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Introduction

Introduction

m Some biological models require to be represented in
hybrid way (Cells/Molecular interactions in one

model).

m Continuous deterministic simulation does not consider
the fluctuation of molecules, specially when there is a
low number of them.

m Stochastic Simulation is computational expensive
(fast reactions, large number of molecules).
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Introduction

CPN and XSPN

m Continuous Petri Nets:

m Continuous places
m Continuous transitions

m Extended Stochastic Petri Nets !

Discrete places
Stochastic transitions
Immediate transitions
Deterministic transitions
Scheduled transitions

1Marwan et al., Book Chapter 2012
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GHPNy;,

Features of GH P Ny,

m Combines both CPN and XSPN into one class

BTU Cottbus




Features of GH P Ny,

m Combines both CPN and XSPN into one class

m Different transition types— different reaction types
can be modelled using GH P Ny,

BTU Cottbus




Features of GH P Ny,

m Combines both CPN and XSPN into one class

m Different transition types— different reaction types
can be modelled using GH P Ny,

m Stiff biochemical networks can be easily modelled and
simulated using G H P Ny;,

BTU Cottbus




Features of GH P Ny,

m Combines both CPN and XSPN into one class

m Different transition types— different reaction types
can be modelled using GH P Ny,

m Stiff biochemical networks can be easily modelled and
simulated using G H P Ny;,

m The final model can be simulated using either static or
dynamic partitioning

BTU Cottbus

ell Cycle



Features of GH P Ny,

m Combines both CPN and XSPN into one class

m Different transition types— different reaction types
can be modelled using GH P Ny,

m Stiff biochemical networks can be easily modelled and
simulated using G H P Ny;,

m The final model can be simulated using either static or
dynamic partitioning

BTU Cottbus

ell Cycle



space

© continuous state space
molecules/levels ‘ P

LTS, PO '
CTL/LTL 0

time-free

quantitative

molecules/levels concentrations
stochastic rates deterministic rates
CTMC ODEs
CSL/PLTLc LTLc

abstraction ___,

extension >

approximation

1Heiner et al. Petri nets 2012




discrete state space ,’
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Discrete Transition

Continuous Transition
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GHPNy;,

Self-modifying Weights and Cell Division

d1

Matsuno et al., In silico biology (2003)
Valk, CALP (1978)




GHPNy;,

Self-modifying Weights and Cell Division

d1 di
P/2
P
P T d2 P T d2
P/2
cell division cannot be modelled cell division can intuitively be modelled

Matsuno et al., In silico biology (2003)
Valk, CALP (1978)




GHPNy;,

Simulation Methods

eterministic

Hybrid

Stochastic

1M. Herajy and M. Heiner, NAHS (2012)
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GHPNy;,

Simulation of GHPN

m Static partitioning: partitioning is done off-line before
the simulation starts.

m Dynamic partitioning: partitioning is done on-line
during the simulation.
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The Model

The Eukaryotic Cell Cycle Model
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The Model

Cell Cycle Regulation

m S phase (synthesis)
m G2 gap
m M phase (mitosis)

m G1 gap

M. Herajy and M. Schwarick BTU Cottbus
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The Model

Basic Model

m V: cellular Volume

ﬁ]——@——;} m X: CycB-Cdkl

. : m Y: free Cdhl-APC
O=—1] m Y,: phosphorylated

Cdh1-APC
m 7Z: effects of Cdc20

and Cdcl4

1Tyson-Novak Model, Theoretical Biology (2001)
M. Herajy and M. Schwarick BTU Cottbus
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The Model

Model History

m Tyson, J., Novak, B. (2001): the basic ODE model
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The Model

Model History

Tyson, J., Novak, B. (2001): the basic ODE model
Chen et al. (2004): budding yeast

Steuer, R., (2004): stochasticity is important

m Mura, 1., Csikasz-Nagy, (2008): stochastic Petri net
extension of a yeast cell cycle

Sabouri-Ghomi et al. (2008): unpack the
phenomenological rates

Kar et al. (2009): a stochastic model using
mass-action kinetics

M. Herajy and M. Schwarick BTU Cottbus
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The Model

Deciding the Division
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The Model

Deciding the Division (cont.)

ready_for_check

divide

' check ready_for_divide
V/2

critical

4‘_<
x

\
critical: Y + X_.Y +Y_X < CriticalValue
check: Y+ XY +Y_X > ThresholdValue
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The Model

Transition Partitioning
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Simulation Results

Simulation Results
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Simulation Results

Simulation Results (cont.)
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Simulation Results

Simulation Results (cont.)
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Cellular Volume
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Live Demo using Snoopy




Conclusions

Conclusions

m GH PNy, Can intuitively represent and execute the
eukaryotic cell cycle

m The model can be executed using either continuous, or
hybrid simulators
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Conclusions

Future Work

m Better justification of the partitioning
m Modelling extrinsic noises

m Use this network as a subnet in bigger models
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