

Colored Petri Nets for Multiscale Systems Biology

Fei Liu Control and Simulation Center Harbin Institute of Technology

Outline

Multiscale Systems Biology

Colored Petri nets

Colored Petri net framework

• Key techniques

□ Analysis techniques

□ Applications

D Summary

Outline

- Multiscale Systems Biology
- **Colored** Petri nets
- **Colored Petri net framework**
- **•** Key techniques
- □ Analysis techniques
- □ Applications
- **D** Summary

Systems Biology

Multiscale challenges

Modeling challenges

Outline

- Multiscale Systems Biology
- Colored Petri nets
- Colored Petri net framework
- **G** Key techniques
- Analysis techniques
- □ Applications
- □ Summary

Colored Petri nets

Chemical reactions:

- Prey \rightarrow 2Prey
- Prey + Predator \rightarrow 2Predator
- Predator $\rightarrow \lambda$

Colored Petri nets

sub-system2

sub-system1

predator_death

Predator2

2

Colored Petri nets

Colored Petri nets

Changing color sets adapts the model to various scenarios

Notions:

Multiset

 $\hfill\square$ a set in which there can be several occurrences for the same element

 \square denoted by m(s1) s1++m(s2) $s2++\cdots$

□ Example: {a, a, b, b, b} == 2`a++3`b

□ Place/transition/arc

Color sets

- **Guards:** Boolean expressions
- □ Arc expressions: result type = type of connected place
- □ Initial marking: initialization expressions

Color sets

Define how many components/subsystems (cells) in a colored Petri net model

 \blacksquare Each component (cell) is a color

Simple types: dot, integer, string, Boolean, enumeration, indexCompound types: product, union

Declarations:

 \Box colorset CS = a,b,c;

 \Box variable x : CS

Notions:

Guard

□ Boolean expression (true/false)

■Select those uncolored transitions where the guard is evaluated to true

usually variables of color sets

 \Box e.g., x, 2`x

□ result type = type of connected place

□ Initial marking

□ A multiset expression

 \Box 50`all() == 50`a ++ 50`b

Outline

□ Multiscale Systems Biology

Colored Petri nets

Colored Petri net framework

• Key techniques

□ Analysis techniques

□ Applications

D Summary

Colored Petri net framework

Fei Liu. Colored Petri Nets for Systems Biology; PhD thesis, BTU Cottbus, Dep. of CS, January 2012.
M Heiner, M. Herajy, F. Liu, C. Rohr. Snoopy – a unifying Petri net tool; In Proc. PETRI NETS 2012, Hamburg, Springer, LNCS, volume 7347, 398–407, June 2012.

Colored Petri net - implementation

Colored qualitative Petri net (QPNC)

- \blacksquare Colored extension of QPN
- □ Special arcs: inhibitor, read, equal, reset
- □ Animation built in Snoopy
- Export (unfold) to external analysis tools

Colored stochastic Petri net (SPNC)

- □ Colored extension of SPN
- □ Transition: stochastic rate with an exponential probability distribution
- □ Semantics: continuous time Markov chains (CTMCs)
- □ Special arcs, modifier arcs
- □ Special transitions: immediate, deterministic, scheduled
- □ Animation/stochastic simulation built in Snoopy
- Export (unfold) to external analysis tools

Colored continuousPetri net (CPNC)

- □ Colored extension of CPN
- □ Place: real values
- □ Transition: deterministic rates
- □ Semantics: a set of ordinary differential equations (ODEs)
- □ Special arcs: inhibitor, reader, modifier
- □ Continuous simulation built in Snoopy
- Export (unfold) to external analysis tools

Colored hybrid Petri net (HPNC)

- □ Colored extension of GHPN
- □ Place: real/integer values
- □ Transition: deterministic/stochastic rates
- □ Semantics: ODEs/CTMC
- □ Special arcs: inhibitor, reader, equal, reset, modifier
- □ Hybrid simulation built in Snoopy
- Export (unfold) to external analysis tools

Outline

- Multiscale Systems Biology
- Colored Petri nets
- Colored Petri net framework
- **G** Key techniques
- Analysis techniques
- □ Applications
- **D** Summary

