Reconstructing \mathcal{X}' -deterministic extended Petri nets from experimental time-series data \mathcal{X}'

Marie C.F. FAVRE joint work with Annegret K. WAGLER

Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS) UMR CNRS 6158 – Université Blaise Pascal,Clermont-Ferrand, France

BioPPN2013

MILANO

24th of June 2013

Outline

1 Modeling in Biosciences

2 Petri Nets and Extensions

3 Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

Outline

Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロト ・回ト ・ヨト ・

Modeling and Model Validation in Biosciences

Molecular Networks:

Modeling and Model Validation in the Biosciences

The classical lab approach:

Repeat until the model correctly predicts all experimental results.

Modeling and Model Validation in Biosciences

- Biological models: often "cartoon-like" informal schemes
- **Classical lab approaches:** heuristic and hypothesis-driven methods, yield potentially incomplete solution sets

Mathematical Models and Methods for Biological Systems

Mathematics for Biosciences

• Mathematical models:

formal schemes representing structure and function of the studied system

• Mathematical approaches:

data-driven methods, can guarantee completeness by mathematical proofs

Outline

1 Modeling in Biosciences

2 Petri Nets and Extensions

Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロト ・回ト ・ヨト ・

Standard networks $\mathcal{P} = (P, T, A, w)$

- *P* set of involved **components** ("places" ()), (molecules, receptors, genes)
- T set of involved reactions ("transitions" \Box), (reactions, activations,...)
- $A \subseteq (P \times T) \cup (T \times P)$ set of directed **links** ("arcs" \rightarrow),
- arc weights w as stoichiometric coefficients.

Extended networks $\mathcal{P} = (P, T, (A \cup A_R \cup A_I), w)$

- $A_R \subset P \times T$ read-arcs
- $A_I \subset P \times T$ inhibitor-arcs

Standard networks $\mathcal{P} = (P, T, A, w)$

- *P* set of involved **components** ("places" ()), (molecules, receptors, genes)
- T set of involved reactions ("transitions" \Box), (reactions, activations,...)
- $A \subseteq (P \times T) \cup (T \times P)$ set of directed **links** ("arcs" \rightarrow),
- arc weights w as stoichiometric coefficients.

Extended network

<ロト </p>

Extended networks $\mathcal{P} = (P, T, (A \cup A_R \cup A_I), w)$

- $A_R \subset P \times T$ read-arcs
- $A_I \subset P \times T$ inhibitor-arcs

Petri nets: States and state changes

States

- Each place $p \in P$ can be marked with an integral number \mathbf{x}_p of tokens.
- A state can be represented as a vector $\mathbf{x} \in \mathbb{N}^{|P|}$ with entries \mathbf{x}_p for all $p \in P$.

$$\begin{array}{c} a & & \\ b & & \\ c & &$$

• If a capacity function cap : $P \to \mathbb{N}$ is given, $x_p \leq \operatorname{cap}(p) \quad \forall p \in P$.

Switching transitions

- In a standard network, $t \in T$ is enabled at a state x if $\mathbf{x}_p \ge w(p, t)$ for all p with $(p, t) \in A$, and, $\mathbf{x}_p + w(t, p) \le \operatorname{cap}(p)$ for all p with $(t, p) \in A$.
- In an extended network, $t \in T$ is enabled at a state x if in addition
 - $\mathbf{x}_p \geq w(p,t)$ for all p with $(p,t) \in A_R$, and,
 - $\mathbf{x}_p < w(p, t)$ for all p with $(p, t) \in A_l$.

Dynamic processes

Dynamic processes correspond to sequences of system states, obtained by sequences of transition switches.

Starting from an initial state x^0 , explore the **dynamic behavior** of the system by

- consecutively switching enabled transitions,
- analyzing the reachability of certain system states.

Image: A math a math

Prediction of the dynamic behavior

Priority relations for transitions

Let G be a network and \mathcal{O} a **priority relation** on its transitions.

- If there are two or more transitions enabled at a state, this transition with **highest priority** will be switched.
- This allows to **predict the dynamic behavior** of the system (instead of listing all potentially possible switching sequences).

Example. Consider the network *G* with $\mathcal{O} = \{t_2 > t_3\}$.

