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Introduction and motivation

Our research

Statistical inference (ML) methods
Stochastic analysis of systems
Single-cell experiments
Microfluidic chips



Introduction and motivation

Example: osmotic stress response

High-osmolarity induced gene expression in yeast (PNAS’12)



Introduction and motivation

Motivation: Cell biology is multi-scale (...and multi-level)

System-level understanding requires
coupling of cellular processes.
Cross-regulation between signaling,
gene expression metabolism.
Different time-scales results in
computational bottleneck.
On top of that: spatial effects (e.g.
membrane trafficking) often
significant - additional scale of
resolution.



Introduction and motivation

Population models (aka Petri nets)

Rk : ν−k1S1 + ν−k2S2 + . . .+ ν−kmSm
ck−→ ν+

k1S1 + ν+
k2S2 + . . .+ ν+

kmSm

νk = (ν+
k1 − ν

−
k1, ν

+
k2 − ν

−
k2, . . . , ν

+
km − ν

−
km)T Stoichiometric change vector

X(t) = (X1(t),X2(t), . . . ,Xm(t))T State vector , ck ∈ R+: Rate constant

X(t) = X(t−) + νk occurrence of Rk updates the state vector

Jump process formulation (CTMC)
Continuous time, countable states - stochastic simulation or chemical master
equation.
Diffusion approximation
Continuous time, continuous state - stochastic differential equation,
Fokker-Planck equation.
Mean-field approximation - thermodynamic limit
Continuous time, continuous state - ordinary differential equation (RRE).



Introduction and motivation

Multi-scale models

Combine different model description to exploit multi-scale nature.
Addressed questions:

1 How do we partition a given CTMC model into discrete and approximate,
continuous parts?

2 How can we bound the error for a certain partition?
3 How can we simulate such a multi-scale model?



Introduction and motivation

Research agenda

Propose partitioning according to Poisson approximation.
Perform path-wise, strong error analysis.
Design dynamic partitioning algorithm to simulate multi-scale systems efficiently.



Model setup

Random time-change representation

Rk : ν−k1S1 + ν−k2S2 + . . .+ ν−kmSm
ck−→ ν+

k1S1 + ν+
k2S2 + . . .+ ν+

kmSm

Propensity function example: ak (x) = ck

m∏
i=1

( xi
ν−ki

)
, k = 1, . . . , r

e.g. Rk : S1 + S2
ck−→ ∗, ak (X) = ck X1X2 or S1

ck−→ ∗, ak (X) = ck X1
With ak (x)dt ≡ the probability of reaction Rk to occur in time interval (t, t + dt].
A path-wise representation of the CTMC is as follows

X(t) = X(0) +
r∑

k=1

ξk

(∫ t

0
ak (X(s))ds

)
νk ,

where ξk ’s are independent Poisson processes.



Model setup

Scaling

The abundance of species and time-scales of reactions can vary over different orders of
magnitude. We introduce additional scaling variables to make that explicit (other
variables are O(1)).

X̄ N
i = Xi/Nαi , X̄ N

i = O(1),
dk = ck/Nβk , dk = O(1),

Example ak (X) = ck Xi = Nβk dk Nαi X̄ N
i ≡ Nβk +αiλ(X̄ N

i )
ak (X) = Nβk +ν−

k ·αλk (X̄ N ), =⇒ λk (·) = O(1),
t → t Nγ ,

X N (t) = X̄ N (t Nγ).

We obtain random time-change model for normalized variables

X N (t) = X N (0) +
R∑

k=1

ξk

(
Nρk

∫ t

0
λk (X N (s))ds

)
νN

k ,

where we define ρk = γ + βk + ν−k · α and νN
ki = νki/Nαi .



Model setup

Idea

High intensity Poisson process can well be approximated by Brownian motion
(plus dift), i.e. ξ(t) ≈ t + W (t).

Theorem (Kolmos, Major, Tusnady)
There exists a Brownian motion W (t) on the same probability space as ξ(t) such that

Γ = sup
t

ξ̃(t)−W (t)
log(2 ∨ t)

<∞ (a.s.),

where ξ̃(t) = ξ(t)− t is the centered Poisson process.

That is [ 1
√

n
ξ̃(nt)−

1
√

n
W (nt)

]
≤

log(2 ∨ nt)
√

n
Γ,

where 1√
n W (nt) is a standard Brownian motion W (t).

