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Overview 

•  Computational models in systems biology 

•  Model checking 

•  Multiscale spatio-temporal model checking 

•  Multiscale spatio-temporal meta model checking 

•  Implementation 

•  Case study: Acute inflammation of gut and lung 

•  Conclusions 
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Model Checking 

“Formally check whether  
a model of a biochemical system does what we want” 

 
Components: 
 
 model   

•  the current description of a biochemical system of interest 
 
 property 

•  a property which we think the system should have 
 
 model checker  

•  a program to test whether the model has the property 

david.gilbert@brunel.
ac.uk 
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To formally express time properties 
we use a temporal logic 

•  "I am hungry.”   
•  "I am always hungry", "I will eventually be hungry",  
•  "I will be hungry until I eat something”. 
 
Linear time logics restricted to single time line.  
 
Branching logics can reason about multiple time lines.  
“There is a possibility that I will stay hungry forever.”  
“There is a possibility that eventually I am no longer hungry.” 
 
Various logics :   

•  Computational Tree Logic (CTL) 
•  Continuous Stochastic Logic (CSL) 
•  Linear-time Temporal Logic (LTL) 

each with different expressivity. 
 

david.gilbert@brunel.
ac.uk 
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Model Checking  
Biochemical Pathways 

david.gilbert@brunel.
ac.uk 

Pathway Model 

Property 
Eg, “Order of peaks is;  RafP,  
MEKPP, ERKPP 
 Model Checker 

Yes/no or  
probability 

predicted 
behaviour 

model 
(knowledge) 

observed 
behaviour 

natural 
biosystem 

wetlab 
experiment

s 

Formalising 
understanding 

model-based 
experiment design 

analysis 
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Properties… 

Examples: 
 
•  After 100 seconds the concentration of Protein1 is stable 

•  Protein1 peaks and falls 

•  Protein1 peaks and stays constant 

•  Protein1 peaks before Protein2 

•  Protein1 oscillates 4 times in 5,000 seconds 

•  Molecules of Protein2 are required for molecules of 
Protein1 to be created 

david.gilbert@brunel.
ac.uk 
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Analytical vs Simulative 
 Model Checking 

Analytical: 
•  Exact probabilities & prove properties 
•  A model state is an association of #molecules/levels to each of the species 

•  Protein1 has 10 molecules & Protein2 has 20 molecules 
•  Analytical assesses every state that the model can be in (reachable states) 
•  State space can grow even worse  than exponentially with increasing 

molecules, or even be infinite! 
 
Simulative: 
Instead of analysing the constructed state space: 
  

•  analyse simulation outputs 
•  Simulate the model X times and check these simulations 
•  Simulation run = finite path through the state space 
•  Can’t prove probabilities 

david.gilbert@brunel.
ac.uk 
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Simulative Model Checking 

In-line: check the observations as they arrive 
> Requires complex computational machinery: ‘combine’ simulator & model checker 
> Good for biochemical observations 
> Don’t always need to finish the experimental run 

 
Off-line: check the observations after all have been generated 

> Easier to implement computationally (simulate then check) 
> Need to always define when to ‘stop’ generating observations 

david.gilbert@brunel.
ac.uk 
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Simulation-based Model Checking  
Biochemical Pathways 

david.gilbert@brunel.
ac.uk 

Model Checker 

Model 

Property 
Eg, “Order of peaks is   
RafP, MEKPP, ERKPP” Yes/no or  

probability 

Lab Model 

Behaviour Checker 

Time series data 

predicted 
behaviour 

model 
(blueprint) 

observed 
behaviour 

synthetic 
biosystem 

desig
n 

construction 

validation 
validation 

desired 
behaviour 

verification 
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(P)LTL Linear Temporal Logic 

G (φ )  : φ always happens 
F (φ )  : φ happens at some time 
X (φ )  : φ happens in the next time point 
φ1 U φ2  : φ1 happens until φ2 happens 

 
Protein stability: 

  P=?  [  time >= 100 à ([Protein] >= 4 ^ [Protein] <= 6)  ] 
 
Protein concentration rises to a maximum value and then remains constant: 

   P=? [(d[Protein]> 0) U ( G([Protein] >= 0.99*max[Protein]) )  ] 
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5 

P=?[  F( X > 5 )  ] 
 
=> P = 1 

X 

MC2 with ODE Output 

david.gilber
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5 

P=?[  F( X > 5 )  ] 
 
=> P = 4/6 

X 

MC2 with Gillespie Output 

david.gilber
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Qualitative to quantitative descriptions in 
PLTL 

 
Qualitative:  
Protein rises then falls  
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ) ]  
 
Semi-qualitative:  
Protein rises then falls to less than 50% of peak concentration  
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ∧  

 F ( [Protein] < 0.5 ∗ max[Protein] ) ) ]  
 
Semi-quantitative:  
Protein rises then falls to less than 50% of peak concentration by 60 minutes 
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ∧  

 F ( time = 60 ∧ Protein < 0.5 ∗ max(Protein) ) ) ]  
 
Quantitative:  
Protein rises then falls to less than 100µMol by 60 minutes  
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ∧  

 F ( time = 60 ∧ Protein < 100 ) ) ]  
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Model searching 
Peaks at least once  
(rises then falls below 50% max concentration) 
P>=1[  ErkPP <= 0.50*max(ErkPP) ∧ d(ErkPP) > 0 U ( ErkPP = max(ErkPP) ∧ F( ErkPP <= 0.50*max(ErkPP) ) )  ] 
Brown 
Kholodenko 
Schoeberl 
 

  
Rises and remains constant  
(99% max concentration) 
P>=1[ErkPP <= 0.50*max(ErkPP) ∧ ( d(ErkPP) > 0 ) U ( G(ErkPP >= 0.99*max(ErkPP)) )  ] 
Levchenko 
 