Image: A math a math

Outline

1 Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロン ・回 と ・ ヨン・

AIM:

Reconstruction of **all** extended Petri nets with priorities that reproduce the experimental observations \mathcal{X}' in a simulation, called

 \mathcal{X}' -deterministic extended Petri nets

Our approach is based on previous works on reconstructing

standard networks

(Marwan, Wagler, Weismantel 2008; Durzinsky, Wagler, Weismantel 2008, 2011)

- standard networks with priorities (Marwan, Wagler, Weismantel, 2008; Torres, Wagler 2011)
- extended Petri nets

(Durzinsky, Marwan, Wagler 2011 and 2013)

< ロ > < 同 > < 三 > < 三

1 Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

Input

3

- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロン ・回 と ・ ヨン・

The Input

The input $(P,\mathcal{I}_P,\mathcal{X}')$

• a set P of components

- the set *I_P* of all known *P*-invariants (*i.e.* sets *P'* ⊆ *P* of components such that the sum of the number of all tokens on all the places in *P'* is constant).
- time-series data $\mathcal{X}' = \{\mathcal{X}'(\mathbf{x}^1, \mathbf{x}^k) : \mathbf{x}^1 \in \mathcal{X}'_{\textit{ini}}, \mathbf{x}^k \in \mathcal{X}'_{\textit{term}}\}$ with
 - initial states $\mathcal{X}'_{ini} \subseteq \mathcal{X}'$, terminal states $\mathcal{X}'_{term} \subseteq \mathcal{X}'$
 - time series $\mathcal{X}'(\mathbf{x}^1, \mathbf{x}^k) = (\mathbf{x}^0; \mathbf{x}^1, \dots, \mathbf{x}^j, \dots, \mathbf{x}^k)$

Properties of \mathcal{X}' (Durzinsky, Wagler, Weismantel 2008)

- reproducibility: for each $\mathbf{x}^{j} \in \mathcal{X}'$ there is a unique observed successor state $\operatorname{succ}_{\mathcal{X}'}(\mathbf{x}^{j}) = \mathbf{x}^{j+1} \in \mathcal{X}'$.
- monotonicity: for each pair $(\mathbf{x}^{j}, \mathbf{x}^{j+1}) \in \mathcal{X}'$, the possible intermediate states $\mathbf{x}^{j} = \mathbf{y}^{1}, \mathbf{y}^{2}, ..., \mathbf{y}^{m+1} = \mathbf{x}^{j+1}$ satisfy

$$y_{\rho}^{1} \leq y_{\rho}^{2} \leq \ldots \leq y_{\rho}^{m} \leq y_{\rho}^{m+1}$$
 for all $p \in P$ with $x_{\rho}^{j} \leq x_{\rho}^{j+1}$ and $y_{\rho}^{1} \geq y_{\rho}^{2} \geq \ldots \geq y_{\rho}^{m} \geq y_{\rho}^{m+1}$ for all $p \in P$ with $x_{\rho}^{j} \geq x_{\rho}^{j+1}$.

<ロト </p>

The running example: experimental biologic data

Experimental biologic data from the *light-induced sporulation of Physarum polycephalum* (C. Starostzik and W. Marwan, 1995):

$$\begin{array}{ll} P = \{FR, R, P_{FR}, P_R, Spo\} & \mathcal{I}_P = \{P_{FR}, P_R\} \\ \mathcal{X}'(\mathbf{x}^1, \mathbf{x}^3) = (\mathbf{x}^0; \, \mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3) & \mathcal{X}'_{ini} = \{\mathbf{x}^1, \mathbf{x}^4\} \\ \mathcal{X}'(\mathbf{x}^4, \mathbf{x}^0) = (\mathbf{x}^2; \, \mathbf{x}^4, \mathbf{x}^0) & \mathcal{X}'_{term} = \{\mathbf{x}^3, \mathbf{x}^0\} \end{array}$$

1 Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロン ・回 と ・ ヨン・

The output

The set of all \mathcal{X}' -deterministic extended Petri nets $(\mathcal{P}, \mathsf{cap}, \mathcal{O})$ with

P = (*P*, *T*, *A*, *w*) extended Petri nets on the given set *P* of places, represented by its incidence matrix *M*(*P*) ∈ Z^{|P|×|T|} having the update vectors **r**^t as columns

$$r_p^t = M(\mathcal{P})_{pt} := egin{cases} -w(p,t) & ext{if } (p,t) \in A, \ +w(t,p) & ext{if } (t,p) \in A, \ 0 & ext{otherwise.} \end{cases}$$

and its control-arcs $A_R \cup A_I$

- \bullet the same capacities cap deduced from \mathcal{X}'
- a priority relation \mathcal{O} forcing \mathcal{X}' -determinism (*i.e.* to show the in \mathcal{X}' experimental observed behavior in a simulation).

