Comparing Metabolic Pathways through Potential Fluxes: a Selectively Open Approach

Marta Simeoni

Università Ca' Foscari Venezia

Workshop BioPPN 2013 - Milan, June 24, 2013

Joint work with Paolo Baldan (Univ. Padova), Martina Bocci (Univ. Venezia) and Nicoletta Cocco (Univ. Venezia) Comparison of metabolic pathways of different species may be useful for

- understanding metabolic functions
- giving interesting information on their evolution

Comparison of metabolic pathways of different species may be useful for

- understanding metabolic functions
- giving interesting information on their evolution

 COMETA is a tool for comparing metabolic pathways of different organisms:

- KEGG used as a source of metabolic data
- metabolic pathways represented as Petri nets
- Petri net properties employed for the comparison

Metabolism: the chemical system which generates the essential components for life

Metabolic pathways:

- subsystems dealing with some specific function
- represented as a network of chemical reactions catalised by one or more enzymes where some molecules (reactants or substrates) are transformed into others (products)
- the stoichiometric matrix identifies the pathways components and their relations
- kinetics represented by the *rate equation* associated with each reaction

Metabolic pathways can be naturally modelled with PNs:

- Places are associated to molecular species (metabolites, compounds, enzymes)
- Transitions correspond to chemical reactions
 - Input places are substrates
 - Output places are products
- The incidence matrix of the PN is identical to the stoichiometric matrix of the system of chemical reactions
- The number of tokens in each place of the PN indicates the amount of substance associated with that place

Comparison technique for MPs based on

- static aspects: by considering homology of enzymes/ reactions
- behavioural aspects: by considering a measure of the similarity of the potential fluxes in the pathways

Comparison technique for MPs based on

- static aspects: by considering homology of enzymes/ reactions
- ▶ behavioural aspects: by considering a measure of the similarity of the potential fluxes in the pathways ⇒ T-invariants

Comparison technique for MPs based on

- static aspects: by considering homology of enzymes/ reactions
- ▶ behavioural aspects: by considering a measure of the similarity of the potential fluxes in the pathways ⇒ T-invariants

Combined distance:

$$d_D(P_1, P_2) = \alpha \ d_R(P_1, P_2) + (1 - \alpha) \ d_I(P_1, P_2)$$

The weight $\alpha \in [0, 1]$ allow the analyst to move the focus between static ($\alpha = 1$) and behavioural ($\alpha = 0$) aspects.

Using T-invariants in the comparison

Why

Minimal (semi-positive) T-invariants correspond to elementary flux modes of a metabolic pathway, i.e. minimal sets of reactions that can operate at a steady state

How

- ► The set of semi-positive T-invariants has a unique basis, the Hilbert basis, consisting of the minimal T-invariants ⇒ characteristic of the net
- The invariant based distance is obtained by comparing the Hilbert bases of two pathways

Its main features are:

- download of the information on the specified organisms and pathways from KEGG
- translate the MPs into corresponding PNs (MPath2PN)
- compute the combined distance for each pair of organisms and build the corresponding distance matrix (4ti2)
- build and display a phylogenetic tree (UPGMA or Neighbour Joining methods)

PNs corresponding to the metabolic pathways of an organism are subnets of a larger net representing its full metabolic network.

They can be considered as:

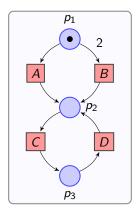
- ► isolated subnets ⇒ interactions with the environment are ignored;
- open subnets ⇒ input/output metabolites are open places where the environment can freely put/remove substances.


PNs corresponding to the metabolic pathways of an organism are subnets of a larger net representing its full metabolic network.

They can be considered as:

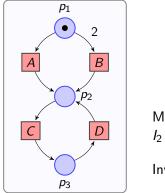
- ► isolated subnets ⇒ interactions with the environment are ignored;
- open subnets ⇒ input/output metabolites are open places where the environment can freely put/remove substances.

What happens to the minimal T-invariants of the subnets in the two cases?


Example: a simple net

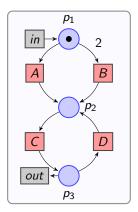
Minimal T-invariants: $I_1 = \{A, C, E\}, I_2 = \{C, D\}.$

Note that $\{B, C, E\}$ is not an invariant, since *B* requires two tokens in p_1 .