Key techniques

Annotation language of colored Petri nets

::=	(SimpleType) (CompoundType)
::=	$\langle TypeIdentifier \rangle \langle StructuredType \rangle$
::=	$\langle {\rm UnsignedInteger} \rangle ~ ~ \langle {\rm Boolean} \rangle ~ ~ \langle {\rm String} \rangle$
::=	"int"
::=	"bool"
::=	"string"
::=	$\langle \text{Enumeration} \rangle \mid \langle \text{Index} \rangle$
::=	(IdentifierList)
::=	$\langle {\rm Identifier} \rangle ~ ~ \langle {\rm IdentifierList} \rangle "," \langle {\rm Identifier} \rangle$
::=	(Identifier) "[" $(IndexSpecifier)$ "]"
::=	"int"
::=	$\langle Product \rangle \mid \langle Union \rangle$
::=	$\langle Type \rangle$ "×" $\langle Type \rangle \langle Product \rangle$ "×" $\langle Type \rangle$
::=	$\langle Type \rangle \mid \langle Union \rangle$ "," $\langle Type \rangle$

Key techniques

Annotation language of colored Petri nets

$\langle ColorExpr \rangle$::=	$\langle MultiSetExpr \rangle$
$\langle MultiSetExpr \rangle$::=	$\langle Predicate \rangle \langle MultiSetExpr \rangle \langle MSAdditionOp \rangle \langle Predicate \rangle$
$\langle MSAdditionOp \rangle$::=	"++"
$\langle Predicate \rangle$::=	$\langle SeparatorExpr \rangle "[" \langle OrExpr \rangle "]" \langle SeparatorExpr \rangle$
$\left< {\rm SeparatorExpr} \right>$::=	$\label{eq:constraint} $$ {\rm TupleExpr} {\rm SeparatorExpr} {\rm SeparatorOp} {\rm TupleExpr} $$$
$\langle SeparatorOp \rangle$::=	45.22
$\langle TupleExpr \rangle$::=	$\langle OrExpr \rangle "(" \langle CommaExpr \rangle")"$
$\langle CommaExpr \rangle$::=	$\langle TupleExpr \rangle \langle CommaExpr \rangle \langle CommaOp \rangle \langle TupleExpr \rangle$
$\langle CommaOp \rangle$::=	44 77 2
$\langle OrExpr \rangle$::=	$\langle AndExpr \rangle \mid \langle OrExpr \rangle \langle OrOp \rangle \langle AndExpr \rangle$
$\langle OrOp \rangle$::=	" 77
$\langle AndExpr \rangle$::=	$\langle EqualExpr \rangle \mid \langle AndExpr \rangle \langle AndOp \rangle \langle EqualExpr \rangle$
$\langle AndOp \rangle$::=	"&"
$\langle EqualExpr \rangle$::=	$\label{eq:relationExpr} $$ \ \ \langle EqualExpr \rangle \langle EqualOp \rangle \langle RelationExpr \rangle $$ $$
$\langle EqualOp \rangle$::=	"=" "<>"
$\langle \text{RelationExpr} \rangle$::=	$\langle {\rm AddExpr}\rangle ~ ~ \langle {\rm RelationExpr}\rangle \langle {\rm RelationOp}\rangle \langle {\rm AddExpr}\rangle$
$\langle \text{RelationOp} \rangle$::=	"<" "<=" ">=" ">"
$\langle AddExpr \rangle$::=	$\label{eq:multiplicityExpr} $$ \ \ \langle AddExpr \rangle \langle AddOp \rangle \langle MultiplicityExpr \rangle $$ $
$\langle AddOp \rangle$::=	"+" "-"

Annotation language of colored Petri nets

DFlex scanner & Bison parser

□ C++ vs ML (functional programming) language

F Liu, M Heiner and C Rohr: Manual for Colored Petri Nets in Snoopy; Technical report 02-12, Brandenburg University of Technology Cottbus, Department of Computer Science, March 2012.

Unfolding algorithm

- reuse analysis techniques and tools for standard Petri nets
- reuse stochastic or continuous simulation algorithms

F Liu, M Heiner and M Yang: An efficient method for unfolding colored Petri nets; In Proceedings of the 2012 Winter Simulation Conference (WSC 2012), Berlin, IEEE, 978-1-4673-4781-5/12, 2012.

