

BioPPN Workshop, 20 June 2011

Pain Signaling - A Case Study of the Modular Petri Net Modeling Concept with Prospect to a Protein-Oriented Modeling Platform

Mary Ann Blätke, Sonja Meyer, Wolfgang Marwan

mary-ann.blaetke@ovgu.de

Motivations

Motivation

- Monolithic pathway models are not always easy to handle
 - Hard to maintain, update and curate
 - Coupling of different pathway models is far from trivial

"And that's why we need a computer."

⇒ Our Idea: Modular representation of proteins with a defined connection interface

Motivation

- ODEs are not always the best choice (see also Ref. [2])
 - Difficult analysis of topological network properties
 - Mathematical structure hides biological information
 - Transformation into a reaction network is not unique
 - Difficult to understand for "wet-

lab" biologists

Modular Petri net Modeling Concept

Network Structure of a Module and Properties

Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net

Network Structure of a Module and Properties

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net
 - Place Specific state of a protein domain (or a non-protein)
 - Transitions Shifts between different states
 - Principle of double-entry bookkeeping -> shared copies of identical subnets among interacting protein

Network Structure of a Module and Properties

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net
 - Place Specific state of a protein domain (or a non-protein)
 - Transitions Shifts between different states
 - Principle of double-entry bookkeeping -> shared copies of identical subnets among interacting protein

A module is a comprehensive "review article" about a protein in the form of a Petri net Uterature Research is in the form of a Petri net 2.) Translation into a PN

Module

anslation into a

Validation of a Module

iterature Rese

- Domain-related representation of a protein, its interactions and intermolecular changes by a Petri net
 - Place Specific state of a protein domain (or a non-protein)
 - Transitions Shifts between different states
 - Principle of double-entry bookkeeping -> shared copies of identical subnets among interacting protein

⇒Validation of each module by topological Properties of a Petri net and simulation studies

Validation of a Module

Properties

PUR	ORD	НОМ	NBM	CSV	SCF	FTO	TFO	FPO	PFO	CON	SC
Ν	Y	Y	N	N	N	N	Ν	Y	Y	Y	N
DTP	CPI	СТІ	SCTI	SB	k-B	1-B	DCF	DSt	DTr	LIV	REV
N	Y	N	N	Y	Y	Y	N	Y	N	N	N

<u>Covered with P-INV:</u>
Set of all possible states of a domain of the module-protein, an interactive protein or of the non-protein

- Stochastic simulation studies
 - Dynamic behavior of the modules has to reflect the assigned function of the protein

Generation of a Modular Network

- Generation of a modular network from a set of modules
- Identical copies of subnets and places of non-proteins build the connection interface among the modules

Properties of the Modular Network

Modules:

PUR	ORD	НОМ	NBM	CSV	SCF	FT0	TFO	FPO	PFO	CON	SC
Ν	Y	Y	N	N	Ν	N	N	Y	Y	Y	N
DTP	CPI	СТІ	SCTI	SB	k-B	1-B	DCF	DSt	DTr	LIV	REV
Ν	Y	N	N	Y	Y	Y	N	Y	N	N	N

TRANSFER

Modular network:

PUR	ORD	НОМ	NBM	CSV	SCF	FTO	TFO	FPO	PFO	CON	SC
Ν	Y	Y	N	Ν	N	N	N	Y	Y	Y	N
DTP	CPI	СТІ	SCTI	SB	k-B	1-B	DCF	DSt	DTr	LIV	REV
Ν	Y	N	N	Y	Y	N	N	N	N	N	N

must not be fulfilled \Rightarrow 1:1 Transfer

variable \Rightarrow Determined by the intersection of the modules

must be fulfilled \Rightarrow 1:1 Transfer

Case Study - Pain Signaling

Pain Signaling

- Serious clinical and public health issues
- No sufficient mechanism-based pain therapy
- Complex and diverse molecular mechanisms of parallel, convergent and concurrent processes
- But: Molecular processes are not very well understood

Pain Signaling

- Serious clinical and public health issues
- No sufficient mechanism-based pain therapy
- Complex and diverse molecular mechanisms of parallel, convergent and concurrent processes
- But: Molecular processes are not very well understood

Modules

- 38 Modules based on literature
 - Enzymes (PKA, PKC, AC etc.)
 - Receptors (GPCRs)
 - Ca(2+)-Channels
 - Etc.
- Validated by:
 - Structural analysis
 - Simulation studies
- All modules are valid !