<ロト </p>

1 Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

- Input
- Output

• Representation of the Observed Responses

- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロン ・回 と ・ ヨン・

Extraction of difference vectors

Extraction of difference vectors

Observed changes of states from the experimental data:

$$\mathcal{D} := \left\{ \mathbf{d}^j = \mathbf{x}^{j+1} - \mathbf{x}^j \ : \ \mathbf{x}^{j+1} = \operatorname{succ}_{\mathcal{X}'}(\mathbf{x}^j) \in \mathcal{X}' \right\}.$$

Extraction of difference vectors yields $\mathcal{D} = \{d^1, d^2, d^4\}$ with $\mathbf{d}^1 = \mathbf{x}^2 - \mathbf{x}^1 = (-1, 0, -1, 1, 0)^T$, $\mathbf{d}^2 = \mathbf{x}^3 - \mathbf{x}^2 = (0, 0, 0, 0, 1)^T$ and $\mathbf{d}^4 = \mathbf{x}^0 - \mathbf{x}^4 = (0, -1, 1, -1, 0)^T$.

Marie FAVRE

Extraction of difference vectors

Extraction of difference vectors

Observed changes of states from the experimental data:

$$\mathcal{D} := \left\{ \mathbf{d}^{j} = \mathbf{x}^{j+1} - \mathbf{x}^{j} \ : \ \mathbf{x}^{j+1} = \operatorname{succ}_{\mathcal{X}'}(\mathbf{x}^{j}) \in \mathcal{X}' \right\}.$$

Extraction of difference vectors yields $\mathcal{D} = \{d^1, d^2, d^4\}$ with $\mathbf{d}^1 = \mathbf{x}^2 - \mathbf{x}^1 = (-1, 0, -1, 1, 0)^T$, $\mathbf{d}^2 = \mathbf{x}^3 - \mathbf{x}^2 = (0, 0, 0, 0, 1)^T$ and $\mathbf{d}^4 = \mathbf{x}^0 - \mathbf{x}^4 = (0, -1, 1, -1, 0)^T$.

Which update vectors are suitable ?

Which update vectors are suitable ?

- $\mathbf{x}^{j}, \mathbf{x}^{j+1} \in \mathcal{X}'$ are not necessarily consecutive system states
- no oscillation in intermediate states between \mathbf{x}^{j} and \mathbf{x}^{j+1} (monotonicity).

Theorem (Durzinsky, Wagler, Weismantel 2008)

It suffice to consider sign-compatible update vectors from

$$\mathsf{Box}(\mathbf{d}^{j}) = \begin{cases} 0 \leq r_{p} \leq d_{p}^{j} & \text{if } d_{p}^{j} > 0\\ \mathbf{d}_{p}^{j} \leq r_{p} \leq 0 & \text{if } d_{p}^{j} < 0\\ r_{p} = 0 & \text{if } d_{p}^{j} = 0\\ \sum_{p \in P'} r_{p} = 0 & \forall P' \in \mathcal{I}_{P} \end{cases} \setminus \{\mathbf{0}\}.$$

Example: For $\mathbf{d}^1 = (-1, 0, -1, 1, 0)^T$, we have

$$Box(d^{1}) = \left\{ \begin{array}{c} \begin{pmatrix} -1\\0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\1\\0 \end{pmatrix} \\ d^{1} & r^{1} & r^{2} \\ d^{1} & r^{1} & r^{2} \\ \end{array} \right\}$$

Which update vectors are suitable ?

Which update vectors are suitable ?

- $\mathbf{x}^{j}, \mathbf{x}^{j+1} \in \mathcal{X}'$ are not necessarily consecutive system states
- no oscillation in intermediate states between \mathbf{x}^{j} and \mathbf{x}^{j+1} (monotonicity).

