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Modeling and Model Validation in Biosciences
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Modeling and Model Validation in Biosciences

Biological models: often “cartoon-like” informal schemes

Classical lab approaches: heuristic and hypothesis-driven methods,
yield potentially incomplete solution sets
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Mathematical Models and Methods for Biological Systems

Biological Process

Biological System

exp. data

hypothesis

reconstruction

interpretation
analysis

simulation

exp. design

validation

Predicted dynamics

Structural properties

Mathematical Model

Mathematical Problem

Math. proof techniques

Math. Algorithms

Mathematics for Biosciences
Mathematical models:
formal schemes representing structure and function of the studied system

Mathematical approaches:
data-driven methods, can guarantee completeness by mathematical proofs
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Petri nets: The networks

Standard networks P = (P ,T ,A,w)

P set of involved components (“places” ©), (molecules, receptors, genes)

T set of involved reactions (“transitions” 2), (reactions, activations,...)

A ⊆ (P × T ) ∪ (T × P) set of directed links (“arcs” →),

arc weights w as stoichiometric coefficients.

2
2

2
2

Standard network

Extended network

Extended networks P = (P ,T , (A ∪ AR ∪ AI ),w)

AR ⊂ P × T read-arcs

AI ⊂ P × T inhibitor-arcs
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Petri nets: States and state changes

States
Each place p ∈ P can be marked with an integral number xp of tokens.

A state can be represented as a vector x ∈ N|P| with entries xp for all p ∈ P.
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If a capacity function cap : P → N is given, xp ≤ cap(p) ∀p ∈ P.

Switching transitions

In a standard network, t ∈ T is enabled at a state x if

xp ≥ w(p, t) for all p with (p, t) ∈ A, and,
xp + w(t, p) ≤ cap(p) for all p with (t, p) ∈ A.

In an extended network, t ∈ T is enabled at a state x if in addition

xp ≥ w(p, t) for all p with (p, t) ∈ AR , and,
xp < w(p, t) for all p with (p, t) ∈ AI .
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Dynamic processes and reachability

Dynamic processes

Dynamic processes correspond to sequences of system states, obtained by
sequences of transition switches.

Starting from an initial state x0, explore the dynamic behavior of the system by

consecutively switching enabled transitions,

analyzing the reachability of certain system states.
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Prediction of the dynamic behavior

Priority relations for transitions

Let G be a network and O a priority relation on its transitions.

If there are two or more transitions enabled at a state, this transition with
highest priority will be switched.

This allows to predict the dynamic behavior of the system (instead of
listing all potentially possible switching sequences).

Example. Consider the network G with O = {t2 > t3}.
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Reconstruction Approach

AIM:

Reconstruction of all extended Petri nets with priorities that
reproduce the experimental observations X ′ in a simulation, called

X ′-deterministic extended Petri nets

Our approach is based on previous works on reconstructing

standard networks
(Marwan, Wagler, Weismantel 2008; Durzinsky, Wagler, Weismantel 2008, 2011)

standard networks with priorities
(Marwan, Wagler, Weismantel, 2008; Torres, Wagler 2011)

extended Petri nets
(Durzinsky, Marwan, Wagler 2011 and 2013)
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The Input

The input (P , IP ,X ′)

a set P of components

the set IP of all known P-invariants (i.e. sets P ′ ⊆ P of components such
that the sum of the number of all tokens on all the places in P ′ is constant).

time-series data X ′ = {X ′(x1, xk) : x1 ∈ X ′ini , xk ∈ X ′term} with

initial states X ′
ini ⊆ X ′, terminal states X ′

term ⊆ X ′

time series X ′(x1, xk) = (x0; x1, . . . , xj , . . . , xk)

Properties of X ′ (Durzinsky, Wagler, Weismantel 2008)

reproducibility: for each xj ∈ X ′ there is a unique observed successor state
succX ′(xj) = xj+1 ∈ X ′.
monotonicity: for each pair (xj , xj+1) ∈ X ′, the possible intermediate states
xj = y1, y2, ..., ym+1 = xj+1 satisfy

y 1
p ≤ y 2

p ≤ . . . ≤ ym
p ≤ ym+1

p for all p ∈ P with x j
p ≤ x j+1

p and
y 1
p ≥ y 2

p ≥ . . . ≥ ym
p ≥ ym+1

p for all p ∈ P with x j
p ≥ x j+1

p .
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Input data

The running example: experimental biologic data

Experimental biologic data from the light-induced sporulation of Physarum
polycephalum (C. Starostzik and W. Marwan, 1995):

P = {FR,R,PFR ,PR ,Spo}
X ′(x1, x3) = (x0; x1, x2, x3)
X ′(x4, x0) = (x2; x4, x0)

IP = {PFR ,PR}
X ′ini = {x1, x4}
X ′term = {x3, x0}

x
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The Output

The output

The set of all X ′-deterministic extended Petri nets (P, cap,O) with

P = (P,T ,A,w) extended Petri nets on the given set P of places,
represented by its incidence matrix M(P) ∈ Z|P|×|T | having the update
vectors rt as columns

r tp = M(P)pt :=





−w(p, t) if (p, t) ∈ A,

+w(t, p) if (t, p) ∈ A,

0 otherwise.