- **U**nfolding algorithm
 - compute all instances (bindings) for every transition
 - \square bind every variable to each color of its color set
 - the combination of color sets if the guard is always true

Key techniques

- Unfolding algorithm
 - the number of instances for a transition is constrained by its guard
 - □ A constraint satisfaction approach
 - $\hfill\square$ the guard is not always true
 - all the variables in the guard have finite integer domains

- **U**nfolding algorithm
 - \square get the guard of a transition
 - \square get all variables in this guard
 - define the color set of each variable as its domain in CSP
 - □ define the guard as a constraint of CSP
 - I solve CSP using constraint solvers, e.g. Gecode

Key techniques

		Size		Unfoldin	g time
	$M \times N$	Places	Transitions	without CSP	with CSP
	10 imes 10	100	884	4 seconds	1 seconds
	50 imes 50	2,500	24,404	34 minutes	8 seconds
1	00×100	10,000	98,804	11 hours	43 seconds
2	200×200	40,000	397,604	\$	4 minutes

* done on PC, Intel(R) Xeon(R) CPU 2.83GHz, RAM 4.00GB. ◊ we did not get the result within 24 hours.

Outline

- □ Multiscale Systems Biology
- **Colored** Petri nets
- **Colored Petri net framework**
- **•** Key techniques
- □ Analysis techniques
- □ Applications
- **D** Summary

Analysis capabilities

built in Snoopy
 animation (QPN^C/SPN^C)
 simulation (SPN^C/CPN^C/HPN^C)

external analysis tools

□ structural analysis (all net classes): Charlie

□ CTL model checking (QPN^C): Marcie

□ numerical CSL model checking (SPN^C): Marcie

□ simulative PLTLc model checking (SPN^C): Marcie

simulative PLTLc model checking (SPN^C/CPN^C/HPN^C): MC2 tool

Outline

- Multiscale Systems Biology
- Colored Petri nets
- Colored Petri net framework
- **G** Key techniques
- Analysis techniques
- □ Applications
- □ Summary

Ex1- C. Elegans Vulval Development

based on [Li et al. 2009]

Ex1- C. Elegans Vulval Development

Declarations: colorset Dot = with dot;

colorset CS = integer with 3-8; variable x : CS;

F Liu, M Heiner and M Yang: Modeling and analyzing biological systems using colored hierarchical Petri nets, illustrated by C. elegans vulval development; WSPC Journal of Biological Systems, 22(3):463–493, online May 2014.

Ex1- C. Elegans Vulval Development

Q Gao, D Gilbert, M Heiner, F Liu, D Maccagnola and D Tree: Multiscale Modelling and Analysis of Planar Cell Polarity in the Drosophila Wing; IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(2):337-351, 2013

Ex1- Planar Cell Polarity in Drosophila Wing 编编演集集

Ex3 - Ca2+ release sites

A cluster: a group of strongly coupled channels
An array of weakly coupled clusters

F Liu and M Heiner: Multiscale modelling of coupled Ca2+ channels using coloured stochastic Petri nets; IET Systems Biology, 7(4):106 - 113, August 2013.

Ignoring/considering the effect of neighboring clusters
 Few/frequent waves

O Pârvu, D Gilbert, M Heiner, F Liu, N Saunders and S Shaw: Spatial-temporal modelling and analysis of bacterial colonies with phase variable genes; ACM Transactions on Modeling and Computer Simulation (TOMACS), 25(2):25p., May 2015.