 
Oscillates at least 4 times 
P>=1[  F( d(ErkPP) > 0 ∧ F( d(ErkPP) < 0 ∧ … ) )  ] 
Kholodenko 
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Model checking over large amount of data 

Whole genome metabolic model (E.coli) 
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Behaviours 
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What about scaling up? 
david.gilbert@brunel.

ac.uk 
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Multiscale Modelling in Biology 

Cell 
Tissue 

Organ 

Organism 

Scale up to fit the need? 
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Multiscale Modelling Challenges 

Repetition – multiple components with similar 
definitions 
Variation –  genetic mutants; random variants 
Organisation - regular / irregular patterns in 1, 2 or 3 
dimensions 
Communication – short & long distance 
Hierarchical organisation – intra or inter cellular 
(tissues, organs, …) 
Movement – mobility (passive) & motility (active) 

(Components could be molecules, organelles, cells, 
tissues, organs, organisms. ) 

david.gilbert@brunel.
ac.uk 
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…Multiscale Modelling Challenges 

Replication  - reproduction 
Deletion – cell death 
Irregular/semi-regular organisation of components 
– for example a not-exact honeycomb grid.  
Dynamic grid size – for example alter size and/or 
topology of grid to model development. Also required 
for ability to insert/remove items.  
Differentiation of components - for example, 
differentiation of embryonic stem cells or immune cells 
makes a less specialized cell more specialized.  
Pattern formation of components - organizing a 
number of cells in appropriate one, two or three 
dimensional structures in space and time.  

david.gilbert@brunel.
ac.uk 
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Repetition of individual components 

Components within a cell (organelles etc) 
Multiple cells each of which having a similar definition 
Repeated tissue fragments 
Repeated organs (wings,…) 
Repeated individual organisms 
 

david.gilbert@brunel.
ac.uk 
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Variation 

Sets of similar components with defined variations 
Random mutation 
Genetic mutants 
Cancerous tissue 
Differentiation 
 
 

david.gilbert@brunel.
ac.uk 
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Spatial organisation 

Between cells 
> how they are organised into regular or irregular patterns over spatial networks in one, two or 
three dimensions. 

david.gilbert@brunel.ac.uk 
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Communication 

Between immediate neighbours (intracellular complexes) 
Long-distance (cytokines etc) 
 
Further constraints: 
Type of relationship between partners 
Type of component(s) 
History of component(s) 
Position of component(s) in spatial network. 

david.gilbert@brunel.
ac.uk 
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Hierarchical organisation 

Components containing repeated sub-components 
  
Cell containing several compartments /components.  
 
Enables the use of abstraction over level of detail used to describe components 

david.gilbert@brunel.
ac.uk 
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Movement 

Mobility – passive movement.   
   Protein transport 
   Sodium transport  

 
Motility – active movement.   
Cells using organelles (flagellae) 

      
     General cellular motility 

david.gilbert@brunel.
ac.uk 
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Replication 

E.g. cell division 
 
Can take into account: 
Mutation 
Spatial organisation / position 

david.gilbert@brunel.
ac.uk 
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Exchange   

Exchange of (genetic) information 
Sexual 
Asexual 

david.gilbert@brunel.
ac.uk 
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Death etc 

Cell death:  
> apoptosis (programmed), necrosis (traumatic) 

Quiescence 
Senility 

david.gilbert@brunel.
ac.uk 
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Coloured Petri Nets 

Permit 
Repeated elements 
Discrimination of species (molecules, metabolites, proteins, secondary substances, 
genes, etc.).  
Locality: distinguish between sub-populations of a species in different locations (cytosol, 
nucleus and so on). 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

D. Gilbert, M. Heiner, F. Liu and N. Saunders (2013): Colouring Space - A Coloured 
Framework for Spatial Modelling in Systems Biology. In Proc. PETRI NETS 2013. 
Springer LNCS, 7927, 230-249. 
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Mapping space in colour 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

1D : natural numbers Nat [1, 2, 3, … Max] 
 
 
 
 

2D : tuples of Nat [(1,1), (1,2), …. (2,1)… (Maxx, Maxy)] 
3D : triples of Nat [(1,1,1), …(Maxx, Maxy, Maxz)] 
 

D. Gilbert, M. Heiner, F. Liu and N. Saunders (2013): Colouring Space - A Coloured Framework for Spatial 
Modelling in Systems Biology. In Proc. PETRI NETS 2013. Springer LNCS, volume 7927, pages 230-249, 
June 2013  

Discrete approach 
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Mapping space in colour 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

1D : natural numbers [1, 2, 3, … Max] 

2D : tuples of Nat [(1,1), (1,2), …. (2,1)… (Maxx, Maxy)] 
 
 
 
 
3D : triples of Nat [(1,1,1), …(Maxx, Maxy, Maxz)] 
 

D. Gilbert, M. Heiner, F. Liu and N. Saunders (2013): Colouring Space - A Coloured Framework for Spatial 
Modelling in Systems Biology. In Proc. PETRI NETS 2013. Springer LNCS, volume 7927, pages 230-249, 
June 2013  

Discrete approach 
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Mapping space in colour 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

1D : natural numbers [1, 2, 3, … Max] 

2D : tuples of Nat [(1,1), (1,2), …. (2,1)… (Maxx, Maxy)] 
3D : triples of Nat [(1,1,1), …(Maxx, Maxy, Maxz)] 
 

D. Gilbert, M. Heiner, F. Liu and N. Saunders (2013): Colouring Space - A Coloured Framework for Spatial 
Modelling in Systems Biology. In Proc. PETRI NETS 2013. Springer LNCS, volume 7927, pages 230-249, 
June 2013  

Discrete approach 
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Diffusion example: 1-D  
�
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cAMP_1 cAMP_2 cAMP_3

