

Bayesian Networks

Sparse Candidate Algorithm

Data and Problems

Bayesian Networks The Sparse Candidate Algorithm

Yvonne Pöschl

March 29, 2006

Bayesian Networks

Sparse Candidate Algorithm

Data and Problems

Sparse Candidate Algorithm

Outline

Introduction

Bayesian Networks

Sparse Candidate Algorithm

- 2 Bayesian Networks
- Sparse Candidate Algorithm
- 4 Data and Problems

Introduction

Bayesian Networks

Sparse Candidate Algorithm

- Regulatory networks
- Metabolic pathways
- Biology, pharmacology, and medicine
- (causal) Bayesian networks
- Reconstruction of underlying system

Bayesian Networks

Sparse Candidate Algorithm

- 3 Sparse Candidate Algorithm
- 4 Data and Problems

- Represent probability distribution on X = {X₁,..., X_l} in a dataset D
- Consists of 2 components
 - Structure S: directed acyclic graph
 - Nodes
 - Edges
 - Parameters θ: conditional probability distributions

Bayesian Networks

Sparse Candidate Algorithm

Learning Bayesian networks

- Find the network maximizing some objective function (score)
- Bayesian approach
- MAP approach $\log P(S|\mathbf{D}) = \log P(S) + \log P(\mathbf{D}|S) \log P(\mathbf{D})$

• Evidence $P(\mathbf{D}|S)$ $P(\mathbf{D}|S) = \int_{\theta} P(\mathbf{D}|S, \theta) P(\theta|S) d\theta$

Priors

ntroduction

Bayesian Networks

Sparse Candidate Algorithm

Bayesian Networks

Sparse Candidate Algorithm

Data and Problems

Introduction

2 Bayesian Networks

Sparse Candidate Algorithm

Reconstructing the structure S

- Search is NP-hard
- Restriction of the search space
- Heuristics Sparse Candidate Algorithm (SCA)
- Local search (local sub-problems)
- Decomposable score

Introduction

Bayesian Networks

Sparse Candidate Algorithm

- Iterative algorithm
- The SCA consists of 2 parts
 - Restrict phase
 - Maximize phase
- Restriction of the parents for each node to a small candidate set
- Instead of *I*-1 parents, only *c* possible parents for each node, where *c* << *I*
- Sub-optima possible

Bayesian Networks

Sparse Candidate Algorithm

Bayesian Networks

Sparse Candidate Algorithm

- Consider local sub-problems
- $Score(S : \mathbf{D}) = \sum_{i} ScoreContribution(X_i, Pa(X_i) : \mathbf{D})$
- Possible edge changes

	before				after		
add	В		Α	В	\rightarrow	Α	
remove	В	\rightarrow	Α	В		Α	
reverse	В	\rightarrow	Α	В	\leftarrow	Α	

- Greedy hill climbing, simulated annealing
- Sub-optima possible

Bayesian Networks

Sparse Candidate Algorithm

- 2 Bayesian Networks
- 3 Sparse Candidate Algorithm

Data and Problems

Introduction

Bayesian Networks

Sparse Candidate Algorithm

Data and Problems

Data

- Microarray data
- LCMS/GCMS data
- Problems
 - Small datasets
 - Direction of an edge causality
 - Normalization and discretization