

BioPPN 2012, Hamburg

PETRI NETS, AN INTEGRATIVE FRAMEWORK FOR ADVANCED BIOMODEL ENGINEERING OF SIGNAL TRANSDUCTION AND OF GENE REGULATORY NETWORKS

Wolfgang Marwan

wolfgang.marwan@ovgu.de

PETRI NETS OFFER A UNIFYING MODELLING LANGUAGE TO BIOLOGISTS AND TO SYSTEMS BIOLOGISTS

WHY ARE PETRI NETS POWERFUL MODELLING FRAMEWORKS SELF-EXPLANATORY TO BIOLOGISTS?

Petri nets

- \checkmark are a formal modelling language
- \checkmark are mathematical structures
- \checkmark have a strictly defined, simple syntax
- \checkmark provide powerful tools for analysis and simulation
- ✓ provide graphical WYSIWYG representation of executable models

The graphical representation of Petri nets

- \checkmark provides a simple formalism
- \checkmark is intuitively understandable even without mathematical skills
- ✓ is like biologists draw biochemical reactions or molecular interactions
- ✓ enforces users to be consistent in the description in modelling a biological process

<u>Petri nets can</u>

- \checkmark model qualitative and quantitative processes concurrently
- \checkmark be executed as qualitative, continuous, stochastic, or hybrid models
- ✓ cover mutiple levels of abstraction by linking processes with arbitrary resolution of details
- ✓ may be structured hierarchically
- ✓ gain the expressive power of a programming language in the form of coloured Petri nets

THIS TALK REFERS TO SIGNAL TRANSDUCTION AND TO GENE REGULATORY NETWORKS NOT TO METABOLIC NETWORKS

Metabolic Networks: Flux of chemical compounds

Mass flow may be analysed e.g. by isotope labelling

Signaling Networks: Flux of information

It may occur through different types of molecular interactions

THIS TALK REFERS TO SIGNAL TRANSDUCTION AND TO GENE REGULATORY NETWORKS NOT TO METABOLIC NETWORKS

Signaling Networks:

The flux of information may occur through

- Protein-protein interactions
- Protein-nucleic acid interactions
- Small molecules as cofactors and mediators
- Ion flow or changes in membrane potential
- Translocation between different compartments
- Changes in the concentration of compounds, or through stochastic molecular events, or both

=> Stochastic or hybrid simulation may be necessary in order to make the model behave realistically

THIS TALK REFERS TO SIGNAL TRANSDUCTION AND TO GENE REGULATORY NETWORKS NOT TO METABOLIC NETWORKS

Signaling Networks:

The flux of information may not be easily traceable because

- Different types of molecular interactions are involved
- Not all physical interactions are functional
- Not all functional interactions are necessarily detectable as physical interactions
- Not all functional interactions are relevant to the phenomenon of interest
- Network elements may be redundant
- Networks may be robust to perturbations

=> Reverse engineering approaches may be essential

=> Biological knowledge may be integrated by forward engineering of the model

SYSTEMS BIOLOGY APPROACHES WITH PETRI NETS FOLLOWED IN MAGDEBURG

MODULAR PETRI NET MODELLING

AUTOMATIC NETWORK RECONSTRUCTION

A MODULAR APPROACH TO PETRI NET MODELLING

WE ADVERTISE A DATABASE OF PETRI NET MODULES RATHER THAN A COLLECTION OF MONOLITHIC MODELS

- represent a bioprocess with a
- 😔 fixed resolution in detail, employing a
- 😔 fixed mathematical modelling paradigm
 - (e.g. ODE or stochastic).

