The cell cycle models in budding yeast
How to ensure a globally attractive cycle in a sequential-task biological process?

Fangting Li (李方廷)
School of Physics, Center for Quantitative Biology
Peking University, Beijing, China
2015, 10
• Quantitative biology in yeast cell cycle
 The cell-cycle in budding yeast, modeling and quantitative experiment
• 3-node yeast cell cycle model
 Feedbacks, checkpoints, a globally attractive trajectory…
• How to ensure the stability of a multi-task process?
• **Quantitative biology in yeast cell cycle**
 The cell-cycle in budding yeast, modeling and quantitative experiment
• **3-node yeast cell cycle model**
 Feedbacks, checkpoints, a globally attractive trajectory…
• **How to ensure the stability of a multi-task process?**
The cell cycle in budding yeast serves as a model system for quantitative biology

- Cyclins, TF, inhibitors
- DNA replication checkpoint and spindle checkpoint
Budding yeast cell-cycle

800 Genes involved in Budding Yeast Cell Cycle

Spellman, et al. (1998)

A vital process that is highly conserved in eukaryotes
The START point and DNA replication checkpoint

Cell size

SBF

SBF

Cln3

MBF

Cln2

Sic1

Clb5

Bud formation

DNA replication

DNA replication checkpoint
G2/M transition and Mitosis

Mcm1/SFF

\[\downarrow \quad \uparrow \]

Cdh1/APC,Sic1 \[\leftrightarrow \] Clb2

\[\uparrow \quad \downarrow \]

Cdc14 \[\leftrightarrow \] Cdc20/APC

Spindle checkpoint
Cell Cycle Modeling and Experiments

Cross FR, Schroeder L, Kruse M, Chen KC. Quantitative characterization of a mitotic cyclin threshold regulating exit from mitosis.

The cell-cycle control system generates robust, switch-like and adaptable changes in Cdk activity.

Robust, noise, switch, bistability, bifurcations, positive or negative feedbacks...

Fluctuations and noise inside and outside of CELL
The network of yeast cell cycle
A Simple Boolean Model

Protein state: \(S_i = \begin{cases}
0, & \text{inactive} \\
1, & \text{active}
\end{cases} \)

\[
S_i(t+1) = \begin{cases}
1, & \sum_j a_{ij} S_j(t) > 0 \\
0, & \sum_j a_{ij} S_j(t) < 0 \\
S_i(t), & \sum_j a_{ij} S_j(t) = 0
\end{cases}
\]

\(2^{11} = 2048 \) “cell states”

\(a_{ij} \) (green) = 1, \(a_{ij} \) (red) = -1

\(t_d = 1 \)
Trajectory of Yeast Cell Cycle Sequence

Signal: Cln3 from 0 to 1.

<table>
<thead>
<tr>
<th>Protein Step</th>
<th>Cln3</th>
<th>MBF</th>
<th>SBF</th>
<th>Cln2</th>
<th>Cdh1</th>
<th>Swi5</th>
<th>Cdc20 & Cdc14</th>
<th>Clb5</th>
<th>Sic1</th>
<th>Clb2</th>
<th>Mcm1/SFF</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>START</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>G1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>G1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>G1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>G2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>G2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>M</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>M</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>G1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>G1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Stationary G1</td>
</tr>
</tbody>
</table>
1764 of 2048 initial states (86%) evolve to G1 states. Making the G1 state the only global attractor.

Basin size

<table>
<thead>
<tr>
<th>Basin size</th>
<th>Cln3</th>
<th>MBF</th>
<th>SBF</th>
<th>Cln2</th>
<th>Cdh1</th>
<th>Swi5</th>
<th>Cdc2</th>
<th>Clb5</th>
<th>Sic1</th>
<th>Clb2</th>
<th>Mcm1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1764</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>151</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The yeast cell-cycle network is robustly designed
PNAS 2004 101: 4781-4786

Dynamical Robustness
✓ Global attractor
✓ Globally attracting trajectory

• WHY?
• The relationship between the topological and dynamical properties of network
The network of yeast cell cycle
Our ODE model...22 independent variables, 88 parameters

