# A Hybrid Petri Net Model of the Eukaryotic Cell Cycle

A Case Study of  $GHPN_{bio}$ 

#### Mostafa Herajy and Martin Schwarick

Chair of Data Structures and Software Dependability, Computer Science Department, Brandenburg University of Technology, Cottbus, Germany

Hamburg 2012



### Agenda

- Introduction
- Generalized Hybrid Petri Nets
- The Eukaryotic Cell Cycle Model
- Simulation Results
- Live Demo using Snoopy
- Conclusions and Outlook



#### Introduction

Introduction

- Some biological models require to be represented in hybrid way (Cells/Molecular interactions in one model).
- Continuous deterministic simulation does not consider the fluctuation of molecules, specially when there is a low number of them.
- Stochastic Simulation is computational expensive (fast reactions, large number of molecules).



#### CPN and XSPN

- Continuous Petri Nets:
  - Continuous places
  - Continuous transitions
- Extended Stochastic Petri Nets <sup>1</sup>
  - Discrete places
  - Stochastic transitions
  - Immediate transitions
  - Deterministic transitions
  - Scheduled transitions



 $<sup>^{1}</sup>$  Marwan et al., Book Chapter 2012

■ Combines both CPN and XSPN into one class



- Combines both CPN and XSPN into one class
- Different transition types  $\rightarrow$  different reaction types can be modelled using  $GHPN_{bio}$



- Combines both CPN and XSPN into one class
- Different transition types  $\rightarrow$  different reaction types can be modelled using  $GHPN_{bio}$
- Stiff biochemical networks can be easily modelled and simulated using  $GHPN_{bio}$



- Combines both CPN and XSPN into one class
- Different transition types  $\rightarrow$  different reaction types can be modelled using  $GHPN_{bio}$
- Stiff biochemical networks can be easily modelled and simulated using  $GHPN_{bio}$
- The final model can be simulated using either static or dynamic partitioning



- Combines both CPN and XSPN into one class
- Different transition types  $\rightarrow$  different reaction types can be modelled using  $GHPN_{bio}$
- Stiff biochemical networks can be easily modelled and simulated using  $GHPN_{bio}$
- The final model can be simulated using either static or dynamic partitioning



### $\overline{GHPN_{bio}}$ : the Big Picture



<sup>&</sup>lt;sup>1</sup>Heiner et al. Petri nets 2012



M. Herajy and M. Schwarick

### $GHPN_{bio}$ : the Big Picture



<sup>&</sup>lt;sup>1</sup>Heiner et al. Petri nets 2012



#### Elements.





 $<sup>^{1}</sup>$  M. Herajy and M. Heiner, NAHS (2012)

### Connectivity





### Self-modifying Weights and Cell Division





<sup>&</sup>lt;sup>1</sup>Matsuno et al., In silico biology (2003)

<sup>&</sup>lt;sup>2</sup>Valk, CALP (1978)

### Self-modifying Weights and Cell Division



cell division cannot be modelled



cell division can intuitively be modelled

<sup>&</sup>lt;sup>1</sup>Matsuno et al., In silico biology (2003)

<sup>&</sup>lt;sup>2</sup>Valk, CALP (1978)

#### Simulation Methods





 $<sup>^{1}\,\</sup>mathrm{M}.$  Herajy and M. Heiner, NAHS (2012)

#### Simulation of GHPN

• Static partitioning: partitioning is done off-line before the simulation starts.

 Dynamic partitioning: partitioning is done on-line during the simulation.



#### The Eukaryotic Cell Cycle Model



### Cell Cycle Regulation

- S phase (synthesis)
- G2 gap
- M phase (mitosis)
- G1 gap





#### Basic Model



- V: cellular Volume
- X: CycB-Cdk1
- Y: free Cdh1-APC
- $Y_p$ : phosphorylated Cdh1-APC
- Z: effects of Cdc20 and Cdc14



<sup>&</sup>lt;sup>1</sup>Tyson-Novak Model, Theoretical Biology (2001)

■ Tyson, J., Novak, B. (2001): the basic ODE model



- Tyson, J., Novak, B. (2001): the basic ODE model
- Chen et al. (2004): budding yeast



- Tyson, J., Novak, B. (2001): the basic ODE model
- Chen et al. (2004): budding yeast
- Steuer, R., (2004): stochasticity is important



- Tyson, J., Novak, B. (2001): the basic ODE model
- Chen et al. (2004): budding yeast
- Steuer, R., (2004): stochasticity is important
- Mura, I., Csikasz-Nagy, (2008): stochastic Petri net extension of a yeast cell cycle



- Tyson, J., Novak, B. (2001): the basic ODE model
- Chen et al. (2004): budding yeast
- Steuer, R., (2004): stochasticity is important
- Mura, I., Csikasz-Nagy, (2008): stochastic Petri net extension of a yeast cell cycle
- Sabouri-Ghomi et al. (2008): unpack the phenomenological rates



- Tyson, J., Novak, B. (2001): the basic ODE model
- Chen et al. (2004): budding yeast
- Steuer, R., (2004): stochasticity is important
- Mura, I., Csikasz-Nagy, (2008): stochastic Petri net extension of a yeast cell cycle
- Sabouri-Ghomi et al. (2008): unpack the phenomenological rates
- Kar et al. (2009): a stochastic model using mass-action kinetics



### Deciding the Division







critical:  $Y + X_{-}Y + Y_{-}X < CriticalValue$ check:  $Y + X_{-}Y + Y_{-}X > ThresholdValue$ 



#### The Model





### Transition Partitioning



transitions with different rates



#### Simulation Results



time course simulation results of Y: continuous (left) and hybrid (right)



### Simulation Results (cont.)



time course simulation results of Mx: continuous (left) and hybrid (right)



### Simulation Results (cont.)



time course simulation results of Mz: continuous (left) and hybrid (right)



#### Cellular Volume





Hybrid



# Live Demo using Snoopy



#### Conclusions

- $GHPN_{bio}$  Can intuitively represent and execute the eukaryotic cell cycle
- The model can be executed using either continuous, or hybrid simulators



#### Future Work

- Better justification of the partitioning
- Modelling extrinsic noises
- Use this network as a subnet in bigger models



# Thank You