and its control-arcs AR ∪ AI

the same capacities cap deduced from X ′
a priority relation O forcing X ′-determinism (i.e. to show the in X ′
experimental observed behavior in a simulation).
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Extraction of difference vectors

Extraction of difference vectors
Observed changes of states from the experimental data:

D :=
{

dj = xj+1 − xj : xj+1 = succX ′(xj) ∈ X ′
}
.
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Extraction of difference vectors yields D = {d1, d2, d4} with

d1= x2 − x1 = (−1, 0,−1, 1, 0)T , d2= x3 − x2 = (0, 0, 0, 0, 1)T and
d4= x0 − x4 = (0,−1, 1,−1, 0)T .
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Which update vectors are suitable ?

Which update vectors are suitable ?

xj , xj+1 ∈ X ′ are not necessarily consecutive system states
no oscillation in intermediate states between xj and xj+1 (monotonicity).

Theorem (Durzinsky, Wagler, Weismantel 2008)

It suffice to consider sign-compatible update vectors from

Box(dj) =





r ∈ Z|P| :

0 ≤ rp ≤ d j
p if d j

p > 0
d j
p ≤ rp ≤ 0 if d j

p < 0
rp = 0 if d j

p = 0∑
p∈P′ rp = 0 ∀P ′ ∈ IP




\ {0}.

Example:
For d1 = (−1, 0,−1, 1, 0)T ,
we have

Box(d1) =
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Representation of difference vectors

Determine Λ(dj) and R(dj , λ)

Λ(dj) is the set of all intregral solutions of the equation system:

dj =
∑

rt∈ Box(dj )

λtr
t , λt ∈ Z+.

For each λ ∈ Λ(dj), the set of update vectors used for this solution λ is

R(dj ,λ) = {r t ∈ Box(dj) : λt 6= 0}

Example: For d1 = (−1, 0,−1, 1, 0)T , we have:

solution λ1: d1 = d1

solution λ2: d1 = r1 + r2 = (−1, 0, 0, 0, 0)T + (0, 0,−1, 1, 0)T

and accordingly R(d1,λ1) = {d1}, R(d1,λ2) = {r1, r2}.
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Sequences

Sequences:

Every permutation π = (rt1 , . . . , rtm) of the elements of a set R(dj ,λ) yields

a sequence of intermediate states xj = y1, y2, ..., ym, ym+1 = xj+1 with

σπ,λ(xj ,dj) =
(
(y1, rt1 ), (y2, rt2 ), . . . , (ym, rtm)

)
.

Every sequence σ respects monotonicity and induces a priority relation Oσ.

Example: From R(d1,λ2) = {r1, r2},
we obtain

σπ1,λ2 (x1,d1)= ((x1, r1), (x0,r2))

with r1 > r2 and r2 > 0

σπ2,λ2 (x1,d1)= ((x1, r2), (x5, r1))

with r2 > r1

where x5 = (1, 0, 0, 1, 0)T .

x1

σπ1,λ2

σπ2,λ2

x0

x2

x5

r1 r2

d1

r2 r1
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Priority conflicts

Sequences and their conflicts:

Sequences σ and σ′ are in priority conflict if there are update vectors rt 6= rt
′

and intermediate states y, y′ such that t, t ′ are enabled at y, y′ but
(y, rt) ∈ σ and (y′, rt

′
) ∈ σ′ (since this implies t > t ′ in Oσ but t ′ > t in Oσ′).

weak priority conflict (WPC):

if y 6=y′

can be resolved by adding
appropriate control-arcs

strong priority conflict (SPC):

if y=y′

cannot be resolved by adding
appropriate control-arcs

Note: we have a SPC between the trivial sequence σ(xk , 0) for any terminal state
xk ∈ X ′term and any sequence σ containing xk as intermediate state.

Example: σπ1,λ2 (x1,d1) = ((x1, r1), (x0,r2)) and σ(x0, 0) are in SPC.
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Construction of the priority conflict graph

Priority conflict graph G = (VD ∪ Vτ ,ED ∪ EW ∪ ES):

the nodes correspond to sequences

VD : the sequence σπ,λ(xj , dj) ∀λ ∈ Λ(dj) and ∀π permutations of R(dj ,λ).
Vterm: the trivial sequence σ(xk , 0), ∀xk ∈ X ′

term.

the edges to priority conflicts:

ED : all SPC between two sequences σ, σ′ from the same difference vector.
ES : all SPC between sequences σ, σ′ from distinct difference vectors.
EW : all WPC between sequences σ, σ′ from distinct difference vectors.

Q3Q1 Q3

Q2

Q0

Q4

σ1(x
1,d1)

σ2(x
1,d1)

σ3(x
1,d1)

σ(x3, 0)

σ(x2,d2)

σ(x0, 0)

σ1(x
4,d4)

σ2(x
4,d4)

σ3(x
4,d4)
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Selection of suitable sequences

Selection of suitable sequences

We have to select

- a set S containning exactly one sequence σ ∈ VD for each dj ∈ D
- all nodes from Vterm

such that no SPCs occur in S ∪ Vterm.

