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Introductory note

Integrative biology aims at deciphering essential biological processes that are driven by complex mechanisms,
involving miscellaneous interacting molecular compounds. In this context, the need for appropriate mathe-
matical and computational modelling tools is widely advocated. Petri nets have proved their usefulness for
the modelling, analysis, and simulation of a diversity of biological networks, covering qualitative, stochastic,
continuous and hybrid models. The deployment of Petri nets to study biological applications has not only
generated original models, but has also motivated fundamental research.

This workshop gathers researchers interested in the application of Petri nets for biological applications.
Its main goal is to demonstrate that this field of application raises new challenges and that Petri nets can
be effective to tackle such challenges.

We received two types of contributions: research and work-in-progress papers. All have been reviewed by
four to five referees. Demonstrating the inter-disciplinary nature of the topic, the present document encloses
theoretical contributions as well as biological applications.

Additionally, there is one invited talk given by Jorge Carneiro, who is a principle investigator at the
Oeiras Associate Laboratory and the leader of the Quantitative Organism Biology lab at the Gulbenkian
Institute of Science. Jorge Carneiro has an interdisciplinary background, being experienced in laboratory
work and in biomathematics. In his talk he will discuss some challenges for the Petri net community.
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Why aren’t Petri nets widely used in biological
research?

Jorge Carneiro

Instituto Gulbenkian de Ciéncia, Portugal
http://qobweb.igc.gulbenkian.pt

Abstract. Many cellular and supra-cellular processes are stochastic and
combinatorial in nature. Binding of transcriptional factors to gene pro-
moters or enhancers, context-dependent multistep epigenetic modifica-
tions of gene loci, regulation of ion channel gating, and multicellular in-
teractions controlling cell differentiation and cycle are examples of funda-
mental stochastic processes that involve multiple intertwined concurrent
events. Designing and analysing models of such systems is a challeng-
ing and painstaking task, since the number of variables and potential
events increases exponentially with the number of relevant components
one is willing to include in the model. Like in any modelling exercise
these systems involve a trade-off between simplicity and realism, but,
here, inadvertent omissions or oversimplifications in early model design
are paid a too high price when redesign is necessary. The stochastic Petri
nets (SPN) formalism is almost ideal to deal with these modelling dif-
ficulties, since it offers an intuitive and straightforward representation
of interactions and concurrent events, and provides a solid theoretical
framework to analyse the model structure and dynamics. Furthermore,
several SPN software tools are available that allow a modeller to rapidly
draw, modify, and analyse model variants. This ”rapid prototyping” of
a model facilitates the tasks of pruning away unnecessary components
and identifying missing ones. Considering these advantages of the use
of SPN it is almost surprising that this formalism is not widely applied
in modelling biological systems. Based on two examples of SPN appli-
cation, namely to modelling somatic recombination of immune receptor
genes and ion channel gating in sea urchin spermatozoa, I will argue that
SPN software tools are well-suited for engineering artificial systems, but
do not yet offer all the functionalities one would wish to have at hand
when modelling a natural biological system.



Cycle structure in SR and DSR graphs:
implications for multiple equilibria and stable
oscillation in chemical reaction networks

Murad Banaji

Department of Medical Physics and Bioengineering, University College London,
Gower Street, London WC1E 6BT, UK.

Abstract. Associated with a chemical reaction network is a natural
labelled bipartite multigraph termed an SR graph, and its directed ver-
sion, the DSR graph. These objects are closely related to Petri nets.
The construction of SR and DSR graphs for chemical reaction networks
is presented. Conclusions about asymptotic behaviour of the associated
dynamical systems which can be drawn easily from the graphs are dis-
cussed. In particular, theorems on ruling out the possibility of multi-
ple equilibria or stable oscillation in chemical reaction networks based
on computations on SR/DSR graphs are presented. These include both
published and new results. The power and limitations of such results are
illustrated via several examples.

1 Chemical reaction networks: structure and kinetics

Models of chemical reaction networks (CRNs) are able to display a rich variety
of dynamical behaviours [1]. In this paper, a spatially homogeneous setting is
assumed, so that CRNs involving n chemicals give rise to local semiflows on
RZ,,, the nonnegative orthant in R™. These local semiflows are fully determined
if we know 1) the CRN structure, that is, which chemicals react with each other
and in what proportions, and 2) the CRN kinetics, that is, how the reaction
rates depend on the chemical concentrations. An important question is what
CRN behaviours are determined primarily by reaction network structure, with
limited assumptions about the kinetics.

A variety of representations of CRN structure are possible, for example via
matrices or generalised graphs. Of these, a signed, labelled, bipartite multigraph,
termed an SR graph, and its directed version, the DSR graph, are formally similar
to Petri nets. This relationship is discussed further below.

It is now well established that graphical representations can tell us a great
deal about asymptotic behaviours in the associated dynamical systems. Pio-
neering early work on CRNs with mass-action kinetics (]2, 3] for example), had
a graph-theoretic component (using graphs somewhat different from those to
be presented here). More recently, graph-theoretic approaches have been used to
draw conclusions about multistationarity and oscillation in CRNs with restricted
classes of kinetics [4, 5].



The applicability of such work, particularly in biological contexts, is greatly
increased if only weak assumptions are made about kinetics. Consequently, there
is a growing body of recent work on CRNs with essentially arbitrary kinetics.
It has been shown that examination of Petri nets associated with a CRN allows
conclusions about persistence, that is, whether w-limit sets of interior points of
RZ, can intersect the boundary of RZ, [6]. Work on multistationarity has been
extended beyond the mass-action setting [7, 8]: some conclusions of this work
will be outlined below. Finally, recent work applying the theory of monotone
dynamical systems [9,10] in innovative ways to CRNs [11] has close links with
some of the new material presented below.

Outline. After some preliminaries, the construction of SR and DSR graphs
is presented, and their relationship to Petri nets is discussed. Some recent results
about multistationarity based on cycle structure in these objects are described.
Subsequently, a new result on monotonicity in CRNs is proved. This result,
Proposition 4, is a graph-theoretic corollary of results in [12]. It bears an inter-
esting relationship to results in [11], which provide stronger conclusions about
convergence, but make different assumptions, and a somewhat different claim.
Finally, several examples, some raising interesting open questions, are presented.
At various points, in order to simplify the exposition, the results are presented
in less generality than possible, with more technical results being referenced.

2 Preliminaries

2.1 A motivating example

Consider the following simple family of CRNs treated in [13,14]:

SYS 1 SYS 2 SYS n
A1 +A2;\Bl A1+A2;\Bl Ai+Ai+1 \:‘BZ‘,
A2+A3:‘BQ A2+A3:‘BQ ’Lzl,,’l’b+1 (1)
A3 - 2A1 A3+A4 - B3 An+2 - 2A1
A4\:‘2A1

The reader may wish to look ahead to Figure 2 to see representations of the SR
graphs associated with the first three CRNs in this family. This family will be
revisited in Section 7, and the theory to be presented will imply the following
conclusions (to be made precise below): when n is even, SYS n does not allow
multiple nondegenerate equilibria; when n is odd, SYS n cannot have a nontriv-
ial periodic attractor. Both conclusions require only minimal assumptions about
the kinetics.

2.2 Dynamical systems associated with CRNs

In a spatially homogeneous setting, a chemical reaction system in which n reac-
tants participate in m reactions has dynamics governed by the ordinary differ-
ential equation

z = Iv(x). (2)



x = [x1,... ,xn]T is the nonnegative vector of reactant concentrations, and v =
[v1,... ,vm]T is the vector of reaction rates, assumed to be C'. A reaction rate
is the rate at which a reaction proceeds to the right and may take any real value.
I" is the (constant) n x m stoichiometric matrix of the reaction system. Since
reactant concentrations cannot be negative, it is always reasonable to assume
invariance of R, i.e. z; =0 = &; > 0.

The jth column of I, termed I}, is the reaction vector for the jth reaction,
and a stoichiometric matrix is defined only up to an arbitrary signing of its
columns. In other words, given any m x m signature matrix D (i.e. any diagonal
matrix with diagonal entries +1), one could replace I with I'D and v(z) with
Duv(z). Obviously the dynamical system is left unchanged. The subspace Im(I")
of R™ spanned by the reaction vectors is called the stoichiometric subspace.
The intersection of any coset of the Im(I") with RZ, is called a stoichiometry
class. -

Two generalisations of (2) which include explicit inflow and outflow of sub-
strates are worth considering. The first of these is a so-called CFSTR

& = q(zin — x) + Iv(x). (3)

q € R, the flow rate, is generally assumed to be positive, but we allow ¢ = 0 so
that (2) becomes a special case of (3). x;, € R™ is a constant nonnegative vector
representing the “feed” (i.e., inflow) concentrations. The second class of systems
is:
T = Zin + Lv(x) — Q). 4)
Here Q(x) = [q1(21), - - -, qn(z,)]T, with each g;(x;) assumed to be a C! function
satisfying gz; > 0, and all other quantities defined as before. Systems (4) include
systems (3) with g # 0, while systems (2) lie in the closure of systems (4).
Define the m x n matrix V = [V};] where V}; = g%. A very reasonable,
but weak, assumption about many reaction systems is that reaction rates are
monotonic functions of substrate concentrations as assumed in [14-16] amongst

other places. We use the following definition from [14] (there called NAC):

A reaction system is N1C if i) I;V;; < 0 for all 4 and j, and ii) I3; =
0=V; =0.