However, monolithic models are

- not easily assessed
- inot easily updated
- is not easily extended
- not easily combined with other models

<u>Modules can be easily</u>

- 🙂 composed
- 🙂 reused
- © curated
- updated
- © modified
- © exchanged

<u>Modules</u>

- © are organised in a database
- © contain searchable metadata
- © may be a wiki-like minireview
- © can be provided in multiple versions

A MODULE IS CENTRED AROUND A MOLECULE

A transcription factor, phosphorylated by a kinase and dephosphorylated by a phosphatase:

Protein Modules:

- ✓ Transcription factor (TF)
- ✓ Kinase
- ✓ Phosphatase (PPTase)

Biosynthesis Modules:

- 🗸 Kinase
- ✓ Phosphatase (PPTase)

Protein Module

Petri Net

Binding and Unbinding Reactions

Formation and Cleavage of Covalent Bonds

Conformational Changes

Documentation & Searchable Metadata

Protein Module:

- ✓ The Petri net is well-structured
- ✓ It displays the different reactions of a protein clearly arranged according to the types of reactions

Metadata are Essential for:

- ✓ Documentation
- ✓ Automatic model composition
- ✓ Version management
- ✓ Database searches
- ✓ In silico mutation

(a)

All Modules								
ID -	Gene Symbol •	Protein Name	Accession •	Approved •	Release Date			
1	IL6	Interleukin-6	P05231	*	2011-11-08	•		
2	ILER	Interleukin-6 receptor subunit alpha	P08887	*	2011-11-08	•		
3	ILEST	Interleukin-6 receptor subunit beta	P40189	*	2011-11-08	•		
4	JAK1	Tyrosine-protein kinase	P23458	*	2011-11-08	•		
8	JAK1	Tyrosine-protein kinase	P23458	*	2011-11-10	•		
5	STAT3	Signal transducer and activator of transcription 3	P40763	*	2011-11-08	•		
6	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	Q06124	*	2011-11-08	•		
9	PTPN11	Tyrosine-protein phosphatase non-receptor type 11	Q06124	*	2011-11-10	•		
7	SOCS3	Suppressor of cytokine signaling 3	O14543	*	2011-11-08	•		

+ Add To Collection ---Select Collection +

(b)

IL6ST_CBM

IL6ST_lglike

IL6_sitel

IL6_siteIIIa

IL6_sitella

Transition Overview
 View/Download
 Add to Collection

JAK1_FERM_IL6ST_Box1_Box2

MODULE: IL6* (ID:1, Release Date: 2011-11-08)

General Information						
Submitter(s): Curator(s):	Blaetke, Mary A Dittrich, Anna	laetke, Mary Ann Jittrich, Anna				
	Schaper, Fred	d line line line line line line line line				
Protein:	ene Symbol: IL6, Accession Number: P05231)					
Connectable	IL6R					
Module(s):	IL6ST					
Module Version/s):	No other version	ALTITE				
Publication(s):	Müller-Newen G	would versions in uns deladose. Miller-Newen G. Heinrich PC. Behrmann I. Haan S. Hermanns HM. Schaper F. Principles of interleukin (II.)-6-type cytokine signalling and its regulation. Biochem J. 2003; 374				
i abnoation(o).	Pt 1): 1-20 (PMID: 12773095)					
	Müller-Newen G: The cytokine receptor gp130: faithfully promiscuous. Sci STKE, 2003; 2003 (201): PE40 (PMID: 14506288)					
 Place Overview 						
Disco Nama						
Place Name		Description				
IL6R_CBM		cytokine binding module (CBM) of Interleukin-6 receptor subunit alpha (IL6R)				
IL6R_CBM_IL6_site1		cytokine binding module (CBM) of Interleukin-6 receptor subunit alpha (IL6R) bound to binding site I (siteI) of Interleukin-6 (IL6)				
IL6R_siteIIIb		site IIIb (siteIIIb) of Interleukin-6 receptor subunit beta (IL6R)				
IL6R siteIIb		site IIb (siteIIb) of Interleukin-6 receptor subunit beta (IL6R)				

IL6ST_CBM_IL6_siteIIa_IL6R_siteIIb cytokine binding module (CBM) of Interleukin-6 receptor subunit beta (IL6ST) bound to binding site IIa (siteIIa) of Interleukin-6 (IL6) and binding site IIb (siteIIb) of Interleukin-6 receptor subunit alpha (IL6R)

IL6ST_lglike_IL6_siteIIIa_IL6R_siteIIIb immunoglobulin-like domain (Iglike) of Interleukin-6 receptor subunit beta (IL6ST) bound to binding site IIIa of Interleukin-6 (IL6) and binding site IIIb (siteIIIb) of Interleukin-6 receptor subunit alpha (IL6R)