The 1st part, the equations governing cyclin-dependent kinases:
\[
\frac{d[\text{Cln}3]}{dt} = -k_{d,\text{Cln}3}[\text{Cln}3],
\]
\[
\frac{d[\text{Cln}2]}{dt} = k_{r,\text{Cln2}}[\text{Cln}3] + k_{r,\text{Cln2}}[\text{SBF}] - k_{d,\text{Cln2}}[\text{Cln}2],
\]
\[
\frac{d[\text{Cln}5]}{dt} = k_{r,\text{Cln5}}[\text{MBF}] - V_{d,\text{Cln5}}[\text{Cln}5], \quad V_{d,\text{Cln5}} = k_{d,\text{Cln5}} + k_{d,\text{Cln5}}[\text{Cdc20}],
\]
\[
\frac{d[\text{Cln}2]}{dt} = k_{r,\text{Cln2}}[\text{Mcm1}] - V_{d,\text{Cln2}}[\text{Cln}2], \quad V_{d,\text{Cln2}} = k_{d,\text{Cln2}} + k_{d,\text{Cln2}}[\text{Cdh1}], \quad [\text{Cdh1}] = \frac{[\text{Cdh}]}{[\text{Cdh}]+[\text{Cdh}]+[\text{Cdh}]}, \quad [\text{Cdh}]+[\text{Cdh}]+[\text{Cdh}] = \text{const}.
\]
\[
[\text{Cln}5] = [\text{Cln}5] + [\text{Cln}5/\text{Sic1}] + [\text{Cln}5/\text{Sic1}_P],
\]
\[
[\text{Cln}2] = [\text{Cln}2] + [\text{Cln}2/\text{Sic1}] + [\text{Cln}2/\text{Sic1}_P],
\]
\[
[\text{Sic1}]^2 = [\text{Sic1}]^2 + [\text{Sic1}_P]^2.
\]

The 2nd part, the equations governing the inhibitors of cyclin-dependent kinases:
\[
\frac{d[\text{Siw}5]}{dt} = k_{r,\text{Siw}5}[\text{Swi}5] - V_{d,\text{Siw}5}[\text{Siw}5], \quad V_{d,\text{Siw}5} = k_{d,\text{Siw}5} + k_{d,\text{Siw}5}[\text{Cln}3], \quad [\text{Cln}3] = \frac{[\text{Cln}3]}{[\text{Cln}3]+[\text{Cln}3]+[\text{Cln}3]}, \quad [\text{Cln}3]+[\text{Cln}3]+[\text{Cln}3] = \text{const}.
\]
\[
\frac{d[\text{Swi}5_P]}{dt} = (k_{r,\text{Swi}5_P}[\text{Swi}5_P] - V_{d,\text{Swi}5_P}[\text{Swi}5_P], \quad V_{d,\text{Swi}5_P} = k_{d,\text{Swi}5_P} + k_{d,\text{Swi}5_P}[\text{Cln}3], \quad [\text{Cln}3] = \frac{[\text{Cln}3]}{[\text{Cln}3]+[\text{Cln}3]+[\text{Cln}3]}, \quad [\text{Cln}3]+[\text{Cln}3]+[\text{Cln}3] = \text{const}.
\]

Equations governing transcription factors:
\[
\frac{d[\text{SBF}]}{dt} = \frac{V_{a,\text{SBF}}[\text{SBF}] - [\text{SBF}]}{J_{a,\text{SBF}} + [\text{SBF}]}, \quad J_{a,\text{SBF}} = \frac{(\text{MBF})}{(\text{MBF}) + (\text{DNA})}, \quad V_{a,\text{SBF}} = k_{a,\text{SBF}}[\text{SBF}](\text{MBF})
\]
\[
\frac{d[\text{MBF}]}{dt} = \frac{V_{a,\text{MBF}}[\text{MBF}] - [\text{MBF}]}{J_{a,\text{MBF}} + [\text{MBF}]}, \quad J_{a,\text{MBF}} = \frac{(\text{MBF})}{(\text{MBF}) + (\text{DNA})}, \quad V_{a,\text{MBF}} = k_{a,\text{MBF}}[\text{MBF}](\text{DNA})
\]
\[
[\text{DNA}] = \frac{[\text{DNA}]}{[\text{Cln}]+[\text{Cln}]+[\text{Cln}]}, \quad [\text{Cln}]+[\text{Cln}]+[\text{Cln}] = \text{const}.
\]