As discussed in [14], the relationship between signs of entries in I" and V'
encoded in the N1C criterion is fulfilled by all reasonable reaction kinetics (in-
cluding mass action and Michaelis-Menten kinetics for example), provided that
reactants never occur on both sides of a reaction.

3 Introduction to SR and DSR graphs

3.1 Construction and relation to Petri nets

SR graphs are signed, bipartite multigraphs with two vertex sets Vg (termed “S-
vertices” ) and Vg (termed “R-vertices”). The edges F form a multiset, consisting
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of unordered pairs of vertices, one from Vg and one from Vi. Each edge is signed
and labelled either with a positive real number or the formal label co. In other
words, there are functions sgn: £ — {—1,1}, and Ibl : E — (0,00) U {oc}. The
quintuple (Vg, Vg, E,sgn, 1bl) defines an SR graph.

DSR graphs are similar, but have an additional “orientation function” on
their edges, O : E — {—1,0,1}. The sextuple (Vg, Vg, E,sgn,1bl, O) defines a
DSR graph. If O(e) = —1 we will say that the edge e has “S-to-R direction”, if
O(e) =1, then e has “R-to-S direction”, and if O(e) = 0, then e is “undirected”.
An undirected edge can be regarded as an edge with both S-to-R and R-to-S
direction, and indeed, several results below are unchanged if an undirected edge
is treated as a pair of antiparallel edges of the same sign. SR graphs can be
regarded as the subset of DSR graphs where all edges are undirected.

Both the underlying meanings, and the formal structures, of Petri nets and
SR/DSR graphs have some similarity. If we replace each undirected edge in a
DSR graph with a pair of antiparallel edges, a DSR graph is simply a Petri
net graph, i.e. a bipartite, multidigraph. Similarly, an SR graph is a bipartite
multigraph. S-vertices correspond to variables, while R-vertices correspond to
processes which govern their interaction. The notions of variable and process
are similar to the notions of “place” and “transition” for a Petri net. Edges in
SR/DSR graphs tell us which variables participate in each process, with addi-
tional qualitative information on the nature of this participation in the form
of signs, labels, and directions; edges in Petri nets inform on which objects are
changed by a transition, again with additional information in the form of labels
(multiplicities) and directions. Thus both Petri net graphs and SR/DSR graphs
encode partial information about associated dynamical systems, while neither
includes an explicit notion of time.

There are some important differences, however. Where SR/DSR graphs gen-
erally represent the structures of continuous-state, continuous-time dynamical
systems, Petri nets most often correspond to discrete-state, discrete-time sys-
tems, although the translation to a continuous-state and continuous-time con-
text is possible [17]. Although in both cases additional structures give partial
information about these dynamical systems, there are differences of meaning
and emphasis. Signs on edges in a DSR graph, crucial to much of the associ-
ated theory, are analogous to directions on edges in a Petri net: for example for
an irreversible chemical reaction, an arc from a substrate to reaction vertex in
the Petri net would correspond to a negative, undirected, edge in the SR/DSR
graph. Unlike SR/DSR graphs, markings (i.e. vertex-labellings representing the
current state) are often considered an intrinsic component of Petri nets.

Apart from formal variations between Petri nets and SR/DSR graphs, dif-
ferences in the notions of state and time lead naturally to differences in the
questions asked. Most current work using SR/DSR graphs aims to inform on
the existence, nature, and stability of limit sets of the associated local semiflows.
Analogous questions are certainly possible with Petri nets, for example questions
about the existence of stationary probability distributions for stochastic Petri
nets [18]. However, much study, for example about reachability, safeness and
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boundedness, concerns the structure of the state space itself, and has no obvious
analogy in the SR/DSR case. This explains to some extent the importance of
markings in the study of Petri nets; in the case of SR/DSR graphs, the under-
lying space is generally assumed to have a simple structure, and the aim is to
draw conclusions which are largely independent of initial conditions.

3.2 SR and DSR graphs associated with CRNs

SR and DSR graphs can be associated with arbitrary CRNs and more general
dynamical systems [7,8]. For example, the construction extends to situations
where there are modulators of reactions which do not themselves participate
in reactions, and where substrates occur on both sides of a reaction. Here, for
simplicity, the construction is presented for an N1C reaction system with stoi-
chiometric matrix I". Assume that there is a set of substrates Vg = {S1,..., 5.},
having concentrations z1, ..., z,, and reactions Vg = {Ry,..., R} occurring
at rates vy,...,vn. The labels in Vs and Vi will be used to refer both to the
substrate/reaction, and the associated substrate/reaction vertices.

— If I;; # 0 (i.e. there is net production or consumption of S; reaction j), and
also g—g is not identically zero, i.e. the concentration of substrate ¢ affects
the rate of reaction j, then there is an undirected edge {S;, R, }.

— If I3; # 0, but g% =0, then the edge {S;, R;} has only R-to-S direction.

The edge {S;, R;} has the sign of I';; and label |I5;]. Thus the labels on edges are
just stoichiometries, while the signs on edges encode information on which sub-
strates occur together on each side of a reaction. A more complete discussion of
the meanings of edge-signs in terms of “activation” and “inhibition” is presented
in [8]. Note that in the context of N1C reaction systems, the following features
(which are reasonably common in the more general setting) do not occur: edges
with only R-to-S direction; multiple edges between a vertex pair; and edges with
edge-label co.

SR/DSR graphs can be uniquely associated with (2), (3), or (4): in the case
of (3) and (4), the inflows and outflows are ignored, and the SR/DSR graph is
just that derived from the associated system (2). The construction is most easily
visualised via an example. Consider, first, the simple system of two reactions:

A+B=C, A=B (5)

This has SR graph, shown in Figure 1, left. If all substrates affect the rates
of reactions in which they participate then this is also the DSR graph for the
reaction. If, now, the second reaction is irreversible, i.e. one can write

A+B=C, A—B, (6)

and consequently the concentration of B does not affect the rate of the sec-
ond reaction', then the SR graph remains the same, losing information about
irreversibility, but the DSR graph now appears as in Figure 1 right.

! Note that this is usually, but not always, implied by irreversibility: it is possible for
the product of an irreversible reaction to influence a reaction rate.
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Fig. 1. Left. The SR (and DSR graph) for reaction system (5). Negative edges are
depicted as dashed lines, while positive edges are bold lines. This convention will be
followed throughout. Right. The DSR graph for reaction system (6), that is, when B
is assumed not to affect the rate of the second reaction.

4 Paths and cycles in SR and DSR graphs

In the usual way, cycles in SR (DSR) graphs are minimal undirected (directed)
paths from some vertex to itself. All paths have a sign, defined as the product
of signs of edges in the path. Given any subgraph F, its size (or length, if it is a
path) |E| is the number of edges in E. Paths of length two will be called short
paths. Any path E of even length also has a parity

P(E) = (=1)/¥/%sign(E).

A cycle C is an e-cycle if P(C') = 1, and an o-cycle otherwise. Given a cycle
C containing edges ey, ez, ..., ez, such that e; and e(; mod 2)+1 are adjacent for
each i =1,...,2r, define:

stoich(C) = [ [ 1b1(e2i—1) — [ ] 1bl(e2:)
=1 =1

Note that this definition is independent of the starting point chosen on the cycle.
A cycle with stoich(C) = 0 is termed an s-cycle.

An S-to-R path in an SR graph is a non-self-intersecting path between an S-
vertex and an R-vertex. R-to-R paths and S-to-S paths are similarly defined,
though in these cases the initial and terminal vertices may coincide. Any cycle is
both an R-to-R path and an S-to-S path. Two cycles have S-to-R intersection
if each component of their intersection is an S-to-R path. This definition can be
generalised to DSR graphs in a natural way, but to avoid technicalities regarding
cycle orientation, the reader is referred to [8] for the details. Further notation
will be presented as needed.

Returning to the family of CRNs in (1), these give SR graphs shown in Fig-
ure 2. If all reactants can influence the rates of reactions in which they partici-
pate, then these are also their DSR, graphs (otherwise some edges may become
directed). Each SR graph contains a single cycle, which is an e-cycle (resp. o-
cycle) if n is odd (resp. even). These cycles all fail to be s-cycles because of the
unique edge-label of 2.
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Fig. 2. The structure of the SR graphs for SYS 1,2 and 3 in (1). For simplicity
vertices are unlabelled, but filled circles are S-vertices while open circles are R-vertices.
Unlabelled edges have edge-label 1.

5 Existing results on CRNs, injectivity and monotonicity

5.1 Injectivity and multiple equilibria

A function f: X — R" is injective if for any z,y € X, f(z) = f(y) implies
x = y. Injectivity of a vector field on some domain is sufficient to guarantee that
there can be no more than one equilibrium on this domain. Define the following
easily computable condition on an SR or DSR graph:

Condition (x): All e-cycles are s-cycles, and no two e-cycles have S-to-R
intersection.

