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Characteristics

� classified as WHO grade I
� epidemiology

� 75 % occurring in the first two decades of life
� highest age incidence: 5 - 15 years

� location
� frequently: cerebellum (60 %)
� also: cerebellar hemisphere, optic chiasm, hypothalamus, brainstem,

spinal cord
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Characteristics

� tumors
� grow as solid masses
� well-circumscribed tumors
� non-invasive

� subtypes
� determined on molecular level
� differ in their aggressiveness
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Subtypes

PA I

� indolent behavior

� slowly growing

� considered as benign
� genetic level

� activation of MAPK pathway
sufficient

� BRAF, KRAS, NF1
� single-pathway disease

� MAPK activation
� initially promotes cell

proliferation
� but also induces

senescence by increased
activity of TSG (e.g.
CDKN2A)

� oncogene-induced
senescence
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Subtypes

Narita, M. et al. 2011

PA II

� aggressive behavior

� malignant transformation

� senescence is overcome by
additional genetic alterations,
e.g. CDKN2A

� enables fast tumor growth
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Therapy

gross total resection

� treatment of choice

� favorable prognosis: 90 % cured without additional therapy

� problem: location determines extent of resection

� cerebellum, superficial cerebrum
� optic pathway, brain stem tumors

⇒ Only partial resection possible in many cases
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Therapy

partial resection

� lower survival rates than patients with total resection
� prognosis is highly unpredictable

� tumor regrowth
� tumor growth arrest
� tumor regression

� controversy about further therapy
� wait and see approach?
� radiation therapy?
� extent of follow-up observation?

How could clinicians be supported?
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Decision support

Insights into regression chance in dependency of residual tumor
size could

� justify wait and see approach if there is a high chance for
regression

� justify side effects of additional therapy, e.g. radiation, if there is a
low chance for regression

� justify extent of resection

� avoid risks if only small effect on regression chance
� justify risks if high effect on regression chance

Mathematical model in order to balance between risk of
operation and side effects of further therapies and risk of
regrowth or progression.
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Tumor growth and
progression model

Parameters

� critical tumor size N
� no regression possible

anymore

� mutation parameters u,v

Dynamics

� cell death, proliferation,
mutations

Assumptions

� no spatial aspects

� one type-II cell ≡ diagnosis
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Mathematical Model
� TGP process Xt

� state space S = {0, 1, 2, ...,N,E}
� 0 ≡ all cells wild-type
� k ≡ k type-I cells, no type-II cell, 1 6 k 6 N
� E ≡ at least one type-II cell

� no modeling beyond critical size N
� two absorbing states N and E representing PA I and PA II

� regression function

βγ(%) := P(Xt = 0 for some t|X0 = N%), % ∈ [0, 1].
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Parameter regime

Nu � 1

� each mutant lineage can be investigated independently

� biological implication: tumor develops from a single mutated cell

risk coefficient γ := (N
√
v)2 > 0

� positive probability of absorption in both states N and E

� biological implication: PA I and PA II are possible outcomes of the
model

� γ determines the absorption probability and therefore the fractions
of PA I and PA II in the model
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Fraction of PA I cases in the model

Derivation sketch

� assume occurence of single successful mutant and set u = 0
� First Step Analysis

α
N (i) =

∑
j∈S

α
N (j)p(i, j).

� Linear system of equations
P
′
α
N = b

� Cramer’s rule
α
N (1) =

detP
′
1

detP
′ =

1

PN−1

(
v+1
1−v

)
� asymptotic result for N →∞

α(γ) := lim
N→∞

α
N (1) =

1

I0(2
√
γ).

13 of 30



Fraction of PA I cases in the model
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Tumor regression function

� tumor regression
function
� diffusion approximation
� % = k

N

βγ (%) =

√
1− %I1

(
2
√
γ (1− %)

)
I1(2
√
γ)

� risk parameter γ has
crucial impact on
regression function

Goal: estimate risk
coefficient γ
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Estimating the risk coefficient γ
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Clinical implications

Linear dependency between residual tumor fraction and
regression.

� PA-regression-function approximately

T1(%) = 0.9817− %

� very good approximation

|R1(%)| 6 γ

8
= 0.0185

� every resected percentage point contributes equally to regression
probability
� avoid risks by resecting small fractions
� resections always contribute to the regression probability
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Clinical implications
Quantitative prediction of the regression probability.
� literature research: critical tumor size N equals 9 cm3

Residual tumor size (cm3) Tumor regression probability (in %)
0.1 98.91
0.5 94.06
1 88.16
2 76.50
3 65.03
4 53.75
5 42.64
6 31.71
7 20.47
8 10.39
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Clinical implications
Non-existence of an extent of resection (EOR) threshold.
� malignant brain tumors: EOR threshold of 78 %
� our results suggest non-existence of such a threshold in PA
� important: TGP model able to reproduce EOR threshold

