Mary Ann Blätke

AND SYNTHETIC BIOLOGY

MODELLING PLATFORM FOR SYSTEMS

A DATABASE-SUPPORTED MODULAR

BioPPN 2012, Hamburg

OTTO VON GUERICKE UNIVERSITÄT MAGDEBURG

OUTLINE

- Conceptual Thoughts...
- **Proof of Principle: JAK-STAT...**
- More Than Organizing Modules...
- Sneak Peak & Summary...

50

VON

FOUNDATION OF OUR CONCEPT

Modules

- Stick to natural building-blocks
- Manageable and handy in size
- Easy to update, maintain, curate
 - Reusable, recombinable

Petri Nets

- Formal language and unifying framework
 - Strict syntax
 - Easy and intuitive modelling
 - Scalable (coloured PN)
 - Powerful tools

Database

- Organization of modules
- Easy handling of meta-data
 - Public access

FOUNDATION OF OUR CONCEPT

WHAT IS A MODULE?

Self-Contained and Object-Oriented Entities/Models

- Object oriented = centred around a biomolecule (gene, mRNA, protein)
- Representing a biomolecule and its direct interaction with other biomolecules in the form of an Petri net

MODULE TYPES

Protein Module	Protein Degradation	Causal Interaction
Petri Net	Module	Module
Binding and Unbinding Reactions	Petri Net	Petri Net
Formation and Cleavage of Covalent Bonds	Inactivation & Degradation	Causal Influences on Molecular and Cellula
Conformational Changes		Processes
Documentation & Searchable Metadata	Documentation & Searchable Metadata	Documentation & Searchable Metadata
Gene Module	RNA Module	Allelic Influence
	RNA Module Petri Net	Allelic Influence Module
Petri Net		Module
Petri Net Transcriptional Activity	Petri Net Transcription Processing of RNA	
Petri Net	Petri Net Transcription Processing of RNA (Alternative Splicing) Binding and Unbinding	Module
Petri Net Transcriptional Activity Binding and Unbinding	Petri Net Transcription Processing of RNA (Alternative Splicing)	Module Petri Net Allelic Influences on
Petri Net Transcriptional Activity Binding and Unbinding of Proteins	Petri Net Transcription Processing of RNA (Alternative Splicing) Binding and Unbinding Reactions	Module Petri Net Allelic Influences on Molecular and Cellula

WHAT IS A MODULE?

Self-Contained and Object-Oriented Entities/Models

- Object oriented = centred around a biomolecule (gene, mRNA, protein)
- Representing a biomolecule and its direct interaction with other biomolecules in the form of an Petri net

Design Principle

- Simple rules for the design of each module type
- Structural Petri net properties
- Defined connection interfaces (shared subnets) used to couple the modules

Documentation and Metadata

- Commented lists of places and transitions
- Literature citations
- Links to protein, sequence database entries etc.

WHAT IS A MODULE?

Self-Contained and Object-Oriented Entities/Models

- Object oriented = centred around a biomolecule (gene, mRNA, protein)
- Representing a biomolecule and its direct interaction with other biomolecules in the form of an Petri net

=> Modules serve as interactive wiki-like articels Design Principle

=> Modularity of any resulting biomodel mirrors

the modular composition of the living system at
 Defined connection interfaces (shared subnets) used to couple the modules

Documentation and Metadata

- commented lists of places and transitions
- literature citations
- links to protein, sequence database entries etc.

PROOF OF PRINCIPLE: JAK-STAT...

Joint work with Anna Dittrich and Fred Schaper

JAK-STAT PATHWAY

- Major signalling pathway
- Dysfunctionality leads to cancers, immune deficiencies syndromes
- Main Components:
 - Cytokine Receptors
 - JAK Janus- Kinase
 - STAT Signal Transducer and Activator of Transcription

=> Several isoforms, different cytokine receptors and ligands

CONSTRUCT A PROTEIN MODULE

COMBINATORICS OF JAK-STAT

ſG

S B S

VON

COMBINATORICS OF JAK-STAT

Combined Modular Networks

Set of Modules

ں – BN:2

ഗമ

ى<

<

5 ω VON VE GD

JAK-STAT IN IL-6 SIGNALING

BioPPN 2012, mary-ann.blaetke@ovgu.de

JAK-STAT IN IL-6 SIGNALING

- Network dimension:
 - Protein modules: 7
 - Extension:
 - Ix degradation module,
 - I x mRNA module
 - Places: 92
 - Transition: 102
 - Edges: 487
 - Pages: 58
 - Nesting Depth: 4

RUN THE MODEL

ENCODING SPACE VIA COLOUR

ENCODING SPACE VIA COLOUR

Component_Position Species t positioning

Module ID := (Protein I, Protein 2,...,Protein i) Compartment := (extracellular, membrane, cytoplasma, Nucleus,...) xGrid :=(1,2,...,m) yGrid :=(1,2,...,n) zGrid :=(1,2,...,o)

Component_Position := Module_ID x Compartment **x** xGrid **x** yGrid **x** zGrid

=> Modules can only interact on the same or neighbouring position

- => Modules that interact can only move together
- => Else modules can move independently

SOCS3_Biosynthesis

BioPPN 2012, mary-ann.blaetke@ovgu.de

0

THE CORE...

USER-INTERFACE

ProtBricks is a collection of Modules describing the functionality of single biomolecular entities and their interactions with other molecules in terms of Petri nets. All modules adhere to the guidelines of the modules Petri net interaction of growing biomolecular models. The database allows to browse to single modules and to gather the functionality of a biomolecular entity by its corresponding intuitive Petri net. In addition, the applied modular Petri net modeling concept allows to automatically couple a repository of desired interacting biomolecular entities. Those resulting comprehensive models can be used for further profund analysis. Based on this approach its is also possible to generate single or double mutated models.

SNEAK PEAK & SUMMARY...

BioPPN 2012, mary-ann.blaetke@ovgu.de

METADATA-DRIVEN MODEL MUTATION

I. Choose a set of modules

3. Use metadata to generate biologically functional mutations

Mutated networks with different properties

BioPPN 2012, mary-ann.blaetke@ovgu.de

METADATA-DRIVEN MODEL MUTATION

3. Use Metadata to generate biologically functional mutations

Mutated networks with different properties

Wt and mutated model

defined by colour

4. Implicit generation of a coloured Petri Net

APPLICATION FOR SYNTHETIC BIOLOGY...

Natural Network 1

Natural Network 2

Artificial Network with Altered Properties

SUMMARY

- Cooperation Partners
 - Monika Heiner and Co-Workers, BTU Cottbus
 - David Gilbert, Brunel University London
 - Fred Scharper and Co-Workers, OvGU Magdeburg
 - Tim Hucho, University of Cologne
- Projects

S

- Consortium "Modelling of Pain Switches"
- Graduate School
 - IMPRS Magdeburg

Federal Ministry of Education and Research

