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Prediction of phenotype from genotype 
and environmental conditions. 

GENOTYPE ENVIRONMENT 

PHENOTYPE 

LIVING CELL 

We can sequence any DNA of 
interest, including full genome of 
an individual, but we are not 
making full use of this information 
yet. 

The ability to predict phenotype 
occurr ing for g iven genet ic 
background and environmental 
condit ions wi l l revolut ionise 
medicine and biotechnology. 

Molecular Biology knowledge will 
be used to reverse engineer 
molecular machinery of the cell as 
a computer model and use 
simulation to predict cellular 
behaviour for particular set of 
gene t i c and env i ronmen ta l 
perturbations. 



Stoy N, Kierzek AM, 
Darlington G and Stone T, 
Communication at 2006 
European Macrophage and 
Dendritic Cell Society 
conference in Freiburg  
 

Reconstruction of molecular 
interaction networks. 

The model of signalling pathways in human macrophage constructed in Systems 
Biology Graphical Notation (SBGN). The model contains 605 molecular species 
and 707 interactions.  



Reactome: Community based, peer-reviewed 
reconstruction effort. 



How to simulate behaviour of the 
molecular interaction network? 



In an ideal world, I would like to simulate 
molecular interaction network as CTMC … 

Stochastic kinetic model of two 
component system signalling. Kierzek, 
Zhou, Wanner, Molecular Biosystems, 
2010 

Propensity: 
c9 #mRNAKin 
c9 = 10-4 1/s 



Lack of quantitative parameters is a major obstacle 
towards dynamic model including all genes in the 
genome …. 

. . . . a l t hough the p rog ress in 
quantitative experimental approaches 
is astonishing. 



Should I wait until there is enough quantitative enough data to 
run dynamic simulations or should I look for approximate, 
qualitative methods to simulate reconstructions of molecular 
interaction networks with experimental data available today? 

The ideal solution would provide useful predictions from information about network 
connectivity alone while allowing gradual increase of quantitative detail by 
incorporation of quantitative data as they become available. 



Axt 

Dxt 

Bxt Cxt 

growth 

Adapted from FluxAnalyzer software (Steffen 
Klamt,MPI Magdeburg) 

The linear programming algorithm finds the largest 
possible value of dX/dt. However, there are many 
possible values of fluxes (F1,..,F8) that result in the 
same maximal value of objective function. 
 
Analysis of steady state metabolic flux distributions 
is currently the only computer simulation method 
which can be used on genome scale models of 
molecular interaction networks of the cell. 
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Find maximal dX/dt if the following 
constraints are satisfied: 

Steady state (flux balance) 
assumption for intracellular 
(internal) metabolites. 

Minimal and maximal 
reaction capacities 
(bounds). R4 is the only 
reversible reaction in the 
system. 

Value to be maximised 
(objective function) 

Transport of 
extracellular 
(external, 
unbalanced) 
metabolites. 

Flux Balance Analysis – good solution for 
metabolic network reconstructions. 



SurreyFBA software: Gevorgyan, Bushell, Avignone-
Rossa, Kierzek, Bioinformatics, 2011 

GSMN-TB model: Beste, Hooper, Stewart, Bonde, 
Avignone-Rossa, Bushell, Wheeler, Klamt, Kierzek, 
McFadden, Genome Biology 2007 

Flux Balance Analysis – good solution for 
metabolic network reconstructions. 



EZ:TN BCG mutant!
input pool!

(2500 mutants)!
Mutant!

output pool!

Label transposon!
flanking regions by!
PCR incorporation of!
Cy3-dCTP!

Label transposon!
flanking regions by!
PCR incorporation of!
Cy5-dCTP!

Abundance of mutants in output pool !
is quantified relative to abundance in !
the input pool by co-hybridisation of !
labelled transposon flanking regions!

Screening for essential genes by 
Transposon Site Hybridisation (TraSH) 



Receiver Operating Characteristics (ROC) 
of gene essentiality prediction. 