100

cAMP_4 cAMP_5

t1_1_2

t1_2_1

t1_2_3

t1_3_2

t1_3_4

t1_4_3 t1_4_5

t1_5_4

K_DIF

1simulation end: 50
output: 100

{david.gilbert,ovidiu.p
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1D 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

Easy to change spatial resolution 



Brunel University London  

1D, 15 grid positions 
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1D, 150 grid positions, scaling 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  
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2D (4) 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  
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2D (8) 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  
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Unfolding… 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

2D4 2D8 
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2D (4) gradient 

’test.dat.100’ matrix

 0  2  4  6  8  10  12  14
x

 0

 2

 4

 6

 8

 10

 12

 14

y

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

{david.gilbert,ovidiu.p
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2D (8) gradient 

’data.dat.00000100’ matrix

 0  2  4  6  8  10  12  14
x

 0

 2
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 8
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y

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

{david.gilbert,ovidiu.p
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2D (8) gradient, higher resolution 
’data.dat.00000080’ matrix

 0  2  4  6  8  10  12  14
 0
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 8
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 0.36

 0.38

 0.4

 0.42

 0.44

 0.46
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 0.5

 0.52

{david.gilbert,ovidiu.p
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Growth	

{david.gilbert,ovidiu.parvu}@brunel.ac.uk 	



Growth example (division)	

{david.gilbert,ovidiu.parvu}@brunel.ac.uk 	

• Cell division: process by which a parent 
cell divides into two or more daughter cells.	

Bacterial colony	
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Specification 

• Starts with only one cell or organism 

• Dimensions of the environment are fixed 

• Division of the cells/organisms is random/
stochastic 

• A maximum capacity or volume for each position 
in the grid 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Colony profile 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

• The maximum height of the colony of bacteria is 
limited due to: 



Brunel University London  

Colony profile 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

• The maximum height of the colony of bacteria is 
limited due to: 

1.  Lack of nutrients for the bacteria at the top 
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Colony profile 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

• The maximum height of the colony of bacteria is 
limited due to: 

1.  Lack of nutrients for the bacteria at the top 

2.  Lack of oxygen for the bacteria at the bottom 
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Specification 

• Starts with only one cell or organism 

• Dimensions of the environment are fixed 

• Division of the cells/organisms is random/
stochastic 

• A maximum capacity or volume for each position 
in the grid 

• Whenever cellular division occurs the parent cell 
preserves its position, offspring cell may be 
(probabilistically) displaced to neighbouring 
positions 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Constructing the model {david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

1. Creating the basic 
model for growth 
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Constructing the model {david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

1. Creating the basic 
model for growth 
2. Adding the capacity/
maximum height 
constraint 



Brunel University London  

Constructing the model {david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

24 hours growth:   ~26-27 generations, ~60m cells 

cell 
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Simulating the growth model {david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  



Alternative geometries	
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Rectangular vs circular geometry 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  
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Discretising the polar space 

Split the initial circle in N annuli… 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Discretising the polar space 

… and split each annuli in M sectors... 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Discretising the polar space 

… obtaining N x M annular sectors. 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Mapping polar space to a matrix 

 0       1       2      3       4       5       6      7 
0 
1 
2 
3 

Remark: Only 1 cell from row 0 will 
contain a value and this value will 
represent the concentration of the 
circle of radius 0. 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Details missing 

Ask us for them…. 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Stochastic gene expression switching mechanism 

Type A Type B 

α 

β 

mutate 

back-mutate 

… where α and β are called the mutation rates of 
bacteria. 

1 - α 

1 - β 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  Alternative geometries: Phase 

Variation 
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Alternative geometries: Phase 
Variation 

Characteristic: development of sector-like patterns 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Phase variation model simulations 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  
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Movement…. {david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Movement: Approach 1 

Model space using a grid with (x, y) colour tuples and use a count for the number of 
agents per grid position 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

2D 

1 

2 

1 

3 

4 Advantage
: 

Memory 
efficient 

Disadvantage
: 

Agents do not 
have a state 
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Movement: Approach 2 

Model each agent with an Id and mark the position(s) (X, Y) it occupies 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

2D 

Advantage: 

Agents have a  
state + finite 
space 

Disadvantage
: 

A grid is 
created 

for each agent 
… 

1 
nr. of agents 

Id = 1 Id = 2 Id = nr. of agents 
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Movement: Approach 3 

Model every agent as two places “x” and “y” where each place gets a colour tuple Id 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

2D 

Advantage
: 

Memory 
efficient 
and agents 
have a 
state 

Disadvantage: 

Higher runtime 
effort (state-
dependent 
rates requires 
special tool 
support) 

Id X Y 
1 1 2 
2 3 4 
… … … 
Nr. of 
agents 

1 3 
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Multiscale: from signalling to organs 

ODEs 
 

Actin_(MyoP)2

Actin_MyoP

Actin

100

(MyoP)2

Myosin_P
10

Myosin 100

Drok_act

10

Drok
100

Dsh_act

10

Dsh

100

Fz_Fmi

Fmi 10

Ld 10

Fz 10

Fz_act

Vang10

Fmi_neigh

10

Fmi_Vang

FzFmi_FmiVang

Pk10

FzFmi_FmiVangPk

Dsh_FzFmi_FmiVang

MyoDimer_actin_binding

dimerisation

de-binding

binding

dephosphorylation

phosphorylation

deactivation_drok

activation_drok

r_2

r_1activation_Fz

rneigh_1

rneigh_2

rInter_1

rInter_2

rInter_3

rInter_4

rInter_5

rInter_7

rInter_6

deactivation_dsh

dsh_complex

de_dsh_complex

2

Petri nets (coloured, hierarchical) 
Monika Heiner 

Planar Cell 
Polarity 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

Gao et al (2013). TCCB, 10:2. 
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Hierarchical Organisation 
Tissues – cells – ‘compartments’ 