Note that if an SR/DSR graph has no e-cycles, then Condition (%) is trivially
fulfilled. A key result in [7] was:

Proposition 1. An N1C reaction system of the form (4) with SR graph satis-
fying Condition (x) is injective.

Proof. See Theorem 1 in [7].

In [8] this result was strengthened considerably and extended beyond CRNs.
In the context of CRNs with N1C kinetics it specialises to:

Proposition 2. An N1C reaction system of the form (4) with DSR graph sat-
isfying Condition (x) is injective.

Proof. See Corollary 4.2 in [8].

Proposition 2 is stronger than Proposition 1 because irreversibility is taken
into account. In the case without outflows (2), attention must be restricted to
some fixed stoichiometric class. The results then state that no stoichiometry
class can contain more than one nondegenerate equilibrium in the interior of the
positive orthant [8,19]. (In this context, a degenerate equilibrium is defined to
be an equilibrium with a zero eigenvalue and corresponding eigenvector lying in
the stoichiometric subspace.) The case with partial outflows was also treated.
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5.2 Monotonicity

A closed, convex, solid, pointed cone K C R" is termed a proper cone [20].
The reader is referred to [20] for basic definitions related to cones. Any proper
cone defines a partial order on R™ as follows: given two points xz,y € R™:

l.z>2ysr—yekK;
2. z>y<ex>yand x #y;
.r>»>ysr—ycint K.

An extremal ray is a one dimensional face of a cone. A proper cone with exactly
n extremal rays is termed simplicial. Simplicial cones have the feature that unit
vectors on the extremal rays can be chosen as basis vectors for a new coordinate
system. Consider some linear subspace A C R™. Then any closed, convex, pointed
cone K C A with nonempty interior in A is termed A-proper. If, further, K has
exactly dim(.A) extremal rays, then K is termed .A-simplicial.

Consider some local semiflow ¢ defined on X C R™. Assume that there is
some linear subspace A C R™ with a coset A~ with nonempty intersection with
X, and such that ¢ leaves A" N X invariant. Suppose further that there is an
A-proper cone K such that for all 2,y € A N X, z > y = ¢¢(z) > ¢(y) for
all values of ¢ > 0 such that ¢;(z) and ¢:(y) are defined. Then we say that
®| 4'nx Preserves K, and that ¢| 4y is monotone. If, further, x > y =
o1(x) > ¢i(y) for all values of ¢ > 0 such that ¢¢(x) and ¢:(y) are defined, then
®| 4 x is strongly monotone. A local semiflow is monotone with respect to the
nonnegative orthant if and only if the Jacobian of the vector field has nonnegative
off-diagonal elements, in which case the vector field is termed cooperative.

Returning to (3), in the case ¢ = 0, all stoichiometry classes are invariant,
while if ¢ > 0, there is a globally attracting stoichiometry class. Conditions for
monotonicity of ¢ restricted to invariant subspaces of R™ were discussed exten-
sively in [12]. Here the immediate aim is to develop graph-theoretic corollaries
of one of these results, and to raise some interesting open questions.

Given a vector y € R”, define

Q1(y) = {v e R"|vy; > 0}.

A matrix I' is R-sorted (resp. S-sorted) if any two distinct columns (resp.
rows) I and I of I satisfy I; € Qi(—I7). A matrix I is R-sortable (resp.
S-sortable) if there exists a signature matrix D such that I' = I D (resp.
I'=DI") is well-defined, and is R-sorted (resp. S-sorted).

Proposition 3. Consider a system of N1C reactions of the form (8) whose sto-
ichiometric matriz I' is R-sortable, and whose reaction vectors {I;} are linearly
independent. Let S = Im(I"). Then there is an S-simplicial cone K preserved by
the system restricted to any invariant stoichiometry class, such that each reaction
vector is collinear with an extremal ray of K.

Proof. This is a specialisation of Corollary A7 in [12].
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Systems fulfilling the assumptions of Proposition 3, cannot have periodic or-
bits intersecting the interior of the positive orthant which are stable on their
stoichiometry class. In fact, mild additional assumptions ensure strong mono-
tonicity guaranteeing generic convergence of bounded trajectories to equilibria
[9,10].

6 Graph-theoretic implications of Proposition 3

Some more notation is needed for the results to follow. The S-degree (R-
degree) of an SR graph G is the maximum degree of its S-vertices (R-vertices).
Analogous to the terminology for matrices, a subgraph E is R-sorted (S-
sorted) if each R-to-R (S-to-S) path Ej in F satisfies P(E)) = 1. Note that E is
R-sorted if and only if each R-to-R path Ej, of length 2 in E satisfies P(Ey) = 1.

An R-flip on a SR/DSR graph G is an operation which changes the signs
on all edges incident on some R-vertex in G. (This is equivalent to exchanging
left and right for the chemical reaction associated with the R-vertex). An R-
resigning is a sequence of R-flips. An S-flip and S-resigning can be defined
similarly. Given a set of R-vertices { R} in G, the closed neighbourhood of { Ry}
will be denoted Gg,, i.e., G{g,} is the subgraph consisting of { R} along with
all edges incident on vertices of {Ry}, and all S-vertices adjacent to those in

{Ri}-

Proposition 4. Consider a system of N1C reactions of the form (3) with stoi-
chiometric matriz I', and whose reaction vectors {I'} are linearly independent.
Define § = Im(Gamma). Associate with the system the SR graph G. Suppose
that

1. G has S-degree < 2.
2. All eycles in G are e-cycles.

Then there is an S-simplicial cone K preserved by the system restricted to any
invariant stoichiometry class, such that each reaction vector is collinear with an
extremal ray of K.

The key idea of the proof is simple: if the system satisfies the conditions of
Proposition 4, then the conditions of Proposition 3 are also met. In this case,
the extremal vectors of the cone K define a local coordinate system on each sto-
ichiometry class, such that the (restricted) system is cooperative in this coordi-
nate system. This interpretation in terms of recoordinatisation is best illustrated
with an example.

Consider SYS 1 from (1) with SR graph shown in Figure 2 left, which can
easily be confirmed to satisfy the conditions of Proposition 4. Define the following
matrices:

-1 0 2 -1 0 2

~1-1 0 -1 1 0 1-2 200
r=|( o-1-1|, 7= 0 1-1|, T =[1-1200

1 00 1 00 1-1 100

010 0-1 0
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I, the stoichiometric matrix, has rank 3, and so Proposition 4 applies. Let
z1,...,xs5 be the concentrations of the five substrates involved, v, v2, v3 be the

rates of the three reactions, and v;; = g;’j Assuming that the system is N1C

means that V' = [v;;] has sign structure

+4+0-0
sen(V)=| 0++0 —
-0+00

where + denotes a nonnegative quantity, and — denotes a nonpositive quantity.
Consider now any coordinates y satisfying x = Ty. Note that T is a re-signed
version of I'. Choosing some left inverse for T', say T, gives y1 = a1 — 29 + 23,
Y2 = x1 — T2 + 223 and y3 = x1 — x2 + x3. (The choice of T is not unique, but
this does not affect the argument.) Calculation gives that J =T 'T'VT has sign
structure

-+ +

sgn(J)=|(+—-+],
+4 -

i.e., restricting to any invariant stoichiometry class, the dynamical system for
the evolution of the quantities 1, y2, y3 is cooperative. Further, the evolution of
{z;} is uniquely determined by the evolution of {y;} via the equation z = Ty.

It is time to return to the steps leading to the proof of Proposition 4. In
Lemmas 1 and 2 below, G is an SR graph with S-degree < 2. This implies the
following: consider R-vertices v, v and v such that v #* v and v #* v (v/ ="
is possible). Assume there exist two distinct short paths in G, one from v to v’
and one from v to v". These paths must be edge disjoint, for otherwise there
must be an S-vertex lying on both A and B, and hence having degree > 3.

Lemma 1. Suppose G is a connected SR graph with S-degree < 2, and has some
connected, R-sorted, subgraph E containing R-vertices v and v". Assume that
there is a path C1 of length 4 between v and v” containing an R-vertex not in
E. Then either Cy is even or G contains an o-cycle.

Proof. If v = v", then Cj is not even, then it is itself and e-cycle. Otherwise
consider any path Cy connecting v and v" and lying entirely in E. C, exists
since F is connected, and P(Cy) = 1 since E is R-sorted. Since G has S-degree
< 2,and |C;| = 4, C; and C5 share only endpoints, v and v, and hence together
they form a cycle C. If P(Cy) = —1, then P(C) = P(C2)P(C1) = —1, and so C
is an o-cycle. a

Lemma 2. Suppose G is a connected SR graph with S-degree < 2 which does
not contain an o-cycle. Then it can be R-sorted.

Proof. The result is trivial if G contains a single R-vertex, as it contains no
short R-to-R paths. Suppose the result is true for graphs containing k R-vertices.
Then it must be true for graphs containing k + 1 R-vertices. Suppose G contains
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k+1 R-vertices. Enumerate these R-vertices as Ry, ..., Rg41 in such a way that
G_ = G{g,,...R,) is connected. This is possible since G is connected.