Sensitivity = TP/(TP + FN) 
Specificity = TN/(TN+FP) 

Each ROC curve shows 100 points corresponding to 
sensitivity and specificity of the model predictions 
obtained for growth rate thresholds varying in the 
range from 0.0 to 0.1 (increment 0.001). The growth 
rate threshold has no effect on prediction accuracy.  
 
The LP optimisation is effectively used as a 
qualitative test of BIOMASS producibility and it is 
irrelevant whether TB bacillus grows with maximal 
rate or not. 
 
Different curves correspond to TraSH ratio 
thresholds of 0.05, 0.1, 0.2, 0.6, 1. The TraSH ratio 
cutoff has considerable influence on prediction 
accurracy. 
 
The best ROC curve corresponds to the following 
prediction scores: Sensitivity 71%, Specificity 
80%, Correct predictions 78%. 



We did a lot of interesting work with Flux 
Balance Analysis in the areas of bacterial 
pathogens and biotechnology but …. 



… can we make qualitative predictions 
about genetic perturbations for general 
networks including dynamic regulatory 
processes for which steady state analysis 

is not useful?  



Reconstruction of the signalling network 
involved in Prostate Cancer evolution. 

RECEPTORS 

GENES 

PROLIFERATION NODE 

CELL DEATH NODE 

Extensive review of literature on molecular 
interactions involved in Prostate Cancer has 
been per fo rmed. In teac t ions were 
represented as an Extended Petri Net 
constructed in Snoopy. 

Network statistics: 251 Nodes, 195 
Transitions, 420 Edges, 409 Read Edges, 0 
inhibitory edges. 

The network represents signal flow resulting 
in activation of “PROLIFERATION” or 
“CELL” node behaviour. If PROLIFERATION 
node is reached before CELL DEATH node 
the network is considered to enter cancer 
state. 



Reconstruction of the signalling network 
involved in Prostate Cancer evolution. 

EXAMPLE RECEPTORS 

EXAMPLE GENES 



Can we predict genetic and 
pharmacological perturbations 

influencing chances of proliferation 
before cell death without information 

on transition rate constants and 
molecular amounts? 



Qualitative simulation approach. 
Discretise molecular activities. In all simulations the nodes were allowed to have 0, 1 or 
2 tokens.  

Make all transitions equally likely to fire. All transition rates were set to 1. All transitions 
for which pre-place nodes had more than 0 tokens were equally likely to fire. 

Set initial marking of the network. Set marking of PROLIFERATION and CELL DEATH 
nodes to 0. Set marking of other nodes according to biological knowledge on activity of 
receptors and genes. 

Generate ensemble of stochastic token games. Calculate FWT – the fraction of 
trajectories in which PROLIFERATION node reached state of 1 before CELL DEATH node 
reached state of 1. The Gillespie algorithm simulation was used to generate token game 
trajectories. 

Apply perturbation of interest. Gene knock-outs were simulated by setting the state of 
“DNA” node to 0. Increased degradation was simulated by setting transition rate to 1000. 

Generate ensemble of stochastic token games. Calculate FP – the fraction of 
trajectories in which PROLIFERATION node reached state of 1 before CELL DEATH node 
reached state of 1. 

Is FP significantly different from FWT? If yes, conclude that the perturbation influences 
the chances of prostate cancer evolution. Direction of change is meaningful, if FP > F0 the 
perturbation increases chances of cancer evolution. 



Implementation. 

Snoopy Python script reading 
*.spept file format. 

New version of SurreyFBA software (manuscript in preparation). 



Results for P53 gene knock-out. 
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Wild type P53 knockout 

Fraction of trajectories 
reaching PROLIFERATION 

before CELL DEATH 

The 10,000 trajectories have been run for 
initial (Wild type) model. Each trajectory 
was run until CELL DEATH node changed 
state from 0 to 1 or the simulation time 
reached 100 arbitrary time units. The 
f rac t ion o f t ra jec to r ies in wh ich 
PROLIFERATION node changed state 
from 0 to 1 was calculated. 