19 of 30



Clinical implications
Non-existence of an extent of resection (EOR) threshold.
� malignant brain tumors: EOR threshold of 78 %
� our results suggest non-existence of such a threshold in PA
� important: TGP model able to reproduce EOR threshold

19 of 30



Discussion

� first theoretical model of PA based on population dynamics of
tumor and wild-type cells
� only one parameter: risk parameter γ
� results robust to changes of γ

� limited long-term follow-up data
� no clinical studies of influence of residual tumor volume
� results suggest: residual tumor volume is important prognostic marker
� lack of data could be reason for different results in clinical studies on

additional treatment in PA
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for your attention!
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Decomposition into two sub-processes
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Regression in the TGP model
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Absorption probabilities

P
′
1 =



0 (N − 1)(1− v) 0 · · · · · · 0
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. . . 0
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. . .
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. . .

. . .
. . .

. . .
.
.
.

0
. . .

. . .
. . .

. . . 2(1− v)
−(1− v) 0 · · · · · · 1 −2− (N − 1)v


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Absorption probabilities

|detP
′
1 | = (1− v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(N − 1)(1− v) 0 · · · · · · · · · 0
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. . .
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (1− v)(N − 1)(1− v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(N − 2)(1− v) 0 · · · · · · 0

2(N − 3)− 3v (N − 3)(1− v)
. . .

. . .
.
.
.

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 · · ·
. . .

. . . 2(1− v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ...

= (1− v)(N − 1)(1− v)(N − 2)(1− v)(N − 3)(1− v)...2(1− v)

= (N − 1)!(1− v)N−1
.

26 of 30



Absorption probabilities

detP
′

=

∣∣∣∣∣∣
−(3 + v) 2 0
3(1− v) −(4 + 2v) 1

0 2(1− v) −(2 + 3v)

∣∣∣∣∣∣ = 6(v3 + 9v2 + 9v + 1)

= 3!(v3 + 32v2 + 32v + 1), forN = 4 and

detP
′

=

∣∣∣∣∣∣∣∣
−(4 + v) 3 0 0
4(1− v) −(6 + 2v) 2 0

0 3(1− v) −(4 + 3v) 1
0 0 2(1− v) −(2 + 4v)

∣∣∣∣∣∣∣∣ = 24(v4 + 16v3 + 36v2 + 16v + 1)

= 4!(v4 + 42v3 + 62v2 + 42v + 1) forN = 5.

detP
′

= 120(v5 + 25v4 + 100v3 + 100v2 + 25v + 1)

= 5!(v5 + 52v4 + 102v3 + 102v2 + 52v + 1) for N = 6

detP
′

= (N − 1)!

((
N − 1

N − 1

)2

vN−1 +

(
N − 1

N − 2

)2

vN−2 + ... +

(
N − 1

2

)2

v2 +

(
N − 1

1

)2

v1 +

(
N − 1

0

)2

v0

)

= (N − 1)!

N−1∑
i=0

(
N − 1

i

)2

v i .
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Absorption probabilities

α
N (1, v) =

detP
′
1

detP
′ =

(N − 1)!(1− v)N−1

(N − 1)!
N−1∑
i=0

(
N−1

i

)2
v i .

=
(1− v)N−1

N−1∑
i=0

(
N−1

i

)2
v i .

=
1

PN−1

(
v+1
1−v

)
,

where PN (x) denotes the Legendre polynomials which are the particular solutions to the Legendre differential equation

(
1− x2

)
f ′′(x)− 2x f ′(x) + N(N + 1) f (x) = 0, N ∈ N0.

N u v γ = (N
√

v)2 αN (1) simulated fraction of fixation

10 10−4 10000−1 0.12 0.99106 0.9913

10 10−4 2500−1 0.22 0.96494 0.96536

100 10−4 10000−1 1 0.44174 0.44162

100 10−4 2500−1 22 0.08999 0.08973
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The influence of γ
(N
√

v)2 = γ, hence v = γ

N2 and therefore

α
N (1, γ) =

1

PN−1

(
v+1
1−v

) =
1

PN−1

( γ

N2 +1

1− γ

N2

) =
1

PN−1

(
N2+γ

N2−γ

)
.

It holds that

PN (x) =
1

π

∫ π
0

[
x +

√
x2 − 1 cosϕ

]N
dϕ, x ∈ R\{−1, 1},

hence

lim
N→∞

PN−1

(
N2 + γ

N2 − γ

)
= lim

N→∞

1

π

∫
π

0

[
N2 + γ + 2N

√
γ cosϕ

N2 − γ

]N−1

dϕ

=
1

π

∫
π

0

lim
N→∞

[
N2 + γ + 2N

√
γ cosϕ

N2 − γ

]N−1

dϕ

=
1

π

∫
π

0

e2
√
γ cosϕ

dϕ = I0(2
√
γ).
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Fraction of PA I cases in the model

α(γ) := lim
N→∞

αN(1, γ) =
1

I0(2
√
γ).

I0 denotes the modified Bessel function of the first kind.
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