By the induction hypothesis, G_ can be R-sorted. Having R-sorted G_, con-
sider Ry41. If all short paths between Rj1 and R-vertices in G_ have the same
parity, then either they are all even and G is R-sorted; or they are all odd, and
a single R-flip on Ryy1 R-sorts G. (Note that an R-flip on Ry does not affect
the parity of any R-to-R paths in G_.) Otherwise there must be two distinct
short paths of opposite sign, between Ry and R-vertices v’7 v e G (v, ="
is possible). Since G has S-degree < 2, these paths must be edge-disjoint, and
together form an odd path of length 4 from v’ to Ry41 to v". By Lemma 1, G
contains an o-cycle. O

PROOF of Proposition 4. From Lemma 2, if no connected component of
G contains an o-cycle then each connected component of G (and hence G itself)
can be R-sorted. The fact that G can be R-sorted corresponds to choosing a
signing of the stoichiometric matrix I" such that any two columns I and I
satisfy I; € Qi(—1I}). Thus the conditions of Proposition 3 are satisfied. O

7 Examples illustrating the result and its limitations

Example 1: SYS n from Section 1. It is easy to confirm that the reactions in
SYS n have linearly independent reaction vectors for all n . Moreover, as illus-
trated by Figure 2, the corresponding SR graphs contain a single cycle, which,
for odd (even) n is an e-cycle (o-cycle). Thus for even n, Proposition 1 and
subsequent remarks apply, ruling out the possibility of more than one positive
nondegenerate equilibrium for (2) on each stoichiometry class, or in the case
with outflows (4), ruling out multiple equilibria altogether; meanwhile, while for
odd n, Proposition 4 can be applied to (2) or (3), implying that restricted to any
invariant stoichiometry class the system is monotone, and the restricted dynam-
ical system cannot have an attracting periodic orbit intersecting the interior of
the nonnegative orthant.

Example 2: Generalised interconversion networks. Consider the fol-
lowing system of chemical reactions:

A=B, A=C, A=D, B=C (7)

with SR graph shown in Figure 3. Formally, such systems have R-degree < 2 and
have SR graphs which are S-sorted. Although Proposition 4 cannot be applied,
such “interconversion networks”, with the N1C assumption, in fact give rise to
cooperative dynamical systems [12], and a variety of different techniques give
strong convergence results, both with and without outflows [16, 11, 21].

This example highlights that there is an immediate dual to Lemma 2, and
hence Proposition 4. The following lemma can be regarded as a restatement of
well-known results on systems preserving orthant cones (see [10], for example,
and the discussion for CRNs in [11]). Its proof is omitted as it follows closely
that of Lemma 2.
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Fig. 3. The SR graph for reaction system 7. All edge labels are 1 and have been omitted.
The system preserves the nonnegative orthant.

Lemma 3. Let G be an SR graph with R-degree < 2 and containing no o-cycles.
Then, via an S-resigning, G can be S-sorted.

Although the S-sorting process is formally similar to the R-sorting one, the in-
terpretation of the result is quite different: changing the sign of the ith row of I’
and the ¢th column of V' is equivalent to a recoordinatisation replacing concen-
tration x; with —z;. Such recoordinatisations give rise to a cooperative system
if and only if the original system is monotone with respect to an orthant cone.

Example 3: Linearly independent reaction vectors are not neces-
sary for monotonicity. Consider the system of three reactions involving four
substrates

A=B+C, B =D, C+D=A (8)

with stoichiometric matrix I" and SR graph shown in Figure 4.

-1 0 1 AN

1-1 0 I @
= 1 0-1 '

0 1-1 @

Fig. 4. The stoichiometric matrix and SR graph for reaction system 8. All edge labels
are 1 and have been omitted.

Note that I" is R-sorted, but has rank 2 as all row-sums are zero. As before,
let x; be the concentrations of the four substrates involved. Now, choose new
coordinates y satisfying x = Ty, where

|

—
co~o
— o oo
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Note: i) T has rank 3, ii) Im(I") C Im(T'), and iii) regarding the columns of T
as extremal vectors of a cone K, K has trivial intersection with Im(I"). One can
proceed to choose some left inverse T of T , and calculate that the Jacobian
J=T'TVT has nonnegative off-diagonal entries. In other words the y-variables
define a cooperative dynamical system. The relationship between T and I is
further discussed in the concluding section.

Note that although K has empty interior in R%, both K and Im(I") lie in the
hyperplane H = Im(T") defined by x1 + x5 = 0. As K is H-proper, attention can
be restricted to invariant cosets of H. With mild additional assumptions on the
kinetics, the theory in [21] can be applied to get strong convergence results, but
this is not pursued here.

Example 4a: The absence of o-cycles is not necessary for mono-
tonicity. Consider the following system of 4 chemical reactions on 5 substrates:

A=B+C, B=D, C+D=A C+E=A (9)
Define
-1 0 1 1 1000
1-1 0 0 0100
I = 1 0-1-1 and T=]1-1000
0 1-1 0 0010
0 0 0-1 0001

I', the stoichiometric matrix, has rank 3, and the system has SR graph containing
both e- and o-cycles (Figure 5). Further, there are substrates participating in 3
reactions, and reactions involving 3 substrates (and so it is neither R-sortable nor
S-sortable). Thus, all the conditions for the results quoted so far in this paper,
and for theorems in [11], are immediately violated. However, applying theory in
[12], the system is order preserving. In particular, Im(T’) is a 4D subspace of R®
containing Im(I") (the stoichiometric subspace), and T defines a cone K which
is preserved by the system restricted to cosets of Im(T").

Fig. 5. The SR graph for reaction system 9. All edge labels are 1 and have been omitted.

Example 4b: The absence of o-cycles is not necessary for mono-
tonicity. Returning to the system of reactions in (5), the system has SR graph
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containing an o-cycle (Figure 1, left). Nevertheless, the system was shown in
[12] to preserve a nonsimplicial cone for all N1C kinetics. In fact, the further
analysis in [21] showed that with mild additional assumptions this system is
strongly monotone and all orbits on each stoichiometry class converge to an
equilibrium which is unique on that stoichiometry class. It is worth mentioning
that this example is fundamentally different from Example 4a, and that it is
currently unclear how commonly reaction systems preserve orders generated by
nonsimplicial cones.

8 Discussion and open questions

The results presented here provide only a glimpse of the possibilities for analysis
of limit sets of CRNs using graph-theoretic — and more generally combinatorial —
approaches. The literature in this area is growing rapidly, and new techniques are
constantly being brought into play. Working with the weakest possible kinetic
assumptions often gives rise to approaches quite different from those used in
the previous study of mass-action systems. Conversely, it is possible that such
approaches can be used to provide explicit restrictions on the kinetics for which
a system displays some particular behaviour.

The paper highlights an interesting duality between questions of multista-
tionarity and questions of stable periodic behaviour, a duality already implicit
in discussions of interaction graphs [22-25]. Loosely, the absence of e-cycles (pos-
itive cycles) is associated with injectivity for systems described by SR graphs (I
graphs); and the absence of o-cycles (negative cycles) is associated with absence
of periodic attractors for systems described by SR graphs (I graphs). The con-
nections between apparently unrelated SR and I graph results on injectivity have
been clarified in [26], but there is still considerable work to be done to clarify
the results on monotonicity.

One open question regards the relationship between the theory and examples
presented here on monotonicity, and previous results, particularly Theorem 1 in
[11], on monotonicity in “reaction coordinates”. Note that by Proposition 4.5 in
[11] the “positive loop property” described there is precisely Conditions 1 and 2
in Proposition 4 here. At the same time, the requirement that the stoichiometric
matrix has full rank, is not needed for monotonicity in reaction coordinates.
In some cases (e.g. Example 3 above), it can be shown that this requirement
is unnecessary for monotonicity too, but it is currently unclear whether this is
always the case. On the other hand, as illustrated by Examples 4a and 4b, the
positive loop property is not needed for monotonicity.

Consider again Examples 3 and 4a. The key fact is that their stoichiometric
matrices admit factorisations I = T1 75, taking the particular forms

-1 0 1 1

00
-1 0 1
=100 0 10 1-1 0 (Example 3), and
1 0-1 “1ooll T
0 1-1 001
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-1 011 1000

1-1 0 0 0100 _i_?éé

1 0-1-1|=]-1000 0 1.1 0 (Example 4a).
0 1-1 0 0010 00 0-1

00 0-1 0001

In each case, the first factor, Ty, is R-sorted and has linearly independent
columns. On the other hand, the second factor, Ts, is S-sorted. The theory
in [12] ensures that these conditions are sufficient to guarantee that the system
restricted to some coset of Im(7}), is monotone with respect to the order defined
by T7. The dynamical implications of this rather surprising factorisation result
will be elaborated on in future work.