Hierarchically coloured 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  

Intracellular compartments 

Tissue (Cells) 

Cell: (3,2) 
Compartment (2,1) 

Colourset =  {…, {((3,2)(1,1)), ((3,2)(2,1)), ((3,2)(3,1)),……((3,2)(3,3))}, … 
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Different  
Compartmentalisation 

david.gilbert@brunel.
ac.uk 

Systems & Synthetic Biology 74 

Symmetric Models 

1:1 

1:2 
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HCPN Model for Tissue 
(Hierarchically Coloured Petri Net) 

 Detailed level 

{david.gilbert,ovidiu.p
arvu}@brunel.ac.uk  
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Example unfolding 
{david.gilbert,ovidiu.p

arvu}@brunel.ac.uk  

Unfolding at the cellular-level 

Unfolding at the tissue-level 
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Modelling Mutant Clones 

Knock-out: cell clones in which a certain gene is knocked out are induced 
in the tissue (Biological experiments)  

•  no corresponding protein produced. 

Petri nets: set the protein concentration zero 
 
CPN (repeat, with variations) 

•  Big enough patch (tissue): 800 cells 
•  Size / shape of clone: 80 cells (10% of the patch) in a circle-like 

shape  
 
 

david.gilbert@brunel.
ac.uk 
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Mutated tissue 
Experimental vs In-silico 

david.gilbert@brunel.
ac.uk 

Systems & Synthetic Biology 78 

•  Q. Gao, F. Liu, D. Gilbert, M. 
Heiner & D. Tree. CMSB 2011, 
Paris, France. 
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Analysis & Visualisation 

Clustering 
•  DBScan 
•  Hierarchical clustering 
•  K-means 
•  SOMs 

 
Model checking 

david.gilbert@brunel.
ac.uk 
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Clustering of behaviours 
david.gilbert@brunel.

ac.uk 

Systems & Synthetic Biology 80 
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Clustering 

DBScan with Principal Component Analysis (PCA) 
 

david.gilbert@brunel.
ac.uk 
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 Unbiased model:  
Grid 40*40 (800 cells) 

Feature 
selection: 
PCA 

Fz- mutant clone model: 
A patch of mutated cells lacking Frizzled (Fz) 

in a wild-type background 
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Simulation-based Model Checking  

Systems & Synthetic Biology 

Property 

Yes/no or  
probability 

Model 

Model Checker Behaviour 
Checker 

Model Time series 
data 

predicted 
behaviour 

model 
(knowledge) 

observed 
behaviour 

natural 
biosystem 

wetlab 
experiments 

Formalising 
understanding 

model-based 
experiment design 

analysis 

•  PLTL using MC2 [Donaldson&Gilbert CMSB 2008] 
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Model Checking 
Primary data 
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Wild-type 

Fz- mutant clone model 
Unlike in the wild-type cells, for the cells distally neighbouring to the Fz- clone 
the concentration of FFD in the middle distal compartment is always lower than that 
of the middle proximal compartment: 
P=? [time > 0 → G(D2 < P2)] 
 
Moreover, the trace of D2 exhibits a peak followed by a trough, which is not true for 
P2: 
P=?[F(d(D2) > 0 ∧ F(d(D2) < 0 ∧ F(d(D2) > 0)))] 
 

Distally 
neighbouring 
to the clone 
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•  Cumulative signal: time-series of accumulated 
concentrations of FFD (secondary data) 

•  Why? 
- The localisation of PCP signalling at any given time point is the result 
of the cumulative effect of the sum over the signalling events until that 
point. 
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Secondary data 
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Model Checking 
Secondary data 

Fz- mutant clone model 
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Wild-type 

Wild type cells in the tissue (i.e. away from the clone area). 
After short initial period: Always middle distal cumulative[FFD] greater than middle proximal cumulative[FFD] 

 P=? [time > ε → G(CD2 > CP2)] 
 
Wild type cells distally neighbouring to clone in the tissue 
After short initial period: Always middle distal cumulative[FFD] less than middle proximal cumulative[FFD] 

 P=? [time > ε → G(CD2 <  CP2)] 
 
Hairs grow normally in wild-type, but disturbed in WT distally near clone, influence  from 

the clone 
 

Wild-type distally 
neighbouring 
to clone CD2 

CP2 

CP2 
CD2 
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Automatic Generation of  
Temporal Logic Descriptions 

We can use PLTLc to characterise the clusters of time series 
 
 
PLTLc statements should be  

•  general enough to describe all the time series in a given 
cluster 
•  discriminative enough to distinguish between time series of 
different clusters 

The generation algorithm is based on property patterns 
(templates) 
D. Maccagnola, E. Messina, Q. Gao and D. Gilbert, (2012). A Machine Learning Approach for Generating 
Temporal Logic Classifications of Complex Model Behaviours. Proc Winter Simulation Conference 2012, IEEE. 
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Automatic Generation of TL 
Descriptions 

•  Trend: describes the trend of a time series as a sequence of 
direction (“increase”, “steady”, “decrease”) 
 

If a cluster shows different 
trends, they are ordered by 
frequency (F0 is the most 
frequent, then F1 and so on) and 
the cluster trend is defined by: 

 F0 ⋁ F1 ⋁ F2 ⋁ … 
 
 Example:  

steady-increase-steady OR  
steady-increase-decrease-steady 
 
d = 0 U d > 0 U (G(d=0)) ⋁

d = 0 U d > 0 U d<0 U (G(d=0)) 
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Automatic Generation of TL 
Descriptions 

•   Time: identifies the time points when the time series changes its 
direction, i.e. a set of “direction changes” 