Theorem (Durzinsky, Wagler, Weismantel 2008)

It suffice to consider sign-compatible update vectors from

$$\mathsf{Box}(\mathbf{d}^{j}) = \begin{cases} 0 \leq r_{p} \leq d_{p}^{j} & \text{if } d_{p}^{j} > 0\\ \mathbf{d}_{p}^{j} \leq r_{p} \leq 0 & \text{if } d_{p}^{j} < 0\\ r_{p} = 0 & \text{if } d_{p}^{j} = 0\\ \sum_{p \in P'} r_{p} = 0 & \forall P' \in \mathcal{I}_{P} \end{cases} \setminus \{\mathbf{0}\}.$$

Example: For $\mathbf{d}^1 = (-1, 0, -1, 1, 0)^T$, we have

$$Box(\boldsymbol{d}^{1}) = \left\{ \begin{array}{c} \begin{pmatrix} -1\\0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\1\\0 \end{pmatrix} \\ \boldsymbol{d}^{1} & \boldsymbol{r}^{1} & \boldsymbol{r}^{2} \\ \boldsymbol{d}^{1} & \boldsymbol{c}^{1} & \boldsymbol{r}^{2} \end{array} \right\}$$

Determine $\Lambda(\mathbf{d}^{i})$ and $\mathcal{R}(\mathbf{d}^{i},\lambda)$

• $\Lambda(\mathbf{d}^{j})$ is the set of all intregral solutions of the equation system:

$$\mathbf{d}^{j} = \sum_{\mathbf{r}^{t} \in \operatorname{Box}(\mathbf{d}^{j})} \lambda_{t} \mathbf{r}^{t}, \ \lambda_{t} \in \mathbb{Z}_{+}.$$

• For each $\lambda \in \Lambda(\mathbf{d}^{j})$, the set of update vectors used for this solution λ is

$$\mathcal{R}(\mathbf{d}^{j}, \boldsymbol{\lambda}) = \{ r^{t} \in \mathsf{Box}(\mathbf{d}^{j}) : \lambda_{t} \neq 0 \}$$

Example: For $\mathbf{d}^1 = (-1, 0, -1, 1, 0)^T$, we have: solution λ^1 : $\mathbf{d}^1 = \mathbf{d}^1$ solution λ^2 : $\mathbf{d}^1 = \mathbf{r}^1 + \mathbf{r}^2 = (-1, 0, 0, 0, 0)^T + (0, 0, -1, 1, 0)^T$ and accordingly $\mathcal{R}(\mathbf{d}^1, \lambda^1) = \{\mathbf{d}^1\}, \ \mathcal{R}(\mathbf{d}^1, \lambda^2) = \{\mathbf{r}^1, \mathbf{r}^2\}.$

Outline

1 Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロン ・回 と ・ ヨン・

Sequences

Sequences:

• Every permutation $\pi = (\mathbf{r}^{t_1}, \dots, \mathbf{r}^{t_m})$ of the elements of a set $\mathcal{R}(\mathbf{d}^j, \lambda)$ yields a sequence of intermediate states $\mathbf{x}^j = \mathbf{y}^1, \mathbf{y}^2, \dots, \mathbf{y}^m, \mathbf{y}^{m+1} = \mathbf{x}^{j+1}$ with

$$\sigma_{\pi, \boldsymbol{\lambda}}(\mathbf{x}^{j}, \mathbf{d}^{j}) = \left((\mathbf{y}^{1}, \mathbf{r}^{t_{1}}), (\mathbf{y}^{2}, \mathbf{r}^{t_{2}}), \dots, (\mathbf{y}^{m}, \mathbf{r}^{t_{m}})
ight).$$

• Every sequence σ respects monotonicity and induces a priority relation \mathcal{O}_{σ} .

Example: From $\mathcal{R}(\mathbf{d}^1, \lambda^2) = {\mathbf{r}^1, \mathbf{r}^2}$, we obtain

$$\begin{split} \sigma_{\pi_1, \lambda^2}(\mathbf{x}^1, \mathbf{d}^1) &= ((\mathbf{x}^1, \mathbf{r}^1), (\mathbf{x}^0, \mathbf{r}^2)) \\ \text{with } \mathbf{r}^1 > \mathbf{r}^2 \text{ and } \mathbf{r}^2 > \mathbf{0} \end{split}$$

Sequences

Sequences:

• Every permutation $\pi = (\mathbf{r}^{t_1}, \dots, \mathbf{r}^{t_m})$ of the elements of a set $\mathcal{R}(\mathbf{d}^j, \lambda)$ yields a sequence of intermediate states $\mathbf{x}^j = \mathbf{y}^1, \mathbf{y}^2, \dots, \mathbf{y}^m, \mathbf{y}^{m+1} = \mathbf{x}^{j+1}$ with

$$\sigma_{\pi, \boldsymbol{\lambda}}(\mathbf{x}^{j}, \mathbf{d}^{j}) = \left((\mathbf{y}^{1}, \mathbf{r}^{t_{1}}), (\mathbf{y}^{2}, \mathbf{r}^{t_{2}}), \dots, (\mathbf{y}^{m}, \mathbf{r}^{t_{m}})
ight).$$

• Every sequence σ respects monotonicity and induces a priority relation \mathcal{O}_{σ} .