4.1 ezerin radixin and moesin domain of Tyrosine-protein kinase JAK1 (JAK1) bound to Box1 and Box2 of Interleukin-6 receptor subunit beta (IL6ST)

cytokine binding module (CBM) of Interleukin-6 receptor subunit beta (IL6ST)

binding site I (sitel) of Interleukin-6 (IL6)

binding site IIIa (siteIIIa) of Interleukin-6 (IL6)

binding site IIa (siteIIa) of Interleukin-6 (IL6)

immunoglobulin-like domain (Iglike) of Interleukin-6 receptor subunit beta (IL6ST)

MODULES CAN BE COMPOSED INTO ALTERNATIVE MODELS

GENE EXPRESSION PATTERNS IN TISSUES OF 18 DIFFERENT PERSONS AS SELF-ORGANISING MAPS

This data was published in the paper:

Maps taken from: GEDI-The gene dynamics inspector website

Haverty, PM., Weng, Z., Best, N., Auerbach, K., Hsiao, L., Jensen, R., Gullans, SR. HugeIndex: a database with visualization tools for high-density oligonucleotide array data from normal human tissues. Nucleic Acids Research 30: 214-217, 2002.

THE GENE EXPRESSION PATTERN DETERMINES THE REACTION RATES IN A PROTEIN NETWORK

The pattern of genes expressed

in a cell usually depends on:

- (1) cell type
- (2) physiological state
- (3) experimental condition
- (4) environmental condition
- (5) individual history of a cell

Gene_i many
$$[mRNA]_i$$
 many $[Protein]_i$

See for example: Schwanhäusser, B. et al. (2011): "Global quantification of mammalian gene expression control." *Nature 473:* 337-342.

The gene experession pattern influences the concentration of the encoded proteins and the reaction rates accordingly:

The marking of the PN must be updated when the gene expression pattern has changed.

GENE EXPRESSION PATTERNS IN TISSUES OF 18 DIFFERENT PERSONS AS SELF-ORGANISING MAPS

<u>Female and male muscles are</u> <u>different</u>:

- Petri net models have
- at least different marking and
- > perhaps different structure

This data was published in the paper:

Maps taken from: GEDI-The gene dynamics inspector website

Haverty, PM., Weng, Z., Best, N., Auerbach, K., Hsiao, L., Jensen, R., Gullans, SR. HugeIndex: a database with visualization tools for high-density oligonucleotide array data from normal human tissues. Nucleic Acids Research 30: 214-217, 2002.

Work in progress: Gene expression patterns in cell differentiation mutants

The graphical display of the gene expression patterns in mutants gives a family of executable genotype/phenotype models based on a collection of modules

DEFINITION OF NEW MODULE PROTOTYPES PROVIDES A COMPREHENSIVE MODELLING FRAMEWORK FOR FORWARD AND REVERSE ENGINEERING

A minimal set of module prototypes supports:

- (1) linking gene expression to protein concentration
- (2) fully automated generation of models for genomewide (omics) approaches
- (3) linking genotype to phenotype through non-obvious mechanisms
- (4) integration of bottom-up and top-down modules obtained by forward and reverse engineering

MODELLING WITH PETRI NET MODULES

Pain Signal Transduction

Blätke, M. A., Meyer, S., Stein, C. and Marwan, W.: Petri net modeling via a modular and hierarchical approach applied to nociception. <u>Proceedings of the International Workshop on Biological Processes & Petri Nets</u> (BioPPN 2010) Braga, Protugal. 131. 2010.

Blätke, M. A., Meyer, S. and Marwan, W.:

Pain Signaling - A Case Study of the Modular Petri Net Modeling Concept with Prospect to a Protein-Oriented Modeling Platform.

<u>Proceedings of the 2nd International Workshop on Biological Processes & Petri Nets</u> (BioPPN2011). Newcastle upon Tyne, United Kingdom, 1-19, 2011.

JAK/STAT Signal Transduction

Blätke, M. A., Dittrich, A., Rohr, C., Heiner, M., Schaper, F. and Marwan, W.: JAK/STAT signalling - an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems- and synthetic biology.

Submitted 2012. Preprint on arXiv.