A broad open question concerns the extent to which the techniques pre-
sented here extend to systems with discrete-time, and perhaps also discrete-
state space. In [6], there were shown to be close relationships, but also subtle
differences, between results on persistence in the continuous-time, continuous-
state context, and results on liveness in the discrete-time, discrete-state context.
Even discretising only time can lead to difficulties: while the interpretation of
injectivity results in the context of discrete-time, continuous-state, systems is
straightforward, the dynamical implications of monotonicity can differ from the
continuous-time case. For example, strongly monotone disrete-time dynamical
systems may have stable k-cycles for k > 2 [27]. When the state space is dis-
crete, an additional difficulty which may arise concerns differentiability of the
associated functions, an essential requirement for the results presented here.

Finally, the work on monotonicity here has an interesting relationship with
examples presented by Kunze and Siegel, for example in [28]. This connection
remains to be explored and clarified.

References

1. I. R. Epstein and J. A. Pojman, editors. An Introduction to Nonlinear Chemical
Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press,
New York, 1998.

2. M. Feinberg. Complex balancing in general kinetic systems. Arch Ration Mech
Anal, 49(3):187-194, 1972.

3. M. Feinberg. Chemical reaction network structure and the stability of complex
isothermal reactors - I. The deficiency zero and deficiency one theorems. Chem
Eng Sci, 42(10):2229-2268, 1987.

4. G. Craciun and M. Feinberg. Multiple equilibria in complex chemical reaction
networks: II. The species-reaction graph. SIAM J Appl Math, 66(4):1321-1338,
2006.

5. M. Mincheva and M. R. Roussel. Graph-theoretic methods for the analysis of
chemical and biochemical networks, I. multistability and oscillations in ordinary
differential equation models. J Math Biol, 55:61-86, 2007.

6. D. Angeli, P. De Leenheer, and E. D. Sontag. A Petri net approach to the study
of persistence in chemical reaction networks. Math Biosci, 210:598-618, 2007.

22



7.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

M. Banaji and G. Craciun. Graph-theoretic criteria for injectivity and unique
equilibria in general chemical reaction systems. Adv in Appl Math, 44:168-184,
2010.

. M. Banaji and G. Craciun. Graph-theoretic approaches to injectivity and multiple

equilibria in systems of interacting elements. Commun Math Sci, 7(4):867-900,
2009.

. M.W. Hirsch and H. Smith. Handbook of Differential Equations: Ordinary Differ-

ential Equations, Vol II, chapter Monotone Dynamical Systems, pages 239-357.
Elsevier B. V., Amsterdam, 2005.

H. Smith. Monotone Dynamical Systems: An introduction to the theory of compet-
itive and cooperative systems. American Mathematical Society, 1995.

D. Angeli, P. De Leenheer, and E. D. Sontag. Graph-theoretic characterizations of
monotonicity of chemical reaction networks in reaction coordinates. J Math Biol,
DOI 10.1007/s00285-009-0309-0, 2009.

M. Banaji. Monotonicity in chemical reaction systems. Dyn Syst, 24(1):1-30, 2009.
G. Craciun and M. Feinberg. Multiple equilibria in complex chemical reaction
networks: I. The injectivity property. SIAM J Appl Math, 65(5):1526-1546, 2005.
M. Banayji, P. Donnell, and S. Baigent. P matrix properties, injectivity and stability
in chemical reaction systems. SIAM J Appl Math, 67(6):1523-1547, 2007.

P. De Leenheer, D. Angeli, and E.D. Sontag. Monotone chemical reaction networks.
J Math Chem, 41(3):295-314, 2007.

M. Banaji and S. Baigent. Electron transfer networks. J Math Chem, 43(4), 2008.
R. David and H. Alla. Autonomous and timed continous Petri nets. In Papers
from the 12th International Conference on Applications and Theory of Petri Nets:
Advances in Petri Nets 1993, volume 674 of Lecture Notes In Computer Science,
pages 71-90. 1991.

F. Bause and P. S. Kritzinger. Stochastic Petri nets. Vieweg, 2nd edition, 2002.
G. Craciun and M. Feinberg. Multiple equilibria in complex chemical reaction net-
works: Extensions to entrapped species models. IEEE Proc Syst Biol, 153(4):179—
186, 2006.

A. Berman and R. Plemmons. Nonnegative matrices in the mathematical sciences.
Academic Press, New York, 1979.

M. Banaji and D. Angeli. Convergence in strongly monotone systems with an
increasing first integral. SIAM J Math Anal, 42(1):334-353, 2010.

J.-L. Gouzé. Positive and negative circuits in dynamical systems. J Biol Sys,
6:11-15, 1998.

C. Soulé. Graphic requirements for multistationarity. Complezus, 1:123-133, 2003.
M. Kaufman, C. Soulé, and R. Thomas. A new necessary condition on interaction
graphs for multistationarity. J Theor Biol, 248(4):675—685, 2007.

D. Angeli, M. W. Hirsch, and E. Sontag. Attractors in coherent systems of differ-
ential equations. J Diff Eq, 246:3058-3076, 2009.

M. Banaji. Graph-theoretic conditions for injectivity of functions on rectangular
domains. J Math Anal Appl, 370:302-311, 2010.

J. F. Jiang and S. X. Yu. Stable cycles for attractors of strongly monotone discrete-
time dynamical systems. J Math Anal Appl, 202:349-362, 1996.

H. Kunze and D. Siegel. A graph theoretic approach to strong monotonicity with
respect to polyhedral cones. Positivity, 6:95-113, 2002.

23



Comparison of approximate kinetics for
unireactant enzymes: Michaelis-Menten against
the equivalent server

Alessio Angius®, Gianfranco Balbo!, Francesca Cordero':?, Andras Horvath®,
and Daniele Manini!

! Department of Computer Science, University of Torino, Torino, Italy
2 Department of Clinical and Biological Sciences, University of Torino, Torino, Italy

Abstract. Mathematical models are widely used to create complex bio-
chemical models. Model reduction in order to limit the complexity of a
system is an important topic in the analysis of the model. A way to lower
the complexity is to identify simple and recurrent sets of reactions and
to substitute them with one or more reactions in such a way that the
important properties are preserved but the analysis is easier.

In this paper we consider the typical recurrent reaction scheme FE +
S == ES — E + P which describes the mechanism that an enzyme,
E, binds a substrate, S, and the resulting substrate-bound enzyme, ES,
gives rise to the generation of the product, P. If the initial quantities and
the reaction rates are known, the temporal behaviour of all the quantities
involved in the above reactions can be described exactly by a set of dif-
ferential equations. It is often the case however that, as not all necessary
information is available, only approximate analysis can be carried out.
The most well-known approximate approach for the enzyme mechanism
is provided by the kinetics of Michaelis-Menten. We propose, based on
the concept of the flow-equivalent server which is used in Petri nets to
model reduction, an alternative approximate kinetics for the analysis of
enzymatic reactions. We evaluate the goodness of the proposed approx-
imation with respect to both the exact analysis and the approximate
kinetics of Michaelis and Menten. We show that the proposed new ap-
proximate kinetics can be used and gives satisfactory approximation not
only in the standard deterministic setting but also in the case when the
behaviour is modeled by a stochastic process.

1 Introduction

Mathematical models are widely used to describe biological pathways because,
as it is phrased in [1], they “offer great advantages for integrating and evaluating
information, generating prediction and focusing experimental directions”. In the
last few years, high-throughput techniques have increased steadily, leading to

Cordero is the recipient of a research fellowship supported by grants from Regione
Piemonte, University of Torino and MIUR. Horvéth is supported by MIUR PRIN
2008.
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the production of a huge volume of data used to derive the complex texture
behind the biological/biochemical mechanisms, and creating in this way the
structure needed for mathematical modelling. Indeed, many models based on
the combination and the integration of various elements in order to investigate
their relationships and behaviour have been devised which become more complex
with the growth of available data. The complexity is reflected in the number of
dynamic state variables and parameters, as well as in the form of the kinetic
rate expressions.

Such complexity leads to difficulties both from the point of view of defining
the model as the parametrisation becomes unfeasible and for what concerns the
analysis of the model. It is often the case hence that in order to have a model
which is feasilble for the analysis simplifications must be performed.

In this paper we focus our attention on the simplified, approximate treatment
of a set of reactions that very often appears as building blocks of complex models.
We consider the reactions

k
E+S—ES . Eyp (1)
k_1

describing that the enzyme, E, attaches reversibly to the substrate, S, forming
the substrate-bound enzyme ES which gives rise then to the product P releasing
the enzyme. This and similar enzymatic reactions are widely studied in biology.
The most common approximate approach to deal with them is provided by the
Michaelis-Menten (MM) kinetics (called also Michaelis-Menten-Henri kinetics)
which, based on quasi-steady-state assumptions, connects the speed of producing
P directly to the concentration of E and P, omitting the explicit modeling of
ES.

Fig. 1. Petri net representation of the reactions given in (1)

System of enzymatic reactions can be described by Petri nets [2] (Figure 1
shows the Petri net corresponding to the reactions given in (1)) and then anal-
ysed by methods developed for this formalism. We propose for the reactions in
(1) an alternative to the approximate Michaelis-Menten kinetics. This new ap-
proximate kinetics is based on a concept widely used in the analysis of Petri nets
and models described by other formalisms like queueing networks and process
algebras. This concept is called the flow equivalent server [3]. The application of
this concept, similarly to the Michaelis-Menten kinetics, leads to a simplified set
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of reactions in which the intermediate complex ES is not modeled explicitly. The
difference is, however, that, since the application of the flow equivalent server
(FES) is based on assumptions that are different and less strict than those used
by the Michaelis-Menten kinetics, the resulting approximation is more robust.