Example: From $\mathcal{R}(\mathbf{d}^1, \boldsymbol{\lambda}^2) = {\mathbf{r}^1, \mathbf{r}^2}$, we obtain

 $\sigma_{\pi_1,\lambda^2}(\mathbf{x}^1, \mathbf{d}^1) = ((\mathbf{x}^1, \mathbf{r}^1), (\mathbf{x}^0, \mathbf{r}^2))$ with $\mathbf{r}^1 > \mathbf{r}^2$ and $\mathbf{r}^2 > \mathbf{0}$

Sequences

Sequences:

• Every permutation $\pi = (\mathbf{r}^{t_1}, \dots, \mathbf{r}^{t_m})$ of the elements of a set $\mathcal{R}(\mathbf{d}^j, \lambda)$ yields a sequence of intermediate states $\mathbf{x}^j = \mathbf{y}^1, \mathbf{y}^2, \dots, \mathbf{y}^m, \mathbf{y}^{m+1} = \mathbf{x}^{j+1}$ with

$$\sigma_{\pi, \boldsymbol{\lambda}}(\mathbf{x}^{j}, \mathbf{d}^{j}) = \left((\mathbf{y}^{1}, \mathbf{r}^{t_{1}}), (\mathbf{y}^{2}, \mathbf{r}^{t_{2}}), \dots, (\mathbf{y}^{m}, \mathbf{r}^{t_{m}})
ight).$$

• Every sequence σ respects monotonicity and induces a priority relation \mathcal{O}_{σ} .

Example: From $\mathcal{R}(\mathbf{d}^1, \boldsymbol{\lambda}^2) = \{\mathbf{r}^1, \mathbf{r}^2\}$, we obtain

$$\begin{split} &\sigma_{\pi_1, \boldsymbol{\lambda}^2}(\mathbf{x}^1, \mathbf{d}^1) {=} \left((\mathbf{x}^1, \mathbf{r}^1), (\mathbf{x}^0, \mathbf{r}^2) \right) \\ &\text{with } \mathbf{r}^1 > \mathbf{r}^2 \text{ and } \mathbf{r}^2 > \mathbf{0} \end{split}$$

$$\sigma_{\pi_2, \lambda^2}(\mathbf{x}^1, \mathbf{d}^1) = ((\mathbf{x}^1, \mathbf{r}^2), (\mathbf{x}^5, \mathbf{r}^1))$$

with $\mathbf{r}^2 > \mathbf{r}^1$

where
$$\mathbf{x}^5 = (1, 0, 0, 1, 0)^T$$
.

Sequences and their conflicts:

Sequences σ and σ' are in priority conflict if there are update vectors $\mathbf{r}^t \neq \mathbf{r}^{t'}$ and intermediate states \mathbf{y}, \mathbf{y}' such that t, t' are enabled at \mathbf{y}, \mathbf{y}' but $(\mathbf{y}, \mathbf{r}^t) \in \sigma$ and $(\mathbf{y}', \mathbf{r}^{t'}) \in \sigma'$ (since this implies t > t' in \mathcal{O}_{σ} but t' > t in $\mathcal{O}_{\sigma'}$).

weak priority conflict (WPC):	strong priority conflict (SPC):
● if y≠y′	• if y=y ′
• can be resolved by adding appropriate control-arcs	 cannot be resolved by adding appropriate control-arcs

Note: we have a SPC between the trivial sequence $\sigma(\mathbf{x}^k, \mathbf{0})$ for any terminal state $\mathbf{x}^k \in \mathcal{X}'_{term}$ and any sequence σ containing \mathbf{x}^k as intermediate state.

Example: $\sigma_{\pi_1, \lambda^2}(\mathbf{x}^1, \mathbf{d}^1) = ((\mathbf{x}^1, \mathbf{r}^1), (\mathbf{x}^0, \mathbf{r}^2))$ and $\sigma(\mathbf{x}^0, \mathbf{0})$ are in SPC.