 

Time series with the same 
trend may have slightly 
different time patterns 
 
 
 
We compute a set of time 
intervals 
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Automatic Generation of TL 
Descriptions 

•  Extrema: represents the occurrence of all the local minima and 
maxima of a time series 

 The time and value of each 
extrema can slightly change 
among the time series in a 
cluster 
 
 
 
 
The extrema of a cluster 
are defined by a sequence 
of time and value intervals 
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Automatic Generation of TL 
Descriptions 

•  Steady state: represents the value of the time series steady state (if 
exists) 

 The value of each steady 
state can slightly change 
among the time series in a 
cluster 
 
 
 
 
The steady state of a 
cluste, if exists, is defined 
by a value interval 
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Automatic Generation of TL 
Descriptions 

PLTLc GENERATION PROCEDURE: 
 
1.  Consider cluster Ci and the set of remaining clusters ¬Ci ;


2.  If Ci and ¬Ci have different trends, stop; otherwise, continue;


3.  If Ci and ¬Ci have the same trend with different times, stop; 
otherwise, continue;


4.  If Ci and ¬Ci have at least one different extrema, stop; 
otherwise, continue;


5.  If Ci and ¬Ci have different steady states, stop; otherwise, the 
clusters are identical and the algorithm cannot return a valid 
description. 
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Automatic Generation of TL 
Descriptions 

•  The effectiveness of this algorithms is affected by: 

•  The cluster’s quality  
•  The number of “direction changes” of the time series 

•  The effectiveness of this algorithm is NOT affected by the 
number of time series per cluster 



Brunel University London  

Automatic Generation of TL 
Descriptions 

•  To evaluate the PLTLc statement, we test it as a temporal 
logic query over the clusters 

•  We use the probability                         that the statement 
correctly classifies the time series belonging to cluster i 

• We associate to each statement a “confidence level” Conf : 

 which indicates its capability to discriminate between time 
series of cluster i from time series of the most similar cluster j ≠ 
i. 

Evaluation 
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Results 
Best clustering result (using DBScan) 

Wild Type Tissue Mutated Tissue 

•  All the cells have the same behaviour 

•  The borders are effect of a biased model 

•  The mutated clone is clearly visible 

•  Nearby “wild type” cells are 
INFLUENCED by the mutated clone 
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DISCOVERED PROPERTIES 

PLTLc EXAMPLE: 
 
Behaviour in the INFLUENCED CELLS 
 
 
 
“The concentration of FFD increases from time zero, reaches its 
peak 
between time 30 and 31, and then becomes steady till the end”. 

Q. Gao, D. Gilbert, M. Heiner, F. Liu, D. Maccagnola and D. Tree, (2013). 
Multiscale Modelling and Analysis of Planar Cell Polarity in the Drosophila Wing, 
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10:2. 
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Systems biology 

Gene 

Cell 

Tissue 

Organ 

Organism 

Biological systems are multidimensional … 

… and multiscale. 
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Computational models of biological 
systems 

Predicted 
behaviour Simulations 

Biological 
system 

Computational 
model 

Validation 

Abstraction 

In vitro In silico 
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Model checking 
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Multiscale! 

Work by Ovidiu Parvu 
PhD student 
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Multiscale spatio-temporal model 
checking 

[1] O. Pârvu and D. Gilbert, “A novel method to verify multilevel computational models of biological systems 
using multiscale spatio-temporal meta model checking,” PLoS ONE (under review). 
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Multiscale spatio-temporal model 
checking 
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Assumption: stochastic discrete-event 
systems 

The modelled biological systems are assumed to be 
stochastic and transition between states only when an 
event occurs: 
State 

Time t0 t1 t2 t3 t4 

s0 

s1 

s2 
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Assumption: Discrete or continuous time 

Time is represented in either a discrete: 
 
 
 
     
 
      
or  continuous manner: 

Time t0 t1 t2 t3 t4 

0 1 2 3 4 

Time t0 t1 t2 t3 t4 

0.43 2.445 3.98 5.21 7.13 
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Discretised spatial domain is represented in pseudo-3D 
dimensions i.e. 2D space in which pile up is allowed. 
 
 
 
 
 
 
 
 
        

Assumption:  
Pseudo-3D discretised space 
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Concepts 
•  Multiple scales: time; space (1, 2, 3D),  
•  Development 
•  Hierarchy of organisation in organisms 
•  Levels in hierarchy: inherently associated with 

time & space scales? 
•  Atomic, molecular, sub/intracellular (organelles, 

compartments), cellular, intracellular, tissues, 
organs,… 

•  Hierarchy – tree (partially ordered upper semi-
lattice). 
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Levels, Hierarchy 

Level n+1 

Level n 

T 
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General approaches to multiscale modelling 

 
•  Models may be at many different  scales in time and space – 

these scales may be fixed or change through the evolution of 
the model. 

•  Operator splitting is a powerful approach – splitting the problem 
into sub-problems and applying them composition-wise in some 
manner.  This splitting generates a splitting error that depends on 
the stepsize. 

•  But how do we split? How do we control the splitting errors?  
How do we know that we converge to the right solution? Can we 
have a general formalism for these ideas?  Can we inform 
different scientific communities so that both benefit. 

•  Can we do parameter estimation on the fly as we evolve from 
subproblem to subproblem? 
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Calibrating multi-scale spatial models to 

observations 
 
•  Calibrating spatio-temporal multi scale models to 

observation is hard. Compared to non-spatial/ single level 
models, simulation times of spatially extended models are 
considerably longer, precluding exhaustive parameter 
sweeps and making local search algorithms impractical. 

•  Spatial heterogeneity: physical parameters of a PDE 
system are location dependent, so that the parameter 
estimation much harder function estimation problem.  

