NoPain – Meeting

Monika Heiner Christian Rohr

Department of Computer Science Brandenburg University of Technology Cottbus

http://www-dssz.informatik.tu-cottbus.de

May 13, 2013

Work Packages

Coloured hybrid Petri nets $(\mathcal{HPN}^{\mathcal{C}})$

- a. Predecessor WPs: -/-
- b. Successor WPs: BTU-WP2, BTU-WP7
 - Uniting the modelling concepts coloured and hybrid Petri nets in Snoopy
 - Expansions around new special modelling features like constants and self-modifying edges with marking-dependent arc weights

 $\mathcal{HPN}^{\mathcal{C}}$

 $\mathcal{HPN}^{\mathcal{C}}$

- an intermediate approximation between SPN and CPN
- level of approximation controlled by the number of transitions and places that belong to each category
- static partitioning, dynamic partitioning
- combining the modelling power of coloured Petri nets and hybrid Petri nets

Disadvantages till now

- different kinds of value lists
 - \rightarrow marking list, function list, parameter list
- inconsistent use of value lists
 - \rightarrow not available in all net classes
- misused node class for parameters
 - \rightarrow parameters are not part of the actual Petri net
- no dependencies between different attributes of different net elements
 - \rightarrow user has to take care of dependencies manually
 - ightarrow redundant data, error prone

Attributes with value lists till now

	\mathcal{PN}	\mathcal{XPN}	\mathcal{CPN}	SPN	${\cal GHPN}$	\mathcal{TPN}
Marking			\checkmark	\checkmark	\checkmark	\checkmark
Arc weight						
Rate function			\checkmark	\checkmark	\checkmark	
Weight				\checkmark	\checkmark	
Time delay				\checkmark	\checkmark	
Time interval				\checkmark	\checkmark	\checkmark

Constants

RKIP inhibited ERK Pathway

Constants

RKIP inhibited **ERK** Pathway

		Main	N5	N10	N100	N1000	N10000		
	Raf1Star	1	5	10	100	1000	10000		
	RKIP	1	5	10	100	1000	10000		
	Raf1Star RKIP	0	0	0	0	0	0		
	FRKPP	0	0	0	0	0	0		
	MEKDD EDK	0	0	0	0	0	0		
Dafe	MERFF_ERR	0	0	0	0	0	0		
Rai	ISLAI_RKIP_ERKPP	0	0	0	0	0	0		
	RKIPP_RP	0	0	0	0	0	0		
	MEKPP	1	5	10	100	1000	10000		
	ERK	1	5	10	100	1000	10000		
	RKIPP	0	0	0	0	0	0		
	RP	1	5	10	100	1000	10000		
_		NE					140000		
1	Main 0.53	N5 0.53	0.53	N100	0.53	0.53	N10000		
0	0.0072	0.0072	0.0072	0	0072	0.0072	0.0072		
63	0.625	0.625	0.625	(625	0.625	0.625		
c4	0.00245	0.00245	0.00245	0.0	0245	0.00245	0.00245		
c5	0.0315	0.0315	0.0315	0.	0315	0.0315	0.0315		
c6	0.8	0.8	0.8		0.8	0.8	0.8		
c7	0.0075	0.0075	0.0075	0.	0075	0.0075	0.0075		
c8	0.071	0.071	0.071	(.071	0.071	0.071		
c9	0.92	0.92	0.92		0.92	0.92	0.92		
c10	0.00122	0.00122	0.00122	0.0	0122	0.00122	0.00122		
c11	0.87	0.87	0.87		0.87	0.87	0.87		
fs	2.5	2.5	2.5		2.5	2.5	2.5		
Ν	1	5	10		100	1000	10000		
1	Mala	E.C	at 2		evel	1	D		
	MassAction(c1*fs/N)		MassAction(c1)	1	MassAction(c1/	(fs)	c1 * Raf1Star		
	MassAction(c2)		MassAction(c2)		MassAction((2)	c2 * Raf 1Sta		
	MassAction(c3*fs/N)		MassAction(c3)	N	lassAction(c3/	fs) c3 * Ri	af1Star_RKIP *		
	MassAction(c4)		MassAction(c4)		MassAction(c4) c4*F	taf1Star_RKIP_		
	MassAction(c6*fs/N)		MassAction(c6)	1	MassAction(c6/	fs)	c6 * MEKPI		
	MassAction(c7)		MassAction(c7)		MassAction(c7)	c7 * MEKP		
	MassAcción(c9*rs/N)		massaction(c9)		MassAccion(C9/	10)	c10 * PK		
	MassAction(CT0)		MassAction(C5)		MassAction	(c5) c5 * F	af1Star RKIP		
	MassAction(c8)		MassAction(c8)		MassAction	(8)	CS * Karistar_RKIP_I		

r11

MassAction(c11)

c8 * MEKPP ERK

c11 * RKIPP RP

MassAction(c11)

MassAction(c11)