イロト イポト イヨト イヨ

Priority conflict graph $\mathcal{G} = (V_D \cup V_{\tau}, E_D \cup E_W \cup E_S)$:

- the nodes correspond to sequences
 - V_D : the sequence $\sigma_{\pi,\lambda}(\mathbf{x}^j, \mathbf{d}^j) \ \forall \lambda \in \Lambda(\mathbf{d}^j)$ and $\forall \pi$ permutations of $\mathcal{R}(\mathbf{d}^j, \lambda)$.
 - V_{term} : the trivial sequence $\sigma(\mathbf{x}^k, \mathbf{0})$, $\forall \mathbf{x}^k \in \mathcal{X}'_{term}$.
- the edges to priority conflicts:
 - E_D : all SPC between two sequences σ, σ' from the same difference vector.
 - E_S : all SPC between sequences σ, σ' from distinct difference vectors.
 - E_W : all WPC between sequences σ, σ' from distinct difference vectors.

Priority conflict graph $\mathcal{G} = (V_D \cup V_{\tau}, E_D \cup E_W \cup E_S)$:

- V_D : the sequence $\sigma_{\pi,\lambda}(\mathbf{x}^j, \mathbf{d}^j) \ \forall \lambda \in \Lambda(\mathbf{d}^j)$ and $\forall \pi$ permutations of $\mathcal{R}(\mathbf{d}^j, \lambda)$.
- V_{term} : the trivial sequence $\sigma(\mathbf{x}^k, \mathbf{0})$, $\forall \mathbf{x}^k \in \mathcal{X}'_{term}$.
- the edges to priority conflicts:
 - E_D : all SPC between two sequences σ, σ' from the same difference vector.
 - E_S : all SPC between sequences σ, σ' from distinct difference vectors.
 - E_W : all WPC between sequences σ, σ' from distinct difference vectors.

Priority conflict graph $\mathcal{G} = (V_D \cup V_{\tau}, E_D \cup E_W \cup E_S)$:

- V_D : the sequence $\sigma_{\pi,\lambda}(\mathbf{x}^j, \mathbf{d}^j) \ \forall \lambda \in \Lambda(\mathbf{d}^j)$ and $\forall \pi$ permutations of $\mathcal{R}(\mathbf{d}^j, \lambda)$.
- V_{term} : the trivial sequence $\sigma(\mathbf{x}^k, \mathbf{0})$, $\forall \mathbf{x}^k \in \mathcal{X}'_{term}$.
- the edges to priority conflicts:
 - E_D : all SPC between two sequences σ, σ' from the same difference vector.
 - E_S : all SPC between sequences σ, σ' from distinct difference vectors.
 - E_W : all WPC between sequences σ, σ' from distinct difference vectors.

Priority conflict graph $\mathcal{G} = (V_D \cup V_{\tau}, E_D \cup E_W \cup E_S)$:

- V_D : the sequence $\sigma_{\pi,\lambda}(\mathbf{x}^j, \mathbf{d}^j) \ \forall \lambda \in \Lambda(\mathbf{d}^j)$ and $\forall \pi$ permutations of $\mathcal{R}(\mathbf{d}^j, \lambda)$.
- V_{term} : the trivial sequence $\sigma(\mathbf{x}^k, \mathbf{0})$, $\forall \mathbf{x}^k \in \mathcal{X}'_{term}$.
- the edges to priority conflicts:
 - E_D : all SPC between two sequences σ, σ' from the same difference vector.
 - E_S : all SPC between sequences σ, σ' from distinct difference vectors.
 - E_W : all WPC between sequences σ, σ' from distinct difference vectors.

Priority conflict graph $\mathcal{G} = (V_D \cup V_{\tau}, E_D \cup E_W \cup E_S)$:

- V_D : the sequence $\sigma_{\pi,\lambda}(\mathbf{x}^j, \mathbf{d}^j) \ \forall \lambda \in \Lambda(\mathbf{d}^j)$ and $\forall \pi$ permutations of $\mathcal{R}(\mathbf{d}^j, \lambda)$.
- V_{term} : the trivial sequence $\sigma(\mathbf{x}^k, \mathbf{0})$, $\forall \mathbf{x}^k \in \mathcal{X}'_{term}$.
- the edges to priority conflicts:
 - E_D : all SPC between two sequences σ, σ' from the same difference vector.
 - E_S : all SPC between sequences σ, σ' from distinct difference vectors.
 - E_W : all WPC between sequences σ, σ' from distinct difference vectors.

