \rightarrow \text{t1} <1> \\
\text{t2} & \rightarrow <1> \\
\text{t3} & \rightarrow <1> \\
\text{t4} & \rightarrow <1>
\end{align*}
\]

\[
\begin{align*}
\text{pFalse} & \rightarrow \text{t1} <1> \\
\text{t2} & \rightarrow <1> \\
\text{t3} & \rightarrow <1> \\
\text{t4} & \rightarrow <1>
\end{align*}
\]

False: t1, t2, t4
True: t1, t2+t3, t5

TIME-IN Variant
NET STRUCTURES (I NETS)

A live Petri net remains live under any timing, [Popova 95]

- if it is persistent,
- if the earliest firing time of all transitions is zero,
- if the latest firing time of all transitions is infinite,
- if it is an homogeneous & timely homogeneous EFC without purely immediate transitions

not homogeneous not timely homogeneous

\[
\begin{align*}
\text{t1} & \rightarrow 1,3 \\
\text{t2} & \rightarrow 2,4
\end{align*}
\]

not homogeneous not timely homogeneous

\[
\begin{align*}
\text{t1} & \rightarrow 1,2 \\
\text{t2} & \rightarrow 2,4
\end{align*}
\]

- if it is an homogeneous & timely homogeneous behaviourally free choice net without purely immediate transitions.

\[
\begin{align*}
\text{AG} (\text{enabled}(t1) \Leftrightarrow \text{enabled}(t2))
\end{align*}
\]
WORST-CASE EVALUATION
WITH DI NETS,
INPUT PARAMETERS

- time consumption of sequential program parts
 - at least l time units
 (lower bound of duration time, $low(t_{ij}) = l$)
 - at most m time units
 (upper bound of duration time, $upp(t_{ij}) = m$)
 - or any (continuous) time in between
 measured by monitoring OR calculated from computer instructions

- no explicit branching probabilities

COMMUNICATION
TIME MODEL

- time to write into channel
- receiving
- time to read from channel
- transmission time
 (of communication medium)
WORST-CASE EVALUATION WITH DI NETS
OUTPUT PARAMETERS

- \(t_{\text{begin, end}} = [\text{min}, \text{max}] \)

- min execution duration (shortest path), max execution duration (largest path)

- esp. valuable for systems which require predictable timing behaviour (to meet given deadlines)

- calculations can be based on discrete reachability graph (only integer states)
 - \(\text{INA} \)

COMPUTATION OF MINIMAL PATH BY LOWER BOUNDS ONLY, COUNTER EXAMPLE

min_duration(dresden, weimar):
- D net with lower bounds only: 14
- DI net with lower and upper bounds: 7

-> maximal path by upper bounds only? (!)
COUNTER EXAMPLE AS D NET

dresden

berlin

dresden2leipzig

berlin2leipzig

take_fast_train

leipzig1

leipzig2

take_slow_train

in_slow_train

in_fast_train

slow_train

fast_train

weimar

troubemaker

overlapping time windows of
dresden2leipzig & berlin2leipzig

STRUCTURAL COMPRESSION OF WELL-FORMED NET STRUCTURES, EXAMPLE

init

par [2,3]

if

a1 [2,3]

a3 [1,5]

a4 [3,8]

endif

a2 [3,5]

a5 [1,1]

a6 [3,4]

loop

(0,5)

endloop

[0,0]

number of iterations
STRUCTURAL COMPRESSION OF WELL-FORMED NET STRUCTURES, EXAMPLE (CONT.)

$$t_{ik} = [a, b] \quad t_{kj} = [c, d]$$

$$t_{ij} = [a + c, b + d]$$

assumption:
$$\{\text{lower bound} \} \quad \text{bound} \quad \{\text{upper bound} \}$$

of iterations given
STRUCTURAL COMPRESSION
OF WELL-FORMED NET STRUCTURES,
GENERAL (CONT.)

\[t_{ij} = \begin{bmatrix} \text{low}(t_{ij}), \text{low}(t_{i'j'}) + \text{low}(t_{jj}) + \text{low}(t_{ij}) \\ \text{upp}(t_{ij}), \text{upp}(t_{i'j'}) + \text{upp}(t_{jj}) + \text{upp}(t_{ij}) \end{bmatrix} \]

EXAMPLE - INTERVAL EVALUATION
OF NON-WELL-FORMED STRUCTURES,
BUT 1-BOUNDED, ACYCLIC, ...

\[t_{ij'} = \begin{bmatrix} \text{max}(\text{low}(t_{i1j1}), \text{low}(t_{i2j2})), \\ \text{max}(\text{upp}(t_{i1j1}), \text{upp}(t_{i2j2})) \end{bmatrix} \]

[Reske 95, p. 92]

[18,46] cycle time
INTERVAL EVALUATION,
GENERAL PROCEDURE

- net structure transformation
 - [first state -> init state]
 - [last state -> dead state]
 - resolution of (unlimited) cycles, if any

- net type transformation
 - DI net -> I net or DI net -> D net;

- determine (set of) state numbers of
 - first state
 - last state
 - of the path to be measured;

- evaluation of
 - reachability graph OR ?
 - other descriptions of all possible behaviours
 - prefix of branching processes
 - concurrent automaton

MIN (pathes(init, any dead state));
MAX (pathes(init, any dead state));
ENVIRONMENT MODEL, WITH EXPLICIT ERROR STATES

CONCURRENT PUSHERS, (PART OF THE) REACHABILITY GRAPH

Remark:
Only the interesting parts of the markings are shown.

\[
\text{init, } R_1\text{ off, basic} \\
\vdots \\
\text{tr1; } R_1\text{ set on;}
\]

\[
\text{step1, } R_1\text{ on, ext} \\
\text{step2, } R_1\text{ on, ext} \\
\text{R1 set off; tr3}
\]

\[
\text{step3, } R_1\text{ off, ext}
\]

\[
\text{bad state!}
\]

\[
\text{bad state!}
\]

\[
\rightarrow \text{(preemptive) interval nets}
\]

unreachability of bad states,
\(m_{\text{dead}}(\text{ext2far}) \) if:

\[
lft(tr2) < eft(\text{ext2far}) \land \\
lft(R1\text{ set off}) < eft(\text{ext2far})
\]
REFERENCES

[Bause 96]
Bause, F.; Kritzinger, P. S.:
Stochastic Petri Nets, An Introduction to the Theory;
Vieweg 1996.

[Heiner 97a]
Heiner, M.; Popova-Zeugmann, L.:
Worst-case Analysis of Concurrent Systems with Duration Interval Petri Nets;

[Heiner 97b]
Heiner, M.; Popova-Zeugmann, L.:
On Integration of Qualitative and Quantitative Analysis of Manufacturing Systems Using Petri Nets;

[Merlin 74]
Merlin, P.:
A Study of the Recoverability of Communication Protocols;

[Popova 91]
Popova, L.:
On Time Petri Nets;
J. Information Processing and Cybernetics EIK 27(91)4, 227-244.

[Popova 94]
Popova-Zeugmann, L.:
On Time Invariance in Time Petri Nets;

[Popova 95]
Popova, L.:
On Liveness and Boundedness in Time Petri Nets;

[Ramchandani 74]
Ramchandani, C.:
Analysis of Asynchronous Concurrent Systems Using Petri Nets;

[Starke 90]
Starke, P. H.:
Analysis of Petri Net Models (in German);
B.G. Teubner 1990.

[Starke 95]
Starke, P.:
A Memo On Time Constraints in Petri Nets;
Humboldt-University zu Berlin, Informatik-Bericht Nr. 46, August 1995.