Others:
\[
\frac{d[\text{Sic1}_P]}{dt} = (k_{r,\text{Sic1}_P}[\text{Sic1}_P] - V_{d,\text{Sic1}_P}[\text{Sic1}_P], \quad V_{d,\text{Sic1}_P} = k_{d,\text{Sic1}_P} + k_{d,\text{Sic1}_P}[\text{Cdc14}], \quad [\text{Cdc14}] = \frac{[\text{Cdc14}]}{[\text{Cdc14}]+[\text{Cdc14}]+[\text{Cdc14}]}, \quad [\text{Cdc14}]+[\text{Cdc14}]+[\text{Cdc14}] = \text{const}.
\]
\[
\frac{d[\text{Cln}3]}{dt} = (k_{r,\text{Cln3}}[\text{Cln}3] - V_{d,\text{Cln3}}[\text{Cln}3], \quad V_{d,\text{Cln3}} = k_{d,\text{Cln3}} + k_{d,\text{Cln3}}[\text{Cdc20}], \quad [\text{Cdc20}] = \frac{[\text{Cdc20}]}{[\text{Cdc20}]+[\text{Cdc20}]+[\text{Cdc20}]}, \quad [\text{Cdc20}]+[\text{Cdc20}]+[\text{Cdc20}] = \text{const}.
\]
\[
\frac{d[\text{Cln}2]}{dt} = (k_{r,\text{Cln2}}[\text{Cln}2] - V_{d,\text{Cln2}}[\text{Cln}2], \quad V_{d,\text{Cln2}} = k_{d,\text{Cln2}} + k_{d,\text{Cln2}}[\text{Cdh1}], \quad [\text{Cdh1}] = \frac{[\text{Cdh}]}{[\text{Cdh}]+[\text{Cdh}]+[\text{Cdh}]}, \quad [\text{Cdh}]+[\text{Cdh}]+[\text{Cdh}] = \text{const}.
\]
\[
\frac{d[\text{Sic1}_P]}{dt} = (k_{r,\text{Sic1}_P}[\text{Sic1}_P] - V_{d,\text{Sic1}_P}[\text{Sic1}_P], \quad V_{d,\text{Sic1}_P} = k_{d,\text{Sic1}_P} + k_{d,\text{Sic1}_P}[\text{Cln}3], \quad [\text{Cln}3] = \frac{[\text{Cln}3]}{[\text{Cln}3]+[\text{Cln}3]+[\text{Cln}3]}, \quad [\text{Cln}3]+[\text{Cln}3]+[\text{Cln}3] = \text{const}.
\]
\[
\frac{d[\text{Cln}5]}{dt} = (k_{r,\text{Cln5}}[\text{Cln}5] - V_{d,\text{Cln5}}[\text{Cln}5], \quad V_{d,\text{Cln5}} = k_{d,\text{Cln5}} + k_{d,\text{Cln5}}[\text{Cdc20}], \quad [\text{Cdc20}] = \frac{[\text{Cdc20}]}{[\text{Cdc20}]+[\text{Cdc20}]+[\text{Cdc20}]}, \quad [\text{Cdc20}]+[\text{Cdc20}]+[\text{Cdc20}] = \text{const}.
\]
Observing a yeast cell

Automatic scanning microscope system with microfluidic device

- Construct the fluorescent protein reporter for the key regulators in cell cycle
- Observing the key regulator level in each yeast cell
- Comparing with the theoretical model
The kinetics of G1/S transition (with an GFP tagged Cln3p as the signal and S phase markers.)

---MAT a cln3::LEU2 bck2::NAT pGAL1-2GFP-CLN3 pADH1-MCM-mCherry S288c background

Glucose shut-off

• Quantitative biology in yeast cell cycle
 The cell-cycle in budding yeast, modeling and quantitative experiment
• 3-node yeast cell cycle model
 Feedbacks, checkpoints, a globally attractive trajectory…
• How to ensure the stability of a multi-task process?
Abstract architecture and functions
course-graining view of cell cycle
3-node yeast cell cycle network

1. Genetic switches controlled saddle-node bifurcations
2. Sensitive parameters are related to feedbacks loops

- The multi-task process: DNA replication and mitosis, \(X \) (S phase) \(\rightarrow \) \(Y \) (M phase)
- Robustness, stability, and modularity
3-node yeast cell cycle model
- assumptions, variables, parameters

• Assumptions and equations

\[
\frac{dX}{dt} = \frac{K_1 \cdot X^2}{J_1^2 + X^2} - X - K_3 \cdot X \cdot Y,
\]

\[
\frac{dY}{dt} = K_4 \cdot X + \frac{K_5 \cdot Y^2}{J_2^2 + Y^2} - K_6 \cdot Y - K_7 \cdot Y \cdot Z,
\]

\[
\frac{dZ}{dt} = K_8 \cdot Y - K_9 \cdot Z - K_{10} \cdot X \cdot Z + \frac{K_{11} \cdot Z^2}{J_3^2 + Z^2},
\]