•  Both these problems are compounded in the case of 
multi-scale system: not only the calibration problem has to 
be solved for each levels, but generally the coupling between 
the different levels (transfer function) is also unknown. 
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Assumption: Multiscale representation 

Biological systems which are multilevel (i.e. span multiple 
levels of organization) are assumed to be inherently 
multiscale (i.e. span multiple spatio-temporal scales) 

Human 

Liver Heart 

Cardiac tissue  

Cardiomyocyte Pacemaker cell 

Organism level 

Organ level 

Tissue level 

Cellular level 
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Assumption: Multiscale representation 

The multiscale structure of biological systems is encoded as a 
rooted directed tree MA = (VMA, EMA) called the multiscale 
architecture graph 

Organism, Human 

Organ, Liver Organ, Heart 

Tissue, Cardiac 

Cellular, 
Cardiomyocyte 

Cellular, 
PacemakerCell 

Organism level 

Organ level 

Tissue level 

Cellular level 
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Assumption: Multiscale representation 

Each vertex in the set VMA is encoded as a tuple  
(Scale, Subsystem) and relations between scales and 
subsystems are encoded as edges in the set EMA 

Organism, Human 

Organ, Liver Organ, Heart 

Tissue, Cardiac 

Cellular, 
Cardiomyocyte 

Cellular, 
PacemakerCell 

Scale 
Subsystem 

Organism level 

Organ level 

Tissue level 

Cellular level 
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Assumption: Multiscale representation 

A strict partial order < can be defined over the set of 
vertices  
(e.g. (Tissue, Cardiac) < (Organism, Human))  

Multiscale architecture (MA) graph, 
where each node is defined by a tuple 
(scale, subsystem). 

Organism, Human 

Organ, Liver Organ, Heart 

Tissue, Cardiac 

Cellular, 
Cardiomyocyte 

Cellular, 
PacemakerCell 

Scale 
Subsystem 

Organism level 

Organ level 

Tissue level 

Cellular level 
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Multiscale spatio-temporal model checking 
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Multiscale spatio-temporal analysis 
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Spatio-temporal detection and analysis 

Spatio-temporal detection and analysis modules enable 
detecting regions and clusters 

Region 
(e.g. bacterial colony growth) 

Cluster 
(e.g. chemotaxis) 

[2] O. Pârvu and D. Gilbert, “Automatic validation of computational models using pseudo-3D spatio-temporal 
model checking,” BMC Systems Biology, vol. 8, no. 1, p. 124, Dec. 2014 
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For each spatial entity detected the following set of 
properties is computed:  
 

•  Clusteredness  
•  Density  
•  Area 

•  Perimeter 

•  Distance from origin 

•  Angle 

•  Triangular, rectangular  
 and circular measure 

•  Centroid 

Spatio-temporal detection and analysis 
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Multiscale model simulation results 

Standard representation format for model 
simulation results: Multiscale Spatial Temporal 
Markup Language 
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Formal specification 
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Formal specification 

Formal specification encoded in a temporal logic called 
Probabilistic Bounded Linear Multiscale Spatial 
Temporal Logic (PBLMSTL) 
  
The probability is greater than 90% that always within time 
interval [2.1, 99.8] the liver dysfunction (corresponding to 
scale and subsystem (Organ, Liver)) equals the average area 
of damaged liver tissues (corresponding to scale and 
subsystem (Tissue, DamagedLiverTissue)). 
 
P > 0.9 [G [2.1, 99.8] ({LiverDysfunction} 

 (scaleAndSubsystem = Organ.Liver) = 
 avg(area(filter(regions, scaleAndSubsystem = 
 Tissue.DamagedLiverTissue))))] 
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Formal specification 

Formal specification encoded in a temporal logic called 
Probabilistic Bounded Linear Multiscale Spatial 
Temporal Logic (PBLMSTL) 
 
The probability is greater than 90% that always within 
time interval [2.1, 99.8] the liver dysfunction (corresponding 
to scale and subsystem (Organ, Liver)) equals the average 
area of damaged liver tissues (corresponding to scale and 
subsystem (Tissue, DamagedLiverTissue)). 
 
P > 0.9 [G [2.1, 99.8] ({LiverDysfunction}  

 (scaleAndSubsystem = Organ.Liver) = 
 avg(area(filter(regions, scaleAndSubsystem = 
 Tissue.DamagedLiverTissue))))] 
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Formal specification 

Formal specification encoded in a temporal logic called 
Probabilistic Bounded Linear Multiscale Spatial 
Temporal Logic (PBLMSTL) 
  
The probability is greater than 90% that always within 
time interval [2.1, 99.8] the liver dysfunction 
(corresponding to scale and subsystem (Organ, Liver)) 
equals the average area of damaged liver tissues 
(corresponding to scale and subsystem (Tissue, 
DamagedLiverTissue)). 
 
P > 0.9 [G [2.1, 99.8] ({LiverDysfunction}
(scaleAndSubsystem = Organ.Liver) = 
avg(area(filter(regions, scaleAndSubsystem = 
Tissue.DamagedLiverTissue))))] 
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Formal specification 

Formal specification encoded in a temporal logic called 
Probabilistic Bounded Linear Multiscale Spatial 
Temporal Logic (PBLMSTL) 
  
The probability is greater than 90% that always within time 
interval [2.1, 99.8] the liver dysfunction (corresponding 
to scale and subsystem (Organ, Liver)) equals the 
average area of damaged liver tissues (corresponding to 
scale and subsystem (Tissue, DamagedLiverTissue)). 
 