Priority conflict graph $\mathcal{G} = (V_D \cup V_{\tau}, E_D \cup E_W \cup E_S)$:

- V_D : the sequence $\sigma_{\pi,\lambda}(\mathbf{x}^j, \mathbf{d}^j) \ \forall \lambda \in \Lambda(\mathbf{d}^j)$ and $\forall \pi$ permutations of $\mathcal{R}(\mathbf{d}^j, \lambda)$.
- V_{term} : the trivial sequence $\sigma(\mathbf{x}^k, \mathbf{0})$, $\forall \mathbf{x}^k \in \mathcal{X}'_{term}$.
- the edges to priority conflicts:
 - E_D : all SPC between two sequences σ, σ' from the same difference vector.
 - E_S : all SPC between sequences σ, σ' from distinct difference vectors.
 - E_W : all WPC between sequences σ, σ' from distinct difference vectors.

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$

- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example:

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

Marie FAVRE

such that no SPCs occur in $S \cup V_{term}$.

Example:

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example:

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example:

・ロト ・日下・ ・日下・

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example:

・ロト ・回ト ・ ヨト ・

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example: G contains the following 4 feasible sets $S_i \cup V_{term}$

$$\begin{split} S_1 &= \{\sigma_1(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_1(\mathbf{x}^4, \mathbf{d}^4)\}, \quad S_3 &= \{\sigma_1(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_3(\mathbf{x}^4, \mathbf{d}^4)\}, \\ S_2 &= \{\sigma_3(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_1(\mathbf{x}^4, \mathbf{d}^4)\}, \quad S_4 &= \{\sigma_3(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_3(\mathbf{x}^4, \mathbf{d}^4)\}. \end{split}$$

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example: G contains the following 4 feasible sets $S_i \cup V_{term}$

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example: G contains the following 4 feasible sets $S_i \cup V_{term}$

$$\begin{split} S_1 &= \{\sigma_1(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_1(\mathbf{x}^4, \mathbf{d}^4)\}, \quad S_3 &= \{\sigma_1(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_3(\mathbf{x}^4, \mathbf{d}^4)\}, \\ S_2 &= \{\sigma_3(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_1(\mathbf{x}^4, \mathbf{d}^4)\}, \quad S_4 &= \{\sigma_3(\mathbf{x}^1, \mathbf{d}^1), \sigma(\mathbf{x}^2, \mathbf{d}^2), \sigma_3(\mathbf{x}^4, \mathbf{d}^4)\}. \end{split}$$

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence $\sigma \in V_D$ for each $\mathbf{d}^j \in \mathcal{D}$
- all nodes from V_{term}

such that no SPCs occur in $S \cup V_{term}$.

Example: G contains the following 4 feasible sets $S_i \cup V_{term}$

1 Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロト ・回ト ・ヨト ・

Composition of standard networks

For every selected set $S \cup V_{term}$, we obtain the incidence matrix of a standard network by taking the union of all update vectors in the sets $\mathcal{R}(\mathbf{d}^{j}, \boldsymbol{\lambda})$ of the sequences $\sigma \in S$.

Example: For solution S_2

Note that there are WPCs:

- between $\sigma(\mathbf{x}^2, \mathbf{d}^2)$ and $\sigma(\mathbf{x}^0, \mathbf{0})$ due to $\mathbf{d}^2, \mathbf{0} \in \mathcal{T}(\mathbf{x}^2) \cap \mathcal{T}(\mathbf{x}^0)$ and
- between $\sigma_3(\mathbf{x}^1, \mathbf{d}^1)$ and $\sigma(\mathbf{x}^0, \mathbf{0})$ due to $\mathbf{r}^2, \mathbf{0} \in \mathcal{T}(\mathbf{x}^1) \cap \mathcal{T}(\mathbf{x}^0)$.