<table>
<thead>
<tr>
<th>variables</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>modules</td>
<td>G1/S</td>
<td>G2/early M</td>
<td>late M</td>
</tr>
<tr>
<td>Key proteins</td>
<td>Cln2, Clb5, SBF/MBF</td>
<td>Clb2, Mcm1</td>
<td>Sic1, Cdh1, Cdc20</td>
</tr>
</tbody>
</table>
3-node yeast cell cycle model

\[
\frac{dx}{dt} = \frac{x^2}{j_1^2 + x^2} - k_1 \cdot x - x \cdot y,
\]

\[
\frac{dy}{dt} = k_{a1} \cdot x + \frac{y^2}{j_2^2 + y^2} - k_2 \cdot y - y \cdot z,
\]

\[
\frac{dz}{dt} = k_{a2} \cdot y + \frac{k_s \cdot z^2}{j_3^2 + z^2} - k_3 \cdot z - k_i \cdot z \cdot x,
\]

\[
k_1 = K_2 T = \frac{K_2}{\sqrt{K_3 K_5}} \quad k_2 = K_6 T = \frac{K_6}{\sqrt{K_3 K_5}} \quad k_3 = K_9 T = \frac{K_9}{\sqrt{K_3 K_5}}
\]

\[
j_1 = \frac{J_1}{X_0} \quad j_2 = \frac{J_2}{Y_0} \quad j_3 = \frac{J_3}{Z_0}
\]

\[
k_{a1} = \frac{K_1 K_4}{K_5} \frac{1}{\sqrt{K_3 K_5}} \quad k_{a2} = \frac{K_8 K_7}{K_3} \frac{1}{\sqrt{K_3 K_5}}
\]

\[
\begin{align*}
k_i &= \frac{K_1 K_{10}}{K_3 K_5} \quad & k_s &= \frac{K_7 K_{11}}{K_3 K_5}
\end{align*}
\]

\[j_1 \text{ and } k_1: \text{ activation of } x;\]
\[j_2 \text{ and } k_2: \text{ activation of } y;\]
\[J_3, k_3, ks: \text{ activation of } x;\]
\[ka1: \ x \rightarrow y;\]
\[ka2: \ y \rightarrow z;\]
\[ki: \ x \rightarrow | z\]
How to select the ‘prefect’ parameters for the yeast cell-cycle?

- Events order (DNA replication, mitosis);
- Duration for x wave (DNA replication in S phase) $\rightarrow y$ wave (mitosis in M phase)
The duration of G1/S and early M phases is controlled by the activation rates k_{a1} and k_{a2}.

$$T_x = \frac{\pi}{\sqrt{c(k_{a1} - k_{a1}^c)x^{(3)}}}.$$
How does the activated x wave triggers the y wave?

\[\frac{dx}{dt} = \frac{x^2}{j_1^2 + x^2} - k_1 \cdot x - x \cdot y, \]

\[\frac{dy}{dt} = k_{\alpha 1} \cdot x + \frac{y^2}{j_2^2 + y^2} - k_2 \cdot y - y \cdot z, \]
Near the bifurcation: Ghost effects and Bottlenecks

\[\dot{x} = r + x^2 \]

where \(r \) is proportional to the distance from the bifurcation, and \(0 < r \ll 1 \). The graph of \(\dot{x} \) is shown in Figure 4.3.7.

To estimate the time spent in the bottleneck, we calculate the time taken for \(x \) to go from \(-\infty \) (all the way on one side of the other side). The result is

\[T_{\text{bottleneck}} \approx \int_{-\infty}^{\infty} \frac{dx}{r + x^2} = \frac{\pi}{\sqrt{r}}. \]
Duration of G1/S is controlled by strength of activation from x wave to y wave

During the late S phase and early M phase, x is almost fully activated and has repressed z to zero,

\[
\frac{dx}{dt} = \frac{x^2}{j_1^2 + x^2} - k_1 x - xy = G(x, j_1, k_1) - xy,
\]
\[
\frac{dy}{dt} = k_{a1} x + \frac{y^2}{j_2^2 + y^2} - k_2 y = k_{a1} x + H(y, j_2, k_2).
\]