320 scientific articles

Example : mueOR + Gi-Protein

muOR Gi a BS Gi a GPCR BS

Example : mueOR + Gi-Protein

Other Examples: Protein kinase A

Module 9.1 - Regulation of Protein Kinase A (Rbetal)

Other Examples: TRPV1- Ion-Channel

Top-Level of the Nociceptive Network

Top-Level of the Nociceptive Network

Conclusion and Outlook

Advantages

- Modules are...
 - interactive reviews of spread information about a protein
 - easy to update, to extend,
 - to couple by identical matching subnets => straight forward generation of modular networks
 - reusable in other networks
- Extend the modular core network with gene expression, degradation, translocation modules...

Outlook: "Pain Model"

- Identification of possible targets for therapeutic intervention strategies
 - Completion
 - Parameterization and Validation
 - Stochastic Simulation studies
 - Extension to colored Petri nets to represent multiple copies of Proteins and DRG neuron populations

Outlook: Modular Modeling Concept

- Network reconstruction coupled with modular modeling concept
- Advanced analysis of structural motifs
- Other case studies: pain signaling, EGF pathway...

Outlook: Modular Modeling Concept Modeling platform for protein modules:

- Organization of the modules
- Module + data set offering detailed information
- Strict naming convention
- Automatic generation of modular networks from a set of approved curated modules
 - Iterative search of coupling partners
 - Pathway oriented suggestion using tags

Acknowledgement

- Supervisor: Wolfgang Marwan
- Software-/ Petri Net Support: Monika Heiner + Co-workers
- Biological Expertise: MOPS Consortia

www.ovgu.de

Bundesministerium für Bildung und Forschung

mary-ann.blaetke@ovgu.de

Acknowledgement

- Supervisor: Wolfgang Marwan
- Software-/ Petri Net Support: Monika Heiner + Co-workers
- Biological Expertise: MOPS Consortia

www.ovgu.de

Bundesministerium für Bildung und Forschung

mary-ann.blaetke@ovgu.de

AT 12TH INTERNATIONAL CONFERENCE ON SYSTEMS BIOLOGY (ICSB 2011), HEIDELBERG

27./28. AUGUST 2011 ORGANIZED BY MONIKA HEINER, DAVID GILBERT AND MARY ANN BLÄTKE

SCHEDULE

SATURDAY, AUGUST 27, 2011: 14.30 - 19.00 H - FOUNDATIONS OF ADVANCED PETRI NETS SUNDAY, AUGUST 28, 2011: 9.00 - 13.30 H - FURTHER ADVANCED PETRI NET TECHNIQUES AND APPLICATIONS

REGISTRATION:

WWW.ICSB-2011.NET

CONTACT/ INFORMATION:

MARY-ANN.BLAETKE@OVGU.DE HTTP://www.dssz.informatik.tu-cottbus.de/BME/ICSB2011 www.icsb-2011.net

www.ovgu.de

Bundesministerium für Bildung und Forschung

mary-ann.blaetke@ovgu.de

Interaction Matrix

Interaction Matrix in the Background of the Database

	ADCY5	GNAI1	GNAS1	OPRD1	OPRK1	OPRM1	PRKACA	PRKCA	PRKCZ	TRPV1
ADCY5	-									
GNAI1		-								
GNAS1			-							
OPRD1				-						
OPRK1					-					
OPRM1						-				
PRKACA							-			
PRKCA								-		
PRKCZ									-	
TRPV1										-

Iterative Search of Coupling Partners

1.) Search Interacting Proteins

2.) List of Interacting Proteins