P > 0.9 [G [2.1, 99.8] ({LiverDysfunction}

 (scaleAndSubsystem = Organ.Liver) = 
 avg(area(filter(regions, scaleAndSubsystem = 
 Tissue.DamagedLiverTissue))))] 
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Formal specification 

Formal specification encoded in a temporal logic called 
Probabilistic Bounded Linear Multiscale Spatial 
Temporal Logic (PBLMSTL) 
  
The probability is greater than 90% that always within time 
interval [2.1, 99.8] the liver dysfunction (corresponding to 
scale and subsystem (Organ, Liver)) equals the average 
area of damaged liver tissues (corresponding to scale and 
subsystem (Tissue, DamagedLiverTissue)). 
 
P > 0.9 [G [2.1, 99.8] ({LiverDysfunction}

 (scaleAndSubsystem = Organ.Liver) = 
 avg(area(filter(regions, scaleAndSubsystem = 
 Tissue.DamagedLiverTissue))))] 
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Formal specification 

Formal specification encoded in a temporal logic called 
Probabilistic Bounded Linear Multiscale Spatial 
Temporal Logic (PBLMSTL) 
  
The probability is greater than 90% that always within time 
interval [2.1, 99.8] the liver dysfunction (corresponding to 
scale and subsystem (Organ, Liver)) equals the average 
area of damaged liver tissues (corresponding to scale 
and subsystem (Tissue, DamagedLiverTissue)). 
 
P > 0.9 [G [2.1, 99.8] ({LiverDysfunction}

 (scaleAndSubsystem = Organ.Liver) = 
 avg(area(filter(regions, scaleAndSubsystem = 
 Tissue.DamagedLiverTissue))))] 
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Multiscale spatio-temporal model 
checking 
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Multiscale spatio-temporal model checking 

Approximate probabilistic model checking algorithms 
supported: 
 

Frequentist Bayesian 

Estimate Based on Chernoff-
Hoeffding bounds 

Based on mean 
and variance 

Hypothesis 
testing 

Statistical, 
Probabilistic black-
box 

Statistical 
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Multiscale spatio-temporal meta model 
checking 

Multiscale spatio-temporal model checking approach as 
defined so far is restricted to particular pseudo-3D spatial 
entity types (e.g. region) and spatial measures (e.g. area) 

Multiscale spatio-temporal model checking 

Spatial entity 
types 

Spatial  
measures 
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Multiscale spatio-temporal meta model 
checking 

Multiscale spatio-temporal meta model checking: Define a 
generic family of multiscale spatio-temporal model 
checkers that can be instantiated for specific spatial entity 
types and spatial measures 

Multiscale spatio-temporal meta model checking 

Spatial entity 
types 

Spatial 
measures Multiscale spatio-temporal model checking 

Instantiation 
Spatial entity 

types 
Spatial 

measures 
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Implementation 

Model checker source 
code + templates 

Spatial entity 
types 

Spatial 
measures 

Compilation 
step 1 

(Generate source code  
from templates) 

Model checker  
source code 

Spatial 
entity 
types 

Spatial 
measure

s 

Model checker  
executable 

Compilation 
step 2 

(Compile source code  
into executable) 

Spatial 
entity 
types 

Spatial 
measure

s 
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Multiscale spatio-temporal meta model 
checker 

The multiscale spatio-temporal meta model checker Mule 
is made freely available online (binary, source code, 
Docker image) at http://mule.modelchecking.org  
 
 
 
 
 
 
 
 
 
 
Tutorials: http://mule.modelchecking.org/tutorials  
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Case studies 

Case studies considered: 
 

•  Rat cardiovascular system dynamics [3] 

•  Uterine contractions of labour [4] 

•  Xenopus laevis oocytes cell cycle [5, 6] 

•  Acute inflammation of gut and lung [7]. 
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Case study: Acute inflammation of gut 
and lung 

Lung 

Gut 
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Case study: Acute inflammation of gut 
and lung 

Organism, Human 

Organ, Gut Organ, Lung 

Tissue, LungEpithelium 

Cellular, 
LungEndotheliumIschemia 

Tissue, 
LungEndothelium 

Tissue, GutEpithelium 

Tissue, 
GutEndothelium 

Cellular, 
GutEndotheliumIschemia 
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Case study: Acute inflammation of gut 
and lung 

Formal specification – statement 1: 
The probability is greater than 0.9 that if the value of 
cytoplasm occludin in the lung (corresponding to scale and 
subsystem Tissue.LungEpithelium) decreases then 
eventually the total area of the regions defined by ischemic 
endothelial lung cells (corresponding to scale and 
subsystem Cellular.LungEndotheliumIschemia) will 
increase. 
 
P > 0.9 [F [1, 999] ((d({LungOccludinCytoplasm} 

 (scaleAndSubsystem = Tissue.LungEpithelium)) < 0) =>  
 (F [1, 999] (d(sum(area(filter(regions, 
 scaleAndSubsystem = 
 Cellular.LungEndotheliumIschemia)))) > 0)))] 



Brunel University London  

Case study: Acute inflammation of gut 
and lung 

Formal specification – statement 2: 
The probability is greater than 0.9 that always if the value of 
the gut cell damage by-product (corresponding to scale and 
subsystem Tissue.GutEndothelium) increases, then 
eventually the value of the lung cell damage by-product 
(corresponding to scale and subsystem 
Tissue.LungEndothelium) increases. 
 
P > 0.9 [G [1, 999] ((d({GutCellDamageByproduct} 

 (scaleAndSubsystem = Tissue.GutEndothelium)) > 0) =>  
 (F [1, 999] (d({LungCellDamageByproduct} 
 (scaleAndSubsystem = Tissue.LungEndothelium)) > 0)))] 
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Case study: Acute inflammation of gut 
and lung 

Formal specification – statement 3: 
The probability is greater than 0.9 that if the value of the gut 
cell wall occludin (corresponding to scale and subsystem 
Tissue.GutEpithelium) decreases then eventually the value 
of the gut leak (corresponding to scale and subsystem 
Organ.Gut) will increase. 
 