Strategy: Replace reaction count process of high scaling factor Nρk by an
diffusion approximation.



Model setup

Multi-scale approximation
Jump-Diffusion Approximating process (first reaction replaced)

Y N (t) = X N (0) + Nρ1

∫ t

0
λ1(Y N (s))ds νN

1 + W1

(
Nρ1

∫ t

0
λ1(Y N (s))ds

)
νN

1

+
∑
k>1

ξk

(
Nρk

∫ t

0
λk (Y N (s))ds

)
νN

k

Piece-wise deterministic Markov process (Jump-ODE)

Y N (t) = X N (0) + Nρ1

∫ t

0
λ1(Y N (s))ds νN

1

+
∑
k>1

ξk

(
Nρk

∫ t

0
λk (Y N (s))ds

)
νN

k

Between two jumps overall system state Y N (t) evolves deterministically.



Model setup

Bounding the error

Compute bound on path-wise error for some T ≥ 0

sup
t≤T

E|X N (t)− Y N (t)| = sup
t≤T

m∑
i=1

E|X N
i (t)− Y N

i (t)|

for different reactions replaced by an approximation.

Theorem
Let X N (t) be the exact jump process and Y N (t) its jump-diffusion approximation with
reaction k = 1 replaced then for T ≥ 0

sup
t≤T

E|X N (t)− Y N (t)| ≤ CT (C ′ log Nρ1/Nm1 + K ′′/N2ρ1+m1 )

where |vN
k | = O(N−mk ) = O(

∑
i∈Rk

N−αi ) with Rk = {i ∈ N | vki 6= 0} and with the

reaction non-specific constant CT = exp
(

2
∑r

k=1 Nρk |νN
k |Lk T

)



Model setup

From a bound to an algorithm

Convert reaction-specific error terms involving scaling variables back to states
and propensities

δk = log Nρk /Nmk + 1/N2ρk +mk

Fix time horizon ∆ = O(Nγ) and recall that ak (X)∆ = O(Nρk ) and
(N−mk ) = O(

∑
i∈Rk

N−αi ) = O(
∑

i∈Rk
1/Xi )

Then the jump-diffusion error criterion is

δk (∆) =
∑
i∈Rk

log(ak (X)∆)
Xi

+
1

(ak (X)∆)2Xi

Fix approximation accuracy ε and check at every ∆ for each reaction k whether
the incurred error of approximating it by diffusion is below ε.



Simulation studies

Example: Bursty birth-death process

Consider the single species S

∅ c1−→ 10S, S c2−→ ∅. (1)

with the number of molecules of S at time t is denoted by X(t). we use

X(0) = 0, ∆ = 0.1, ε = 0.09, P = 50.

Reaction constants of R1, R2 are given as c1 = 1 molec s−1, c2 = 1s−1.
Death process is expected to be approximated by diffusion.



Simulation studies

Dynamic partitioning
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Simulation studies

Weak error analysis by simulation
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Simulation studies

The Lotka-Volterra model

Let S1 and S2 denote the prey and the predator, respectively. The corresponding
Lotka-Volterra prey-predator model can be depicted as

S1
c1−→ 2S1, S1 + S2

c2−→ 2S2 S2
c3−→ ∅. (2)

Let X1(t) and X2(t) denote the number of the prey and the predator at time t > 0,
respectively, then, the state of the system is defined by X(t) = (X1(t),X2(t))T ∈ N2

≥0.
We use

X(0) = (900, 800)T , c1 = 2s−1, c2 = 0.002molec−1s−1, c3 = 2s−1.

∆ = 0.5, ε = 0.03, P = 50, t ∈ (0, 50)



Simulation studies

Dynamic partitioning
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Simulation studies

Weak error analysis by simulation
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Simulation studies

EGFR signaling and gene expression

Rate constants and abundances based on
Schoeberl et al., Science Sci’09
30 signaling reactions, 6 gene expression reactions
Runge-Kutta strong order 2 SDE integrator



Conclusions

Conclusions

Multi-scale models essential for systems biology.
Traditional hybrid models often involve ad-hoc partitioning of species.
Reaction partitioning leveraging existing approximation results for point
processes.
Generally, every state becomes a jump-diffusion process (i.e. no species
partitioning).
Explicit bound for finite-time error for approximating specific reaction channels.
Real gain requires higher-order integration schemes for SDEs.
Bounds for ODE-Jump and ODE-SDE-Jump.
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