The concept of flow equivalent server has already been used in [4] where a
complex signal transduction model was considered. In that paper we have shown
that this concept can be applied not only to the small set of reactions given in
(1) but also to bigger submodels. This leads to a simplified model which has less
parameters and whose analysis is not as heavy as that of the complete one. For
the model presented in [4] it was shown that the quantitative temporal behaviour
of the simplified model coincides satisfactorily with that of the complete model
and that important qualitative properties are maintained as well. In this paper
our goal is to study in detail the goodness of the FES based approximation for
the reactions in (1) and to compare it to the widely-used approximate kinetics
of Michaelis, Menten and Henri.

The paper is organised as follows. Section 2 provides the necessary back-
ground, Section 3 describes the concept of the flow equivalent server and Section
4 presents the results of the comparison between the approximation approaches.
We conclude with a discussion and an outlook on future works in Section 5.

2 Background

In 1901 Henri [5] proposed a partly reversible reaction scheme to describe the
enzymatic process. According to this scheme the enzyme E and the substrate
S form, through a reversible reaction, the enzyme-substrate complex ES. This
complex can then give rise to the product P through an irreversible reaction
during which the enzyme is freed and can bind again to other molecules of the
substrate. This scheme is summarised in (1) where k; is the rate of the binding
of E and S, k_; is the rate of the unbinding of ES into E and S and ks is the
rate at which ES decays to the product P freeing the enzyme E.

There are two typical approaches to associate a quantitative temporal be-
haviour to the reactions in (1). The first results in a deterministic representation
while the other in a stochastic one. In the following we give a brief idea of both
approaches. For a detailed description see, for example, [6,7].

The deterministic approach describes the temporal behaviour of a reaction
with a set of ordinary differential equations (ODE). For the reactions in (1) we
have

% =~ ka[B][S] + (k-1 + k2)[ES] ®
% — — ky[E][S] + k_1[ES]

@ = k[E|[S] — (k_1 + ko) [ES)]
dpP] _
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where [X] is the concentration of molecule X at time ¢. These equations state
that the rate at which the concentration of a given molecule changes equals the
difference between the rate at which it is formed and the rate at which it is
utilised. The four equations can be solved numerically to yield the concentration
of E, S, ES and P at any time ¢ if both the initial concentration levels ([S]o, [E]o,
[ES]o, [Plo) and the reaction rates (ki, k_1, k2) are known. In the determin-
istic approach the concentrations of the molecules are described by continuous
quantities.

In the stochastic approach a continuous time Markov chain (CTMC) is used
to describe the process. Each state of the chain is described by a vector of inte-
gers in which the entries give the quantities of the molecules, which, accordingly,
assume discrete values. These discrete values are resulting either directly from
molecule count or from discretization of continuous values. Reactions are mod-
eled by transitions between the states. For example, from state |z1,x2,z3, 24|
where x1,x2,r3 and x4 are the quantities of the molecules E, S, ES and P,
respectively, there is a transition to state |1 — 1,29 — 1,25 + 1, z4| with rate
ki1x1xo which corresponds to the binding of one molecule F with one molecule
S to form one molecule of ES. It is easy to see that even for small models the
corresponding CTMC can have a huge state space whose transition rate struc-
ture is non-homogeneous. Exact analytical treatment of these chains is often
unfeasible and in most cases simulation is the only method that can be used for
their analysis.

2.1 Michaelis-Menten approximate kinetics

Under some assumptions, the temporal, quantitative dynamics of the mechanism
described by the reactions in (1) can be summarised as follows. Initially we have a
certain amount of substrate, denoted by [S]o, and enzyme, denoted by [E]o, and
no complex ES ([ES]p = 0). Assuming that ky is significantly smaller than k;
and k_q, a brief transient period occurs during which the amount of the complex
ES quickly increases up to a “plateau” level where it remains stable for a long
period of time. As the ratio of [S]o/[F]o increases, the time needed to reach the
condition d[ES]/dt = 0 decreases and the period during which d[ES]/dt ~ 0
increases. In this period we have approximately
AES] — kam1S) — (BS1k -+ o) = 0

from which, considering that the total amount of enzyme is conserved, i.e. [E]+
[ES] = [Elo, the quantity of ES can be expressed as

[Elo[S]  _ [EJo[S]

ES] = = 3
= Btk 5] ka+ 19 @)
where the term ks = % is called the Michaelis-Menten constant. Applying
(3), the speed of the production of P can be approximated by
k2 [Elo[S]
- 4
VMM GETIY (4)
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Accordingly, after the “plateau” level of ES is reached, the kinetic parameters
k1, k—1 and ko together with [S] and the initial total quantity of the enzyme,
[E]o, determine the overall rate of the production of P.

Applying the approximate kinetics of Michaelis and Menten, the differential
equations describing the reactions become

dE] _
i 0 (5)
diS] _ ko[E][S]
dt S|+ ku
dlP] _ ka[E][S]

3 Approximate kinetics by flow equivalent server

In this section we derive an alternative approximate kinetics for the analysis of
enzymatic reactions, based on the concept of the flow equivalent server. This
technique was originally proposed in the context of the steady-state solution of
queueing networks [3,8,9] and can be adapted to our purposes with a proper
interpretation of the assumptions on which it is based. The idea behind this
concept is to consider the reactions given in (1) as a fragment of a large biological
system in which substrate .S is produced by an ”up-stream” portion of the system
and product P is used ”"down-stream” within the same system. The goal of
the flow equivalent method is to consider the flow of moles that move from
the substrate to the product, in the presence of an enzyme that catalyse this
phenomenon, and to evaluate its intensity in order to define the overall speed of
a ”composite” reaction that captures this situation in an abstract manner.
Figure 2 depicts the Petri net corresponding to the reactions of (1) organ-
ised in order to make explicit the relationship between the substrate S and the
product P, via the enzyme F, enclosing in a dashed box the elements of the
system whose dynamics we want to mimic with the composite transition. This

Fig. 2. Petri net of the reactions in (1) organised for computation of the flow equivalent-
transition (above) and its approximation (below)
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picture makes evident the fact that the speed of the composite transition must
depend not only on the speeds of the transitions included in the box but also
on the quantities present in the box, namely, the total amount of enzyme. As-
suming to know the kinetic constants of the reactions inside the box and the
quantity of the enzyme, the speed of the composite transition also depends on
the amount [S] that participates in the reactions and that may change during
the evolution of the whole system. Following this point of view, it is possible
to conceive a characterisation of the speed of the composite transition that is
conditioned on the quantity of S. The flow equivalent approach accounts for this
observation by computing the intensity of the flow of moles that reaches place
P assuming that the total amount of S remains constant. Technically, this is
obtained by short-circuiting the output and input places of the sub-net (intro-
ducing an immediate transition [10] that connects place P with place S) and
by computing the throughput along the short-circuit which will be conditioned
on the initial amount of S and that will thus be computed for all the possible
values of S. In general, this amounts to the construction of a table that looks
like that depicted in Figure 3, where S1, Sa, ..., S, represent different values
of the amount of substrate S for which the speeds of the composite reaction
vrEs(S1), vrEs(S2), ..., vrES(S,) are computed, given that k1, k_1, ko, and
#E are assumed to be the values of the kinetics constant of the reactions in the
box and of the amount of enzyme FE.

In practice, this corresponds to the construction and to the (steady state)
solution of the continuous time Markov chain (CTMC) that corresponds to the
sub-model in isolation. Providing the speed of the composite transition in the
tabular form highlighted by Figure 3 is convenient for cases where the domain
of the function is “small”, but may be impractical in many common situations.
Despite the computational complexity of the approach, we must notice that the
equilibrium assumption of the flow equivalent method is used only to obtain
an approximate characterisation of the throughput for different sets of initial
conditions and does not mean that the equivalent speed can only be used for
steady state analysis.

The concept of flow equivalent server described above is used traditionally in
a stochastic setting. However, it can be applied in a deterministic setting as well
using arguments that are summarized by the following points. The complexity
of the approach in the stochastic setting becomes prohibitive when the amount
of the substrate S becomes very large. On the other hand, this is the case in

||Given ki,k_1,ks, and #EH

S1 vrEs(St)
So vrEs(S2)
Sn vrEs(Sn)

Fig. 3. Flow Equivalent Server characterisation
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which the stochastic (or at least the average) behaviour of the model is conve-
niently captured by a set of ODE, i.e., by a deterministic model. Moreover, in
the case of our model, the equilibrium solution of the set of differential equa-
tions corresponding to the short-circuited model is simple enough to obtain an
analytic expression for the speed of the composite transition as it is described
in the following.