Furthermore, if \(0 < (k_{a1} - k_{a1}^c) \ll 1\), then just after the bifurcation we have \(x \simeq x^{(3)}\), \(y \simeq y^* \simeq y^{(1)}\), and \(z \simeq 0\), so

\[
\frac{dy}{dt} = k_{a1} x + H(y, j_2, k_2) \simeq (k_{a1} - k_{a1}^c)x^{(3)} + c(y - y^{(1)})^2 \ll 1.
\]

We have

\[
T_x = \int_0^\infty \frac{dy}{(k_{a1} - k_{a1}^c)x^{(3)} + c(y - y^{(1)})^2} = \frac{\pi}{\sqrt{c(k_{a1} - k_{a1}^c)x^{(3)}}}.
\]
The “perfect” yeast cell-cycle trajectory

j1=0.5, j2=0.5, k1=0.2, k2=0.2, j3=0.5, k3=0.2, ki=5.0, ks=1;
Ka1= ka2=0.001
Dynamical analysis of the trajectories

1. Initial normal plane ball

• Different initial states lead to different trajectories.
• Using the bio-pathway as a standard, one direct way to examine the variation between trajectories is to measure the distance on each normal plane of bio-pathway.
• Small perturbations are added near excited G1 as an initial ball.
Dynamical analysis of the trajectories

2. Local manifolds

Same perturbation is added on each point of bio-pathway.

Normalize n and v

\[v_p = \vec{v} \cdot \vec{n} = \cos \theta \]
\[v_n = |\vec{v} - (\vec{v} \cdot \vec{n})\vec{n}| = \sin \theta \]

We record 3 variables: $|v|$, $\cos \theta$, $\sin \theta$.
Dynamical analysis of the trajectories

3. Jacobian matrix

\[(x(t), y(t), z(t)) \xrightarrow{F=(f_1,f_2,f_3)} \vec{v} = (\dot{x}, \dot{y}, \dot{z})\]

\[
\begin{vmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\
\frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z}
\end{vmatrix}
\Rightarrow \lambda_1, \lambda_2, \lambda_3 \\
\downarrow
\Rightarrow \vec{r}_1, \vec{r}_2, \vec{r}_3
\]

If \(\lambda_i < 0\)

Then the point is stable in the direction of \(\vec{r}_i\).

Vice versa.
Local Jacobian matrix

\[\begin{pmatrix} \vec{n}_1 \\ \vec{n}_2 \end{pmatrix} \] are a pair of normed unit vectors in normal plane.

\[P = \begin{pmatrix} \vec{n}_1 \\ \vec{n}_2 \\ 0 \end{pmatrix} \]

\[\begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{pmatrix} \begin{pmatrix} \vec{n}_1' \\ \vec{n}_2' \\ 0 \end{pmatrix} = \begin{pmatrix} j_{11} & j_{12} & 0 \\ j_{21} & j_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
The “perfect” yeast cell-cycle trajectory
The ‘perfect’ yeast cell-cycle trajectory containing ghost effects

- The durations of x and y waves
- The expansive and convergent manifold
- Modularity of state/parameter space
- Checkpoints at the vertices
The manifolds diverge and converge, wave after wave, cycle in cycle out…

A dynamical view of yeast cell cycle process:
Suppose that the states (activities of the key regulators) of yeast cells can be dynamically observed, if a group of yeast cells start from different excited G1 states with fluctuations of biochemical parameters that tend to vary from cell to cell, how do the yeast cells evolve during the whole cell cycle process?
A “imperfect” yeast cell-cycle process

\[j_1 = 0.5, \quad j_2 = 0.5, \quad k_1 = 0.2, \quad k_2 = 0.2, \quad j_3 = 0.5, \quad k_3 = 0.2, \quad k_{a1} = 0.04, \quad k_{a2} = 0.04, \quad k_i = 5.0, \quad k_s = 1; \]
A ‘perfect’ and ‘imperfect’ cell-cycle trajectory manifold, duration, checkpoints

\[j_1=0.5, \quad j_2=0.5, \quad k_1=0.2, \quad k_2=0.2, \quad j_3=0.5, \quad k_3=0.2, \quad k_i=5.0, \quad k_s=1; \]

\[K_{a_1}= k_{a_2}=0.001, \quad (A \ & \ B) \quad \text{vs.} \quad k_{a_1}= k_{a_2}=0.04 \quad (C \ & \ D) \]
The “perfect” yeast cell-cycle with inhibitor