P > 0.9 [F [1, 999] ((d({GutOccludinCellwall} 

 (scaleAndSubsystem = Tissue.GutEpithelium)) < 0) =>  
 (F [1, 999] (d({GutLeak} (scaleAndSubsystem =  
 Organ.Gut)) > 0)))] 
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Conclusions 

Our multiscale spatio-temporal meta model checking 
approach will enable computational biologists to efficiently 
construct reliable multiscale computational models of 
biological systems 
 
In the future we would like to employ the meta model 
checking approach for analysing real life data sets, and to 
verify computational models from other domains of 
science 
 
Contact details: 
 
Professor David Gilbert (david.gilbert@brunel.ac.uk),  
Ovidiu Pârvu (ovidiu.parvu@gmail.com), ovidiuparvu.com 
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Synthetic Biology Computational Design Group  
   Institute of Environment, Health and Societies: Synthetic Biology Theme  

Network-based analysis and design & Protein structure informed design 
David Gilbert, Bello Suleiman, Monika Heiner, Alessandro Pandini, Arshad Khan, Nigel J Saunders 
CSSM and MBE Clusters, Synthetic Biology Theme, Brunel University London 

•  Development and application of methodologies for the design of 
novel microbacterial strains, collaboration with Microbial 
BioEngineering Group.   

•  Biochemical pathway models as design ‘templates’ - guidelines for 
bioengineering implementation. 

•  Biochemical reactions of bacterial strains as systems of continuous or 
stochastic equations, bipartite graph structure - Petri net.  

•  Model construction, analysis and modification.  
•  Analysis: static and dynamic properties - sound and consistent; 

checked against observations of the bacteria that they describe.  
•  Modelling database to store components from public domain models of 

bacteria as well as locally generated data which can be reused for 
model construction. Include phenotypic annotation and direct links to 
public molecule and reaction databases. Integration with the database 
of the Brunel Strain Collection will facilitate implementation of the 
process from in silico design to in vitro / in vivo experiments. Extend 
from gene data to include proteins and metabolites. 

•  The generation of designs for new synthetic bacterial strains involves 
the selection of optimal combinations of chassis (host strain) and 
genes for transfer, knockout or modification. 

•   Computational analysis will define design solutions over 
multiscale levels from polymorphism to protein and pathway 
modules. 

•  david.gilbert@brunel.ac.uk 
•  www.brunel.ac.uk/people/david-gilbert 
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Whole genome metabolic model, 
E.coli K12 for simulation 
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A database of naturally evolved mutations from E. coli strains mapped 
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resistance and design combined mutations to recover susceptibility 
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Synthetic Biology @ Brunel University
The Synthetic Biology Theme has developed as strategy for Microbiology 
BioEngineering built upon three principle concepts:

System bioParts
Integrated Genomics for Knowledge-based Design
Synthetic Systems Biology

In particular, integrated genomics acknowledges that different functional genomics 
methodologies are able to address qualitatively different areas of information 
necessary to inform synthetic systems design:

More information available at:
http://www.brunel.ac.uk/environment/themes/synthetic-biology

E. coli Strain collection
This strain collection contains 43 unrelated strains of E. coli obtained from a variety 
of sources, plus a sequence verified strain K12 MG1655 representative. The strains 
are highly diverse genetically, and are divided into scalable sub-
groups, based upon their diversity, in order to 
perform comparative functional analyses.

The strains have been annotated for the presence 
or absence of 20,000 coding features using novel in-
house highly consistent annotation strategies to 
support functional comparative analyses.

The strain collection has been used to re-determine 
the core genome of the species, which is the basis for 
building new metabolic models of the system.

Database implementation
The most recent and comprehensive PPIN for E. coli was used as reference1. Known 
3D structures for isolated proteins and their interaction complexes were mapped 
onto the PPIN in accordance with the annotation in Interactome3D2. Experimental 
structures were integrated with models available in Interactome3D.

The core genome (2584 genes) from Brunel E. coli strain collection was 
mapped to the corresponding UNIPROT entries and then to the reference 3D-PPIN 
using the Bio3D3,4 package in R.

The unique set of 3D proteins structures for 
the core genome were used to populate a 
relational database in MySQL. A mapping of 
non-synonymous mutations in coding regions 
from naturally evolved E. coli strains is in 
progress. Each protein entry will contain 
information on mutations, associated strains and 
experimental conditions.

Experimental data on antibiotic resistance for 50 compounds have been 
generated for the strain collection. The associated behavioural data will be included in 
the database.
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Motivation
Several strains of pathological bacteria have accumulated mutations conferring resistance to a wide range of antibiotics currently used. A foreseeable 
solution is arising from the advent of personalised medicine and the affordability of genome sequencing. In the near future treatments might be tailored 
directly on the mutation profile of the pathogen. Unfortunately no tool is currently available to identify the link between multiple mutations and range 
of resistance.
Additionally antibiotic resistance greatly limits and makes difficult the use of bacteria for biosynthetic production of commodity chemicals. 
Bacterial safety and the ability to control cultures is critical for industrial exploitation. The possibility to separate mutations conferring resistance from the 
ones related to antibiotics susceptibility could open new avenues to successfully engineer strains with selected susceptibility.

Aim
We aim at the development of a computational tool for the selection of mutations for adaptive improvement of E. coli to confer susceptibility to 
selected antibiotics. The tool will comprise: 1) a database of naturally evolved mutations from a large collection of E. coli strains mapped on the 
bacterial 3D protein-protein interaction network (PPIN); 2) a predictive software to mine the database for candidate mutations with potential to confer 
adaptive and desired phenotypes when combined.

Core E. coli K12
Protein structure mapped on 

Protein-Protein Interaction Network 
 
 
 