Generalisation through Module Prototypes

Blätke, M. A., Heiner, M. and Marwan, W.:

Predicting phenotype from genotype through automatically composed Petri nets. <u>Submitted 2012. Preprint on arXiv.</u>

AUTOMATIC RECONSTRUCTION OF NETWORKS FROM TIME SERIES DATA SETS

Molecular Networks:

Modeling and Model Validation in the Biosciences with Mathematics

Repeat until the choosen level of resolution is obtained The final model is based on a mathematical poof.

DATA MUST BE TAKEN WITH SUFFICIENT TIME RESOLUTION

Marwan, W., A. Wagler, and R. Weismantel (2008): *Math. Meth. Oper. Res.* 67, 117-132. Durzinsky, M., A. Wagler, R. Weismantel, and W. Marwan (2008): *BioSystems* 93, 181-190.

Marwan, W., A. Wagler, and R. Weismantel (2008): *Math. Meth. Oper. Res.* 67, 117-132. Durzinsky, M., A. Wagler, R. Weismantel, and W. Marwan (2008): *BioSystems* 93, 181-190.

Marwan, W., A. Wagler, and R. Weismantel (2008): *Math. Meth. Oper. Res.* 67, 117-132. Durzinsky, M., A. Wagler, R. Weismantel, and W. Marwan (2008): *BioSystems* 93, 181-190.

Difference Vector	Incidence Matrix	Petri Net	
$D = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ $D = R_{19}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{1} \bigoplus_{T_{1}} P_{3}$ $P_{2} \bigoplus_{T_{2}} P_{3}$	
$D = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ $D = R_{22} + R_5 + R_{20}$ b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{1} \bigoplus \bigoplus_{P_{2}} \begin{bmatrix} T_{1} & T_{3} \\ P_{2} \bigoplus \bigoplus_{T_{2}} \begin{bmatrix} T_{2} & T_{3} \\ P_{3} \end{bmatrix} \end{bmatrix}$	
$D = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$ $D = R_{22} + R_{11}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{1} \bigoplus \longrightarrow \begin{bmatrix} T_{1} \\ P_{1} \bigoplus & P_{3} \end{bmatrix}$ $P_{2} \bigoplus \longrightarrow \begin{bmatrix} T_{1} \\ P_{3} \end{bmatrix}$	

EXPERIMENTS SUGGESTED BY THE RECONSTRUCTED NETWORKS

CATALYTIC REACTIONS ARE REPRESENTED BY READ ARCS

CATALYTIC REACTIONS ARE REPRESENTED BY READ ARCS

Enzymes and genes are considered as catalysts by the network reconstruction algorithm and modelled with test arcs