The same calculations have been 
performed for the model in which the state 
of  p53_DNA node was set to 0. 

The 99% binomial probability confidence 
intervals were calculated by binconf() 
function of Hmisc R package using 
Wilsons method.  

This results is consistent with 
experimental data. The p53 gene is 
known as “guardian of the genome”. Its 
inactivation is associated with evolution of 
many types of cancer, including prostate 
cancer. 



Results for no Testosterone 
input. 
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Wild type No Testosterone 

Fraction of trajectories 
reaching PROLIFERATION 

before CELL DEATH 

The 10,000 trajectories have been run for 
initial (Wild type) model. Each trajectory 
was run until CELL DEATH node changed 
state from 0 to 1 or the simulation time 
reached 100 arbitrary time units. The 
f rac t ion o f t ra jec to r ies in wh ich 
PROLIFERATION node changed state 
from 0 to 1 was calculated. 

The same calculations have been 
performed for the model in which the state 
of  “Testosterone” node was set to 0. 

The 99% binomial probability confidence 
intervals were calculated by binconf() 
function of Hmisc R package using 
Wilsons method.  

This results is consistent with 
experimental data. 



Results for GSK 3B inhibitor. 
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Fraction of trajectories 
reaching PROLIFERATION 

before CELL DEATH 

The 10,000 trajectories have been run for 
initial (Wild type) model. Each trajectory 
was run until CELL DEATH node changed 
state from 0 to 1 or the simulation time 
reached 100 arbitrary time units. The 
f rac t ion o f t ra jec to r ies in wh ich 
PROLIFERATION node changed state 
from 0 to 1 was calculated. 

GSK 3B inhibi tor is a drug that 
destabilises nuclear AR-GSK-3B. The rate 
of transition representing degradation of 
this molecule was set to 1000 and the 
same calculations as describe for “Wild 
type” model above were performed. 

The 99% binomial probability confidence 
intervals were calculated by binconf() 
function of Hmisc R package using 
Wilsons method.  

This results is consistent with 
experimental data. The GSK 3B 
inhibitor is a drug used in prostate 
cancer therapy. 



Results for PTEN gene knockout. 
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Fraction of trajectories 
reaching PROLIFERATION 

before CELL DEATH 

The 10,000 trajectories have been run for 
initial (Wild type) model. Each trajectory 
was run until CELL DEATH node changed 
state from 0 to 1 or the simulation time 
reached 100 arbitrary time units. The 
f rac t ion o f t ra jec to r ies in wh ich 
PROLIFERATION node changed state 
from 0 to 1 was calculated. 

The same calculations have been 
performed for the model in which the state 
of  PTEN_DNA node was set to 0. 

The 99% binomial probability confidence 
intervals were calculated by binconf() 
function of Hmisc R package using 
Wilsons method.  

This contradicts experimental data. The 
P T E N g e n e p o l y m o r p h i s m i s 
associated with prostate cancer 
evolution. 



Discussion 

1.  Application of Gillespie algorithm to generate sample of possible 
event sequences in qualitative Petri Net model is promising strategy 
for analysis of genome scale molecular interaction networks. 

2.  Related approach of “Signalling Petri Net” (PLoS Comput Biol 4(2): 
e1000005. doi:10.1371/journal.pcbi.1000005) implemented as 
PathwayOracle has been applied before to signalling networks. Our 
method is better suited for incorporation of existing qualitative 
knowledge about relative rates of biological processes (e.g. 
degradation rate increased by the drug). It is also simpler to integrate 
with existing model checking tools. 

3.  Results of this feasibility study suggest that it may be possible to 
gradually increase the level of detail of the molecular network 
reconstruction by incorporating quantitative information as it 
becomes available. 
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