□ The PDEs of the Brusselator

$$\begin{split} \frac{\partial U}{\partial \tau} &= A - (B+1)U + U^2 V + \nabla^2 U \\ \frac{\partial V}{\partial \tau} &= BU - U^2 V + D \nabla^2 V \end{split}$$

$$B = (\mu + 1) * (1 + \eta)^2$$

 $\hfill\square$ The chemical reactions and diffusion

$$\begin{split} \phi \xrightarrow{A} U_{xy} \\ U_{xy} \xrightarrow{B} V_{xy} & U_{xy} \xrightarrow{1/h^2} U_{ab} \\ 2U_{xy} + V_{xy} \xrightarrow{1} 3U_{xy} & V_{xy} \xrightarrow{D/h^2} V_{ab}. \\ U_{xy} \xrightarrow{1} \phi \end{split}$$

F Liu, MA Blätke, M Heiner and M Yang:

Modelling and simulating reaction–diffusion systems using coloured Petri nets; Computers in Biology and Medicine, 53:297–308, October 2014

Ex4 - the Brusselator

□ The colored Petri net model of the Brusselator

transition	rate function
<i>t</i> ₁₆	Α
<i>t</i> ₁₇	B * U
<i>t</i> ₁₈	U * U * V
<i>t</i> ₁₉	U
<i>t</i> ₂₀	U/(h * h)
<i>t</i> ₂₁	D * V/(h * h)

Ex4 – the Brusselator

□ The colored Petri net model of the Brusselator

Outline

Multiscale Systems Biology

Colored Petri nets

Colored Petri net framework

• Key techniques

□ Analysis techniques

□ Applications

D Summary

Multiscale challenges vs colored Petri nets

- **Repetition**
- □ Variation
- □ Organization
- □ Hierarchical organization
- □ Communication
- □ Movement
- □ Replication
- Deletion
- □ Differentiation
- Dynamic (variable) grid size
- □ Pattern formation

Colors

- Choose a group of colors
- Ordered color sets
- Ordered product color sets
- □ Exchange colors
- Change a color to another
- Create a new color in a color set
- □ Remove a color from a color set
- Change a color to another
- Dynamic color sets
- Combination

Federal Ministry of Education and Research, Germany (0315449H)
 National Natural Science Foundation of China (61273226)

- Data Structures and Software Dependability Chair, BTU Cottbus, Germany
- □ Molecular Network Group, Otto-von-Guericke-Universität, Germany
- Computational Systems and Synthetic Biology Research Group, Brunel University, UK
- Department of Computer Science, Port Said University, Egypt

Thank you for your attention !

References

- •H. Kitano. Systems Biology: A Brief Overview. In: Science.
- •A. S. Popel et al. Systems Biology and Physiome Projects. In: Wiley Interdisciplinary Reviews: Systems Biology and Medicine.
- •*H. DeRemigio et al. Markov Chain Models of Coupled Calcium Channels: Kronecker Representations and Iterative Solution Methods. Physical Biology.*
- •C. Li et al. Simulation-Based Model Checking Approach to Cell Fate Specification During Caenorhabditis Elegans Vulval Development by Hybrid Functional Petri Net with Extension. BMC Systems Biology.
- •Fei Liu. Colored Petri Nets for Systems Biology; PhD thesis, BTU Cottbus, Dep. of CS, January 2012.
- •*Q. Gao et al. A Multiscale Approach to Modelling Planar Cell Polarity in Drosophila Wing using Hierarchically Coloured Petri Nets. CMSB.*
- •*M* Heiner et al. Snoopy a unifying Petri net tool; In Proc. PETRI NETS 2012, Hamburg, Springer, LNCS, volume 7347, 398–407, June 2012.
- M Heiner and D Gilbert: From Petri Nets to Partial Differential Equations and beyond; Talk, Workshop on Conceptional Foundations of Systems Biology, Balliol College Oxford, March 2012.
 Q Gao et al. Multiscale Modelling and Analysis of Planar Cell Polarity in the Drosophila Wing;
- IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2012
- •F Liu and M Heiner: Multiscale modelling of coupled Ca2+ channels using coloured stochastic Petri nets; IET Systems Biology, 2013.
- O Parvu, D Gilbert, M Heiner, F Liu and N Saunders: Modelling and Analysis of Phase Variation in Bacterial Colony Growth; In Proc. CMSB 2013, Vienna, Springer, LNCS, accepted, September 2013.
 D Gilbert, M Heiner, F Liu and N Saunders: Colouring Space - A Coloured Framework for Spatial Modelling in Systems Biology; In Proc. PETRI NETS 2013, Milano, Springer, LNCS, volume 7927, pages 230–249, June 2013.