RECONSTRUCTION OF EXTENDED PETRI NETS AND ITS APPLICATION TO SIGNAL TRANSDUCTION AND TO GENE REGULATORY NETWORKS

ESSENTIAL STEPS IN THE RECONSTRUCTION OF AN EXTENDED PETRI NET

a) Given Petri Net b) States Matrix С E $\mathbf{X}_0 \quad \mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3 \quad \mathbf{X}_4$ A 1 0 0 0 0 1 0 1 1 1 В D С 1 0 0 0 0 D 0 0 1 0 0) F $A(\bullet)$ E 1 1 1 1 1 F 0 0 0 1 1 (\bullet) *c*) Difference Vector Matrix В d, d, d, d. $\rightarrow \mathbf{x}_1$ $x_1 \rightarrow x_2$ $x_2 \rightarrow x_3$ $x_3 \rightarrow x_4$ Α -1 0 0 0 В -1 0 0 1 e Reaction Vector \mathbf{d}_1 may be composed using the following reactions: С 1 -1 0 0 D 0 -1 0 1 E 0 0 0 0 F 0 0 1 0 **d**) Reaction Vector Matrix of \mathbf{d}_1 $|\mathbf{r}_1|$ Α(\mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_4 \mathbf{r}_5 \mathbf{r}_6 \mathbf{r}_7 A -1 -1 -1 0 -1 0 0)B B B -1 -1 0 -1 0 -1 0 C 1 0 1 1 0 0 1 D 0 0 0 0 0 0 0 E 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0)f) <u>Complete Decomposition of d_1 </u>. Reactions may occur in arbitrary \mathbf{r}_7 r₆ sequence: \mathbf{r}_{5} $d_1 = r_1$ (1 Permutation) $d_1 = r_2 + r_7$ (2 Permutations) (2 Permutations) $d_1 = r_3 + r_6$ ЪВ) B (2 Permutations) $d_1 = r_4 + r_5$ $\mathbf{d}_1 = \mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3$ (6 Permutations) Try all reactions with all terminal states: g) 1st Permutation $(\mathbf{r}_4, \mathbf{r}_5)$: $\mathbf{r}_4 \mid \mathbf{X}_0 \mid \mathbf{X}_4$ + $\mathbf{r}_{4} = \mathbf{y}_{1};$ $y_1 + r_5 = x_1$ A 1 0 $f_4 = A$ If $(\mathbf{r}_{t}, \mathbf{r}_{t})$ is choosen: 1) 0 0 -1 1 B 1 1 \mathbf{r}_4 is applied at $\mathbf{x}_0 \Rightarrow f_4(\mathbf{x}_0) = 1$ **Г**₄ **→** (●) А 0 0 0 0 1 -1 C 0 0 \mathbf{r}_{5} is applied at $\mathbf{y}_{1} \Rightarrow f_{5}(\mathbf{y}_{1}) = 1$ 0 1 0 1 1 1 $\mathbf{D} \mid \mathbf{0} \mid \mathbf{0}$ 0 0 0 0 0 0 $\Gamma_4 \sim F$ E 1 1 \mathbf{r}_{4} is appicable at terminal state \mathbf{x}_{4} 1 0 0 1 1 F 0 1 $f_4 = \text{NOT F}$ \Rightarrow **r**₄ must be disabled \Rightarrow $f_4(\mathbf{x}_4) = 0$ 0 0 0 0 0 \Rightarrow done by a token in A or no token in F $f_4 = 1 = 0$ 2nd Permutation $(\mathbf{r}_5, \mathbf{r}_4)$: $\mathbf{r}_4 \quad \mathbf{y}_2 \quad \mathbf{x}_4$ If $(\mathbf{r}_5, \mathbf{r}_4)$ is choosen: $\mathbf{r}_5 = \mathbf{y}_2;$ + $y_2 + r_4 =$ A 0 0 \mathbf{r}_4 is applied at $\mathbf{y}_2 \Rightarrow f_4(\mathbf{y}_2) = 1$ 0 0 B 1 1 0 0 \mathbf{r}_5 is applied at $\mathbf{x}_0 \Rightarrow f_5(\mathbf{x}_0) = 1$ 0 1 0 1 -1 С 0 0 1 0 0 0 0 1 1 D 0 0 \mathbf{r}_4 is appicable at terminal state \mathbf{x}_4 = $\mathbf{r}_{4} \sim \mathbf{r}_{4}$ 0 0 0 0 0 0 Е 1 1 \Rightarrow **r**₄ must be disabled \Rightarrow $f_4(\mathbf{x}_4) = 0$ 0 0 1 F 0 1 $f_4 = \text{NOT F}$ 1 1 1 \Rightarrow done by no token in F 0 0 0 $f_4 = 1 = 0$ 0 0 0

Durzinsky, M., et al.: BMC Systems Biology 5, 113, 2011.

TIME SERIES DATA OBTAINED FROM A TOY PETRI NET

c) Difference Vector Matrix

TIME SERIES DATA OBTAINED FROM A TOY PETRI NET

c) Difference Vector Matrix

TIME SERIES DATA OBTAINED FROM A TOY PETRI NET

c) Difference Vector Matrix

Difference Vector \mathbf{d}_1 may be composed using the following reactions:

Difference Vector \mathbf{d}_1 may be composed using the following reactions:

IDENTIFY REACTIONS POTENTIALLY CONTROLLED BY TEST ARCS

IDENTIFY REACTIONS POTENTIALLY CONTROLLED BY TEST ARCS

IDENTIFY REACTIONS POTENTIALLY CONTROLLED BY TEST ARCS

CONTROL FUNCTIONS REPRESENT REGULATORY INTERACTIONS

Introduction of control functions allows the reconstruction of sophisticated regulatory mechanisms

 Petri Nets with control arcs
 The transitions are encoded by controlled reactions (r, f_r)

Durzinsky, M., et al.: BMC Systems Biology 5, 113, 2011.