We have the following equations:

\[
\frac{dx}{dt} = \frac{x^2}{j_1^2 + x^2} - k_1 x - y x,
\]

\[
\frac{dy}{dt} = (k_0 + \frac{y^2}{j_2^2 + y^2}) \cdot \frac{d}{K + I} - k_2 y
\]

Case 1

\[
\frac{dy}{dt} = k_0 + \frac{y^2}{j_2^2 + y^2} \cdot \frac{d}{K + I} - k_2 y.
\]

\[
\frac{dI}{dt} = -bx I + a(I_{tot} - I),
\]

\[
\frac{dz}{dt} = k_{a2} y + \frac{k_{s2} z^2}{j_3^2 + z^2} - k_3 z - k_i x z.
\]

Case 2

\[
T_x \simeq \frac{\pi}{\sqrt{B(Ak_0 - k_0^c)}}.
\]

where \(A \equiv \frac{d}{K+I} = \frac{d}{K+I_{tot} \frac{a}{a+bx}}, \)

\[
H(y) \equiv \frac{y^2}{j_2^2 + y^2} \cdot A - k_2 y
\]

\[
H(y^*) \text{ is the minimum of } H(y). \quad B \equiv \frac{\partial^2 H(y)}{\partial y^2} \bigg|_{y^*}.
\]

Case 1

\[
T_x \simeq \frac{\pi}{\sqrt{B(k_0 - k_0^c)}}.
\]
Energy Landscape Reveals That the Budding Yeast Cell Cycle Is a Robust and Adaptive Multi-stage Process

Cheng Lv1, Xiaoguang Li2, Fangting Li1,3,*, Tiejun Li2*

$S(x) \propto -\ln P(x)$

Fig. 2. Global quasi-potential energy landscape of the three-variable yeast cell-cycle network. (A) The x-z plane where $y = 0$, corresponds to the G1/S transition and G2 stages. (B), (C) The x-y plane where $z = 0.3$ and 0.05, respectively, correspond to the late G2 stage. (D) The x-y plane where $z = 0$, corresponds to the G2 and early M stage. (E) The y-z plane where $x = 0$, corresponds to the late M stage.
The landscape of perfect cell cycle
The landscape of imperfect cell cycle

![Image of landscape](image1.png)

![Image of 3D graph](image2.png)
The pseudo energy landscape on the x-y plane with $z=0$ (C) and $z=0.3$ (D).

Difference from Langivan method: local pseudo energy Irreversibility, *sliding board* (滑梯模型)
The energy landscape in response to external signals

A excitable system under insufficient nutrients

DNA checkpoint ON (ka1=0)

Limit cycle under rich nutrient (a0=0.01)
The schematic quasi-potential energy landscape for the yeast cell cycle network.
• Quantitative biology in yeast cell cycle
 The cell-cycle in budding yeast, modeling and quantitative experiment
• 3-node yeast cell cycle model
 Feedbacks, checkpoints, a globally attractive trajectory…
• How to ensure the stability of a multi-task process?
Experimental testing?

Figure 2. Timing and dynamics of APC/C_{Ca²⁺} substrate degradation. (A) Time from SPB separation to spindle elongation in individual cells with GFP tags on APC/C substrates. Each dot represents a single cell. Starting from the left, sample sizes are: n = 49, 90, 121, 82, and 77 cells. For each strain, the middle bar indicates the median value and error bars indicate the 25th and 75th percentiles. (B) GFP intensity of representative individual cells with tagged APC/C_{Ca²⁺} substrates (from the cell populations analyzed in A). Underlying black lines show the original data, and the colored lines are smoothed traces. The timing of SPB separation and spindle elongation are marked with broken and solid lines, respectively. (C and D) Comparison of different GFP-tagged
Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle

39 variables
~150 parameters

PNAS (2009) 106: 21643
A globally attractive cycle in a 3-node yeast cell-cycle model

- A globally attractive cycle is driven by sequential saddle-node bifurcations containing ghost effects
- The vertices with convergent manifold correspond to the cell cycle checkpoints

- Modularity of state/parameter space
- The “ideal” yeast cell cycle trajectory and the cell cycle checkpoints
A possible synthetic network design for executing orderly multi-task processes

- Each event is controlled by the different key regulators, and the duration of each event regulated by the activation rates between successive waves

- Introducing an inhibitor with multi-phosphorylation into the activation of successive waves largely reduces duration sensitivity to relative changes in kinetic parameters
Acknowledge

• HU Mingyang ZHAO Bo

• Professor OUYANG Qi, TANG Chao
 LI Tiejun

• NSFC
Thanks!

谢谢！