Example: G contains the following 4 feasible sets Si ∪ Vterm

Q3Q1 Q3

Q2

Q0

Q4

σ1(x
1,d1)

σ2(x
1,d1)

σ3(x
1,d1)

σ(x3, 0)

σ(x2,d2)

σ(x0, 0)

σ1(x
4,d4)

σ2(x
4,d4)

σ3(x
4,d4)

S1 = {σ1(x1, d1), σ(x2, d2), σ1(x4, d4)}, S3 = {σ1(x1, d1), σ(x2, d2), σ3(x4, d4)},
S2 = {σ3(x1, d1), σ(x2, d2), σ1(x4, d4)}, S4 = {σ3(x1, d1), σ(x2, d2), σ3(x4, d4)}.
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Standard networks with weak priority conflicts

Composition of standard networks

For every selected set S ∪ Vterm, we obtain the incidence matrix of a standard
network by taking the union of all update vectors in the sets R(dj ,λ) of the
sequences σ ∈ S .

Example: For solution S2

Note that there are WPCs:

between σ(x2,d2) and σ(x0, 0)
due to d2, 0 ∈ T (x2) ∩ T (x0) and

between σ3(x1,d1) and σ(x0, 0)
due to r2, 0 ∈ T (x1) ∩ T (x0).

PR

FR

R

Spo

PFR

r1 r2

d2

d4
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Resolving WPCs by inserting control-arcs

Resolving WPCs by inserting control-arcs

A WPC due to (y, rt) ∈ σ and (y′, rt
′
) ∈ σ′ can be resolved by

- disabling t at y′ or t ′ at y if y, y′ /∈ X ′term
- disabling t at y′ if y′ ∈ X ′term

To disable t at y′, insert

- a read-arc (p, t) with weight w(p, t) > y′p for some p with yp > y′p or

- an inhibitor-arc (p, t) with weight w(p, t) < yp for some p with yp < y′p.

Example: For solution S2, we resolve the WPC between σ(x2,d2) and σ(x0, 0).
PFR

R

FR

Spo

PR

d4

d2

r2 r1

PR

FR

R

Spo

PFR

r1 r2

d2

d4
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Determining priority relations

Determining priority relations

Deduce priority relations among so-obtained transitions for all selected sequences.

Example:

PR

FR

R

Spo

PFR

r1 r2

d2

d4

PFR

R

FR

Spo

PR

d4

d2

r2 r1

OS2,P′ = {(r2 > r1)} OS2,P′ = {(r2 > r1)}

Solution set
Applying this procedure to all feasible sets S ∪ Vterm yields the complete list of

all X ′-deterministic extended Petri nets !
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Solution set: Running example

Applying this procedure to all feasible sets S ∪ Vterm yields the complete list of all
12 X ′-deterministic extended Petri nets for the running example.

S1

PR

FR R

Spo

PFR

d1

d2

d4

PFR

R FR

Spo

PR

d4

d2

d1

OS1,P′ = ∅ OS1,P′ = ∅

S2

PR

FR

R

Spo

PFR

r1 r2

d2

d4

PFR

R

FR

Spo

PR

d4

d2

r2 r1

OS2,P′ = {(r2 > r1)} OS2,P′ = {(r2 > r1)}
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Solution set: Running example

S3

PR

FR

R

Spo

PFR

d1

d2

r4

r3

PFR

R

FR

Spo

PR

r4

r3

d2

d1

OS3,P′ = {(r4 > r3)} OS3,P′ = {(r4 > r3)}

PR

FR

R

Spo

PFR

d1

d2

r4 r3

PFR

R

FR

Spo

PR

r4r3

d2

d1

OS3,P′ = {(r4 > r3)} OS3,P′ = {(r4 > r3)}
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Solution set: Running example

S4

PR

FR

R

Spo

PFR

r1 r2

d2

r4

r3

PFR

R

FR

Spo

PR

r4

r3

d2

r1r2

OS4,P′ = {(r2 > r1), (r4 > r3)} OS4,P′ = {(r2 > r1), (r4 > r3)}

PR

FR R

Spo

PFR

r1 r2

d2

r4 r3

PFR

R FR

Spo

PR

r4r3

d2

r1r2

OS4,P′ = {(r2 > r1), (r4 > r3)} OS4,P′ = {(r2 > r1), (r4 > r3)}
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Concluding remarks and perspectives

Achieved goals

We proposed an integrative reconstruction method to generate all possible
X ′-deterministic extended Petri nets from experimental time-series data X ′ by:

representing the observed difference vectors dj as in the case of extended
networks with priorities (Durzinsky, Marwan, Wagler 2011 and 2013),

distinguishing weak and strong priority conflicts in the construction of the
priority conflict graph,

resolving weak priority conflicts by inserting control-arcs and determining
priorities on the so-obtained transitions.

Perspectives

Identify groups of WPCs that can be resolved by the same control-arc
(definition of a priority conflict hypergraph).

Make the new approach accessible by a suitable implementation.

Apply the approach to new biological experimental data.
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