SETS OF CONTROLLED REACTIONS DEFINE ALTERNATIVE PETRI NET STRUCTURES

Each Controlled Reaction (\mathbf{r}, f_r) Gives a Transition in the Reconstructed Petri Net:

COMPOSING A FUNCTIONAL PETRI NET FROM THE COMPLETE LIST OF CONTROLLED REACTIONS

Complete list of possible controlled reactions (\mathbf{r}, f_r) for each of the subsequent difference vectors \mathbf{d}_i :

Any arbitrary sequence of controled reactions obtained by taking one difference vector from each of the subsequent columns gives one functional extended Petri net which is compatible with the time series data set that originally served as input

Phosphate Regulation in Enteric Bacteria

Petri Net Model of Phosphate Regulation

in silico Mutants and Phenotypes

Experiment	Genetic background	Experimental perturbation	Petri net implementation
Exp #1	Wild-type	Switch off inorganic phosphate	Petri net as shown in Figure 8
Exp #2	Wild-type	Switch off organic phosphate	Petri net as shown in Figure 8
Exp #3	Wild-type	Inhibition of transcription / translation	no token in Pool place
Exp #4	$\Delta pstSCAB$	Absence of inorganic phosphate	no tokens in places Pst-P, Pst, pi_pp
Exp #5	$\Delta pstSCAB$	Presence of inorganic phosphate	no token in places Pst-P, Pst
Exp #6	Δ phoU	Switch off inorganic phosphate	no token in places PhoU-A, PhoU-I
Exp #7	Δ phoR	Switch off inorganic phosphate	no token in places PhoR, PhoR-P
Exp #8	Δ phoB	Switch off inorganic phosphate	no token in places PhoB, PhoB-P
Exp #9	phoR Δ Psite	Switch off inorganic phosphate	no token in place PhoR-S
Exp #10	<i>phoB</i> Δ Psite	Switch off inorganic phosphate	no token in place PhoB-S

Reconstructed Petri Net

Reconstructed Petri Net

a)

☑reasonable mechanism; ☑discarded

Reconstructed Petri Net: Alternative Reactions

<u>Alternatives:</u> • may be redundant

may suggest biologically reasonable mechanisms

RECONSTRUCTED PETRI NET – KINETIC SIMULATION

Marwan, W., Rohr, C. and Heiner, M. :

Petri nets in snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. In J van Helden, A Toussaint and D Thieffry (eds.), *Methods in Molecular Biology* (2012) 409-437. Clifton, NJ: Humana Press.

AUTOMATIC NETWORK RECONSTRUCTION REFERENCES

Reconstruction of Plain Petri Nets and Basic Algorithm

Marwan, W., Wagler, A. and Weismantel, R. A mathematical approach to solve the network reconstruction problem. <u>Mathematical Methods of Operations Research 67, 117-132, 2008.</u>

Durzinsky, M., Weismantel, R. and Marwan, W.: Automatic reconstruction of molecular and genetic networks from discrete time series data. <u>BioSystems 93, 181-190, 2008.</u>

Reconstruction of Extended Petri Nets

Durzinsky, M., Wagler, A. and Marwan, W.: Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks. *BMC Systems Biology* **5**, 113, 2011.

Durzinsky, M., Marwan, W. and Wagler, A.: Reconstruction of extended Petri nets from time-series data by using logical control functions.

Journal of Mathematical Biology, 2012. Online First.

Network Reconstruction with Answer Set Programming

Durzinsky, M., Marwan, W., Ostrowski, M., Schaub, T. and Wagler, A.: Automatic network reconstruction using ASP. *Theory and Practice of Logic Programming* **11**, 749-766, 2011.

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

COWORKERS AND COOPERATION PARTNERS

Mary Ann Blätke Markus Durzinsky Anna Dittrich Fred Schaper

Université Blaise Pascal

Annegret Wagler

Robert Weismantel

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

b-tu

Brandenburgische Technische Universität Cottbus

Monika Heiner Christian Rohr

Max Ostrowski Torsten Schaub