We assume that the initial condition is [E]o = M, [S]o = Ma, [ES]o = 0,
and [P]o = 0. We will denote the steady state measures of the compounds by
[E], [S], [ES] and [P]. In the short-circuited version of the reactions given in (1),
moles transformed in P are immediately moved back to S and consequently its
steady state measure is zero (i.e., [P] = 0). The steady state measures of the
other compounds can be determined by considering

— the fact that in steady state the rate of change of the quantities of the
different compounds is zero, i.e., we have

d[E](t)

dt
d[s)(t

dt

d|ES|(t
% =0 = +k1[E][S] — k-1[ES] — ka2 ES]
which are three dependent equations;
— and the following equations expressing conservation of mass

(E]+ [ES] = My, [S]+ [ES] = My (7)

0= =k [E][S] + k-1 [ES] + ko [ES] (6)

~—

0 = —k1[E][S] + k_1[ES] + ko[ ES]

In (6) and (7) we have three independent equations for three unknowns. There
are two solutions but only one of them guarantees positivity of the unknowns.
The speed of producing P is given by the steady state quantity of £.S multiplied
by k2. This speed is

ko (IB] + (8] + ks — /(BT = S + 2k (BT + 5 + 3y
2

Accordingly, the set of ordinary differential equations describing the reactions
given in (1) becomes

dlE] _

At
as) ke ([E] +[S] + kar — /([B) = [S])2 + 2ka ([E] + [S]) + k‘zQw)
e 5

dp) _ k2 (LE)+ 181+ ks — V/TET = [S)? + 2kas (BT + [5]) + K5, )
dt 3

which explicitly reflects the assumption of the conservation of F and the obser-
vation that substrate S is transformed into product P.

VFES = (8)

0 9)
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4 Numerical illustration

In this section, we first compare in Section 4.1 the MM and FES approximate
kinetics from the point of view of the speed they assign to the production of P as
function of the reaction rates (k1,k_1,k2) and the concentration of the enzyme
and the substrate ([E],[S]). Subsequently, in Sections 4.2 and 4.3 we compare
the quantitative behaviour of the approximations to that of the full model in the
deterministic and in the stochastic setting, respectively.

It is easy to check that as the quantity of the substrate tends to infinity the
two approximate kinetics lead to the the same speed of production. In both cases
for the maximum speed of production we have

Umax — im VMM = lim VFES = k2 [E} (10)
[S]—o0

1
[S]—o0
Another situation in which the two approximate kinetics show perfect corre-
spondence is when the quantity of the enzyme is very low. This can be shown
formally by observing that

lim MM _ (11)
[E]-0 VFES

4.1 Production speeds

A typical way of illustrating the approximate Michaelis-Menten kinetics is to
plot the production speed against the quantity of the substrate. Figure 4 gives
such illustrations comparing the speeds given by the two approximate kinetics.
Reaction rate ko is either 0.1, 1 or 10 and reaction rates k; and k_; are varied
in order to cover different situations for what concerns the ratio ky/k_1. Two
different values of [E] are considered. The limit behaviours expressed by (10)
and (11) can be easily verified in the figures. On the left sides of the figure it
can be observed that for small values of [E] the two approximations are almost
identical for all considered values of the reaction rates, thus in agreement with
the trend conveyed by (11). It can also be seen that for larger values of [E] the
two approximations are rather different and the difference is somewhat increasing
as ko increases, and becomes more significant for higher values of k1 /k_;. In all
cases the curves become closer to each other when the amount of [S] increases.

4.2 Deterministic setting

In this section we compare the different kinetics in the deterministic setting. Once
the initial quantities and the reaction rates are defined, the systems of differential
equations given in (2),(5) and (9) can be numerically integrated and this provides
the temporal behaviour of the involved quantities, used as references for the
comparisons.

For the first experiments we choose such parameters with which the two ap-
proximate kinetics result in different speeds of production. Based on Figure 4 this
is achieved whenever the quantity of the enzyme is comparable to the quantity
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Fig. 4. Production speed as function of substrate quantity with [E] = 0.1 for the figures
on the left side and with [E] = 10 on the right side; reaction rates are given in the
legend in order ki, k—1 and k2

of the substrate. Accordingly, we set [E]g = [S]o = 10. For the full model [ES]q
needs to be set too, and we choose [ES]p = 0. This choice does not help the
approximations. They assume that the total enzyme concentration [E]o + [ES]o
is immediately distributed between [E] and [ES], thus making possible an im-
mediate (consistent) production of P. On the contrary, in the full model the pro-
duction of [E'S] takes time and thus the speed of the production of P must start
from 0, growing to a high value only later. Figures 5 and 6 depict the quantity of
the product and the speed of its production as functions of time for two differ-
ent sets of reaction rates. In both figures the kinetics based on flow equivalence
provides precise approximation of the production of P. The Michaelis-Menten
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kinetics instead fails to follow the full model, but this is not surprising as the
derivation of this kinetics assumes small amount of enzymes. It can also be seen
that high values of k1/k_; (Figure 6) lead to worst approximation in case of
Michaelis-Menten kinetics. On the right hand side of the figures one can observe
that for the full model the speed of producing P is 0 at the beginning and then
it increases fast to the speed foreseen by the FES approximation.
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Fig. 5. Quantity of product (left) and speed of production (right) as function of time
with k1 =1, k-1 = 10, k2 = 0.1, [E] = 10 and initial quantity of substrate equals 10
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Fig. 6. Quantity of product (left) and speed of production (right) as function of time
with k1 = 10, k—1 = 1, k2 = 0.1, [E] = 10 and initial quantity of substrate equals 10

A second set of experiments is illustrated in Figures 7 and 8. We choose
sets of parameters with which the speed of production of the MM and FES
approximations are similar. In these cases both approximations are close to the
reference behaviour. Still, it can be seen that for high values of k1 /k—_; (Figure
8) the approximation provided by the Michaelis-Menten kinetics is slightly less
precise.
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Fig. 8. Quantity of product (left) and speed of production (right) as function of time
with k1 = 10, k—1 =1, k2 = 0.5, [E] = 1 and initial quantity of substrate equals 10

In the following we turn our attention to the cases in which both the approx-
imations are less reliable. In Figure 9 we plotted the case k1 = 0.1, k_; = 0.1,
ko =0.1, [E] =1, [S]o = 1 and [ES]o = 0. As mentioned earlier, with [ES]y =0
the initial production speed in the original model is 0 while it is immediately
high in the approximate kinetics. With low values of k1 and k_1, the time taken
by the system to reach the quasi-steady-state situation assumed by the approx-
imate kinetics is quite long. For this reason there is a longer initial period in
which P is produced by the approximations at a “wrong” speed. Furthermore,
decreasing k; and k_; would lead to a longer period in which the approximate
kinetics are not precise (see Figure 9).

Another way of “disturbing” the approximations is to dynamically change
the quantity of the substrate in the system. In the original model, because of
the intermediate step yielding E'S, the speed of producing P changes only after
some delay. On the contrary, the approximations react immediately. The harsher
the change in the quantity of the substrate the larger is the difference between
the original model and the approximations. This phenomenon is reflected in the
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adding substrate to the system according to (12)

model by adding the following term to the differential equation that describes
the quantity of the substrate:

10(U(t — 5) — U(t — 5.1)) — 10(U(t — 10) — U(t — 10.1)) (12)

where U denotes the unit-step function. The effect of (12) is to add 1 unit of
substrate to the system in the time interval [5,5.1] and to take away 1 unit
of substrate from it in the time interval [10,10.1]. The resulting behaviour is
depicted in Figure 10. The approximations change the speed of producing P
right after the change in the quantity of the substrate while the original model
reacts to the changes in a gradual manner. Naturally, if the quantity of the
substrate undergoes several harsh changes then the MM and the FES kinetics
can result in bad approximation of the full model.

4.3 Stochastic setting

In the following we compare the different kinetics in the stochastic setting, by
analysing the corresponding CTMCs. In particular, we determine by means of
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simulation the average and the variance of the quantity of the product as function
of time. The simulations were carried out in Dizzy [11].

The reaction rates for the first set of experiments are ky = k_1 = ko = 1.
As in the previous section, this choice allows to test a situation where the speed
of the two approximations are different. For the same reason, we choose the
same initial quantity for the enzyme and the substrate [E]p = [S]o = 1. In
the stochastic setting the discretization step, denoted by ¢, has to be chosen as
well. This choice has a strong impact because as the granularity with which the
concentrations are modeled is increased, the behaviour of the CTMC tends to
the deterministic behaviour of the corresponding ODE. Figures 11 and 12 depict
the average and the variance of the quantity of the product with § = 0.01 and
d = 0.001, respectively. In both figures the approximate kinetics based on flow
equivalence gives good approximation of the original average behaviour while
the Michaelis-Menten approximation results in too fast production of P. On the
right side on the figures one can observe that also the variance is approximated
better by the FES approximation.
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Fig. 11. The average (left) and the variance (right) of the quantity of the product as
function of time with k1 =1, k—1 =1, ko = 1, [E]o = [S]o = 1 and § = 0.01
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For the second set of experiments we set ky = 10 and k_; = k3 = 1 and
as initial states we choose again [E]o = [S]p = 1. In this case too, as it was
shown in Figure 4, the speeds of production of P as predicted by the MM and
FES approximations are quite different. Figures 13 and 14 depict the resulting
behaviour for two different values of §. As in case of the deterministic setting,
the Michaelis-Menten approximation suffers from the increased k1 /k_; ratio and
becomes less precise than before. The FES based approach still results in good
approximation for both the average and the variance of the production.
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Fig. 13. The average (left) and the variance (right) of the quantity of the product as
function of time with k1 =10, k—1 =1, k2 = 1, [E]o = [S]o =1 and § = 0.01
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5 Conclusion

In this paper we have considered the approximate treatment of the basic enzy-
matic reactions £+S5 = FES — E+ P. In particular, an approximate kinetics,
based on the concept of flow equivalent server, has been proposed for its analy-
sis. This FES approximate kinetics has been compared to both the exact model
and to the most common approximate treatment, namely, the Michaelis-Menten
kinetics. We have shown that the FES kinetics is more robust than the one of
Michaelis-Menten.