RKIP inhibited ERK Pathway

Advantages of new Constants

- new metadata class "Constants"
 - \rightarrow not part of the net structure any more
- central place for definition of constants
- consistent use of constants
 - \rightarrow available in all net classes
- dependencies between different attributes of different net elements possible
 - \rightarrow no redundant data

Attributes with constants

	\mathcal{PN}	\mathcal{XPN}	\mathcal{CPN}	\mathcal{SPN}	${\cal GHPN}$	\mathcal{TPN}
Marking	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Arc weight	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rate function			\checkmark	\checkmark	\checkmark	
Weight				\checkmark	\checkmark	
Time delay				\checkmark	\checkmark	
Time interval				\checkmark	\checkmark	\checkmark

Advantages of new Constants

• integer and real valued constants $\rightarrow \mathcal{PN}, \, \mathcal{XPN}$ only integer constants, other net classes both

$\label{eq:arithmetic expressions (+,-,*,/)} \rightarrow \mbox{ only values } \geq 0 \mbox{ allowed }$

dependencies between constants

$$\rightarrow c_1 = 1, \ c_2 = 2 * c_1, \ c_3 = c_2 + 1$$

- new grouping concept for constants → combinatorial diversity
- change groups at run-time

Advantages of new Constants

Constant	Group	Туре	Main	V-Set 2	V-Set 3	V-Set 4
N1	marking	int	1	2	3	4
N2	marking	int	2*N1			
k1	parameter	double	0.15		0.45	
k2	parameter	double	0.3			0.6
c1	all	int	10			
c2	all	int	c1+10	c1+20	c1+30	c1+40

RKIP inhibited **ERK** Pathway

RKIP inhibited **ERK** Pathway

	Constant	Group	Type	Main	N5	N10	N100	N1000	N10000
1	N	marking	int	1	5	10	100	1000	10000
2	c1	parameter	double	0.53					
3	c2	parameter	double	0.0072					
4	c3	parameter	double	0.625					
5	c4	parameter	double	0.00245					
6	c5	parameter	double	0.0315	1				
7	сб	parameter	double	0.8					
8	c7	parameter	double	0.0075					
9	c8	parameter	double	0.071					
10	c9	parameter	double	0.92	1				
11	c10	parameter	double	0.00122					
12	c11	parameter	double	0.87	1				
13	fs	parameter	double	2.5					

Reasons

transfer of tokens in one single step

division of tokens, e.g. cell division

Possible with restrictions

- only bounded nets
- complementary place or inhibitor arcs
- need to model every possible marking → blow up net size, error prone

Possible with restrictions

- only bounded nets
- complementary place or inhibitor arcs
- need to model every possible marking
 - \rightarrow blow up net size, error prone

Not possible for unbounded Petri nets

Definition

Petri net $\mathcal{PN} = (P, T, f, m_0)$ is defined as followed

- ${\it P}\,$ a finite, non empty set of places
- $T\,$ a finite, non empty set of transitions
- $f: ((P \times T) \cup (T \times P)) \to \mathbb{N}_0$ (weighted directed arcs)

 m_0 : initial marking, whereby a marking $m \in \mathbb{N}^{|P|}$

Definition

Petri net with marking dependent arc weights $\mathcal{PN}=(P,T,f,m_0)$ is defined as followed

- P a finite, non empty set of places
- $T\,$ a finite, non empty set of transitions
- $f\colon ((P\times T)\cup (T\times P))\times \mathbb{N}_0^{|P|}\to \mathbb{N}_0$

(directed arcs with marking dependent weights)

 m_0 : initial marking, whereby a marking $m \in \mathbb{N}^{|P|}$

Definition

Petri net with marking dependent arc weights $\mathcal{PN}=(P,T,f,m_0)$ is defined as followed

- P a finite, non empty set of places
- $T\,$ a finite, non empty set of transitions
- $$\begin{split} f\colon \left((P\times T)\cup (T\times P)\right)\times \mathbb{N}_0^{|P|} \to \mathbb{N}_0 \\ & \text{(directed arcs with marking dependent weights)} \end{split}$$
- m_0 : initial marking, whereby a marking $m \in \mathbb{N}^{|P|}$

Arc weights can contain place names.

Examples

transfer of tokens in one single step

division of tokens, e.g. cell division

Examples

transfer of tokens in one single step

division of tokens, e.g. cell division

Pitfall: transition always enabled without further preconditions.

Addition of tokens

Milestones

	2013			2014				2015				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WP1		M1										
WP2				M2								
WP3						M3						
WP4								M4				
WP5								M4				
WP6												M5
WP7												M6

Next steps...

Connection to MATLAB

- Connection of the MATLAB software package for hybrid Petri nets as well as relevant net classes
 - **I** Export the net structure in MATLAB format \hookrightarrow readable by Octave too
 - 2 Direct connection from Snoopy to MATLAB through its API, e.g. call MATLAB functions from within Snoopy

Thank you for your attention!