ADEA

Resolving WPCs by inserting control-arcs

Resolving WPCs by inserting control-arcs

A WPC due to $(\mathbf{y}, \mathbf{r}^t) \in \sigma$ and $(\mathbf{y}', \mathbf{r}^{t'}) \in \sigma'$ can be resolved by

- disabling t at \mathbf{y}' or t' at \mathbf{y} if $\mathbf{y},\mathbf{y}'\notin\mathcal{X}'_{term}$
- disabling t at \mathbf{y}' if $\mathbf{y}' \in \mathcal{X}'_{term}$

To disable t at \mathbf{y}' , insert

- a read-arc (p, t) with weight $w(p, t) > \mathbf{y}'_p$ for some p with $\mathbf{y}_p > \mathbf{y}'_p$ or
- an inhibitor-arc (p, t) with weight $w(p, t) < \mathbf{y}_p$ for some p with $y_p < \mathbf{y}'_p$.

Example: For solution S_2 , we resolve the WPC between $\sigma(\mathbf{x}^2, \mathbf{d}^2)$ and $\sigma(\mathbf{x}^0, \mathbf{0})$.

Determining priority relations

Determining priority relations

Deduce priority relations among so-obtained transitions for all selected sequences.

Example:

 $\mathcal{O}_{\mathcal{S}_2, \mathcal{P}'} = \{(\mathbf{r}^2 > \mathbf{r}^1)\}$

 $\mathcal{O}_{\mathcal{S}_2, \mathcal{P}'} = \{ (\mathbf{r}^2 > \mathbf{r}^1) \}$

Solution set

Applying this procedure to all feasible sets $S \cup V_{term}$ yields the complete list of all \mathcal{X}' -deterministic extended Petri nets !

Marie FAVRE

Solution set: Running example

Applying this procedure to all feasible sets $S \cup V_{term}$ yields the complete list of all 12 \mathcal{X}' -deterministic extended Petri nets for the running example.

$$\mathcal{O}_{S_1,P'} = \emptyset$$

 $\mathcal{O}_{S_1,P'}=\emptyset$

$$\mathcal{O}_{\mathcal{S}_2, \mathcal{P}'} = \{(\mathbf{r}^2 > \mathbf{r}^1)\}$$

 $\mathcal{O}_{S_2,P'} = \{(\mathbf{r}^2 > \mathbf{r}^1)\}$ 31 / 36 June 24, 2013

 S_{2}

Solution set: Running example

 $S_{3} \qquad \begin{array}{c} \overset{P_{R}}{\overbrace{}\\ FR \bigcirc \overset{d^{1}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}\\ \overset{P_{FR}}{\overbrace{}}\\ \overset{P_{FR}}{\overbrace{}} \\ \overset{P_{FR}}{ } \\ \overset{P_{FR}} \\ \overset{P_{FR}}{ } \\ \overset{P_{FR}} \\ \overset{P_{FR}}{ } \\ \overset{P_{FR}} \\ \overset{P_{$

<ロト </p>

Solution set: Running example

 $\mathcal{O}_{\mathbf{S}_{\mathbf{a}}, \mathbf{P}'} = \{(\mathbf{r}^2 > \mathbf{r}^1), (\mathbf{r}^4 > \mathbf{r}^3)\}$

$$\mathcal{O}_{\mathcal{S}_{4},P'} = \{(\mathbf{r}^{2} > \mathbf{r}^{1}), (\mathbf{r}^{4} > \mathbf{r}^{3})\}$$

<ロト </p>

 S_4

Outline

1 Modeling in Biosciences

Petri Nets and Extensions

Reconstruction Approach

- Input
- Output
- Representation of the Observed Responses
- Sequences and their Conflicts
- Composition of \mathcal{X}' -Deterministic Extended Petri Nets

4 Concluding Remarks and Perspectives

・ロト ・回ト ・ヨト ・

Achieved goals

We proposed an **integrative reconstruction method** to generate **all** possible \mathcal{X}' -deterministic extended Petri nets from experimental time-series data \mathcal{X}' by:

- representing the observed difference vectors **d**^{*j*} as in the case of extended networks with priorities (Durzinsky, Marwan, Wagler 2011 and 2013),
- distinguishing weak and strong priority conflicts in the construction of the priority conflict graph,
- resolving weak priority conflicts by inserting control-arcs and determining priorities on the so-obtained transitions.

Perspectives

- Identify groups of WPCs that can be resolved by the same control-arc (definition of a priority conflict **hyper**graph).
- Make the new approach accessible by a suitable implementation.
- Apply the approach to new biological experimental data.

THANK YOU

Marie Favre's work was founded by the French National Research Agency, the European Commission (Feder funds) and the Région Auvergne in the Framework of the LabEx IMobS³.