The FES approximation for the basic enzymatic reactions is computationally
convenient due to the fact that it has been possible to find an analytic expression
for the speed of the composite reaction in this case. While it is very unlikely for
this to be true in the case of more complex kinetics, the method is very general
and we will study it further within this context to see if it is possible to find other
functional expressions for the speed of the composite reaction. One direction of
research will be computing the flow equivalent characterization of the kinetics
for a number of specific parameter sets and then of constructing the functional
representations via interpolation.
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Abstract. In Petri net systems, liveness is an important property cap-
turing the idea of no transition (action) becoming non-fireable (unattain-
able). Additionally, in some situations it is particularly interesting to
check if the net system is (marking) monotonically live, i.e., it remains
live for any marking greater than the initial one. In this paper, we dis-
cuss structural conditions preserving liveness under arbitrary marking
increase. It is proved that the deadlock trap property (DTP) is a neces-
sary condition for liveness monotonicity of ordinary nets, and necessary
and sufficient for some subclasses. We illustrate also how the result can
be used to study liveness monotonicity for non-ordinary nets using a sim-
ulation preserving the firing language. Finally, we apply these conditions
to several case studies of biomolecular networks.

1 Motivation

Petri nets are a natural choice to represent biomolecular networks. Various types
of Petri nets may be useful — qualitative, deterministically timed, stochastic, con-
tinuous or hybrid ones, depending on the available information and the kind of
properties to be analysed. Accordingly, the integrative framework demonstrated
by several case studies in [GHR 08|, [HGDO08|, [HDG10] applies a family of re-
lated Petri net models, sharing structure, but differing in their kind of kinetic
information.

A key notion of the promoted strategy of biomodel engineering is the level
concept, which has been introduced in the Petri net framework in [GHLO7]. Here,
a token stands for a specific amount of mass, defined by the total mass divided
by the number of levels. Thus, increasing the token number to represent a certain
amount of mass means to increase the resolution of accuracy.

This procedure silently assumes some kind of behaviour preservation while
the marking is increased (typically multiplied by a factor) to represent a finer
granularity of the mass flowing through the network. However, as it is well-known
in Petri net theory, liveness is not monotonic with respect to (w.r.t.) the initial
marking for general Petri nets. Thus, there is no reason to generally assume that
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there is no significant change in the possible behaviour by marking increase.
Contrary, under liveness monotonicity w.r.t. the initial marking we can expect
continuization (fluidization) to be reasonable. However, only a particular kind
of monotonicity seems to be needed for continuization: homothetic liveness, i.e.,
liveness preservation while multiplying the initial marking by & [RT'S99], [SR02].

At structural level, (monotonic) liveness can be considered using transforma-
tion (reduction) rules [Ber86], [Sil85], [Mur89], [Sta90], the classical analysis for
ordinary nets based on the Deadlock Trap Property (DTP) [Mur89], [Sta90], or
the results of Rank Theorems, which are directly applicable to non-ordinary nets
[T'S96], [RT'S98]. In this paper, we concentrate on the DTP, which will initially
be used for ordinary net models, and later extended to non-ordinary ones.

This paper is organized as follows. We start off with recalling relevant notions
and results of Petri net theory. Afterwards we introduce the considered subject
by looking briefly at two examples, before turning to our main result yielding
a necessary condition for monotonic liveness. We demonstrate the usefulness of
our results for the analysis of biomolecular networks by a variety of case studies.
We conclude with an outlook on open issues.

2 Preliminaries

We assume basic knowledge of the standard notions of place/transition Petri
nets, see e.g. [DHPT93], [HGDO08], [DA10]. To be self-contained we recall the
fundamental notions relevant for our paper.

Definition 1 (Petri net, syntax).
A Petri net is a tuple N' = (P, T, Pre, Post), and a Petri net system is a
tuple X = (N, myg), where

— P and T are finite, non-empty, and disjoint sets. P is the set of places. T
is the set of transitions.

— Pre, Post € NWXITl gre the pre- and post-matrices, where | - | is the car-
dinality of a set, i.e., its number of elements. For a place p; € P and a
transition t; € T, Pre(p;,t;) is the weight of the arc connecting p; to t; (0
if there is no arc), while Post(p;,t;) is the weight of the arc connecting t; to
pi-

— mgy € Nlﬁ)‘ gives the initial marking.

— m(p) yields the number of tokens on place p in the marking m. A place
p with m(p) = 0 is called empty (unmarked) in m, otherwise it is called
marked (non-empty). A set of places is called empty if all its places are
empty, otherwise marked.

— The preset and postset of a node x € PUT are denoted by *x and x* .
They represent the input and output transitions of a place x, or the input
and output places of a transition x. More specifically, ift; € T, *t; = {p; €
P|Pre(p;,t;) >0} and tj* = {p; € P|Post(p;,t;) > 0}. Similarly, if p; € P,
*pi = {t; € T|Post(p;,t;) >0} and p;* = {t; € T|Pre(p;,t;) > 0}.

We extend both notions to a set of nodes X C PUT and define the set of
all prenodes *X :=J,cy *x, and the set of all postnodes X * =], cxz*.
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— A node x € PUT is called source node, if *x = (), and sink node if z* = ().
A boundary node is either a sink or a source node (but not both, because we
assume a connected net).

Definition 2 (Petri net, behaviour). Let (N, mg) be a net system.

— A transition t is enabled at marking m, written as m[t), if
Vp € *t : m(p) > Pre(p,t), else disabled.

— A transition t, enabled in m, may fire (occur), leading to a new marking m’,
written as m[tym’, with Vp € P : m/(p) = m(p) — Pre(p,t) + Post(p,t).

— The set of all markings reachable from a marking mg, written as [my), is
the smallest set such that mg € [myg), m € [mgy) Am[t)ym’ = m’ € [my).

— The reachability graph (RG) is a directed graph with [mg) as set of nodes,

and the labelled arcs denote the reachability relation m[t)ym/'.

Definition 3 (Behavioural properties). Let (N, mg) be a net system.

— A place p is k-bounded (bounded for short) if there is a positive integer
number k, serving as an upper bound for the number of tokens on this place
in all reachable markings of the Petrinet: 3k € Ng : Vm € [myg) : m(p) < k.

— A Petri net system is k-bounded (bounded for short) if all its places are
k-bounded.

— A transition t is dead at marking m if it is not enabled in any marking m’
reachable from m: Am/ € [m) : m'[t).

— A transition t is live if it is not dead in any marking reachable from my.

— A marking m is dead if there is no transition which is enabled in m.

— A Petri net system is deadlock-free (weakly live) if there are no reachable
dead markings.

— A Petri net system is live (strongly live) if each transition is live.

Definition 4 (Net structures). Let N' = (P, T, Pre, Post) be a Petri net.
N s

— Homogeneous (HOM) if Vp € P : t,t' € p* = Pre(p,t) = Pre(p,t');

Ordinary (ORD) ifVp € P and Vt € T, Pre(p,t) <1 and Post(p,t) < 1;

— Extended Simple (ES) (sometimes also called asymmetric choice) if it is
ORD and Vp,g€ P:p*Ng*=0Vp* Cq* Vg Cp;

— Extended Free Choice (EFC) if it is ORD and ¥V p,q € P:p*Ng* =0 Vp* =
q.

Definition 5 (DTP). Let N = (P, T, Pre, Post) be a Petri net.

A siphon (structural deadlock, co-trap) is a non-empty set of places D C P
with *D C D-*.

A trap is a non-empty set of places Q C P with Q°* C * Q.

A minimal siphon (trap) is a siphon (trap) not including a siphon (trap) as
a proper subset.

— A bad siphon is a siphon, which does not include a trap.
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An empty siphon (trap) is a siphon (trap), not containing a token.
The Deadlock Trap Property (DTP) asks for every siphon to include an
initially marked trap, i.e., marked at my.

The DTP can be reformulated as: minimal siphons are not bad and the

maximal traps included are initially marked.

Definition 6 (Semiflows). Let N = (P, T, Pre, Post) be a net.

The token flow matrix (or incidence matrix if the net is pure, i.e., self-loop
free) is a matric C = Post — Pre.

A place vector is a vector y € ZI''!; a transition vector is a vector & € ZIT!,
A P-semiflow i