Example: isolated subnet

Minimal T-invariants: $I_2 = \{C, D\}$

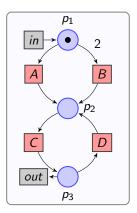
Invariant $I_1 = \{A, C, E\}$ is lost


Example: isolated subnet

Minimal T-invariants: $I_2 = \{C, D\}$ Invariant $I_1 = \{A, C, E\}$ is lost

Isolation guarantees correctness: minimal T-invariants of the subnet are minimal T-invariants of the full network

Example: open subnet



Minimal T-invariants: $I'_1 = \{in, A, C, out\}, I_2 = \{C, D\}, I_3 = \{2 \cdot in, B, C, out\}.$

Invariant I'_1 is the projection of $I_1 = \{A, C, E\}$ onto the subnet.

Invariant I_3 does not correspond to any invariant of the original net.

Example: open subnet

Minimal T-invariants: $I'_1 = \{in, A, C, out\}, I_2 = \{C, D\}, I_3 = \{2 \cdot in, B, C, out\}.$

Invariant I'_1 is the projection of $I_1 = \{A, C, E\}$ onto the subnet.

Invariant I_3 does not correspond to any invariant of the original net.

Opening the subnet guarantees completeness: any invariant of the full network, once projected onto the subnet, is an invariant of the open subnet

 Isolation guarantees correctness: minimal T-invariants of the subnet are minimal T-invariants of the full network

 Isolation guarantees correctness: minimal T-invariants of the subnet are minimal T-invariants of the full network ... but they capture only internal fluxes;

- Isolation guarantees correctness: minimal T-invariants of the subnet are minimal T-invariants of the full network ... but they capture only internal fluxes;
- Opening the subnet guarantees completeness: any invariant of the full network, once projected onto the subnet, is an invariant of the open subnet

- Isolation guarantees correctness: minimal T-invariants of the subnet are minimal T-invariants of the full network ... but they capture only internal fluxes;
- Opening the subnet guarantees completeness: any invariant of the full network, once projected onto the subnet, is an invariant of the open subnet ...but we may loose correctness.

- Isolation guarantees correctness: minimal T-invariants of the subnet are minimal T-invariants of the full network ... but they capture only internal fluxes;
- Opening the subnet guarantees completeness: any invariant of the full network, once projected onto the subnet, is an invariant of the open subnet ...but we may loose correctness.

Still, minimal T-invariants of the full network can be obtained compositionally from those of the subnets [Pedersen, 2008]

Fully open approach

Opening information in KEGG:

- inter-pathways connections (relations of type maplink):
 - realised through compounds
 - not oriented
- sources and/or sinks (e.g. extracellular substances)

Opening the pathway in an automatic way means:

- opening the maplinks in input and output
- opening sources in input and sinks in output

Fully open approach

Opening information in KEGG:

- inter-pathways connections (relations of type maplink):
 - realised through compounds
 - not oriented
- sources and/or sinks (e.g. extracellular substances)

Opening the pathway in an automatic way means:

- opening the maplinks in input and output
- opening sources in input and sinks in output

However:

- experiments do not give good results with this choice (probably due to overestimation and imprecision of the boundaries)
- the size of the Hilbert basis increases significantly

Selectively open approach

Idea: allow the user to freely select the compounds to be opened

For each specific pathway:

- all compouds are listed
- maplinks, sources and sinks are pointed out
- any compound can be opened in input and/or output

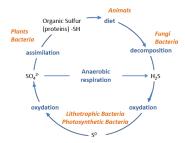
To ease the user, a *canonical choice* is offered: sources are opened in input and sinks in output

	Pathway vvi00920						
KEGG id	Name	Description	maplink	source	sink	input	output
57	cpd:C00283	Hydrogen s					
54	cpd:C01118	O-Succinyl					
53	cpd:C00542	Cystathionine					
52	cpd:C00155	L-Homocys					
51	cpd:C00033	Acetate;					
50	cpd:C00097	L-Cysteine;					RSS
79	cpd:C00224	Adenylyl su					
78	cpd:C00053	3'-Phosph					
71	cpd:C00059	Sulfate;					
70	cpd:C00094	Sulfite;					
59	cpd:C00979	O-Acetyl-L					
58	cpd:C00065	L-Serine;					

Experiments

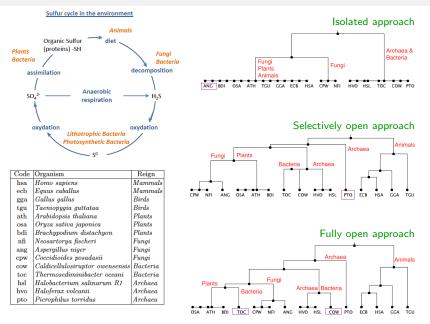
- Goal: explore how the different treatment of the environment may affect the results of the comparison
- Only the invariant based distance is considered
- Three different approaches are compared:
 - isolated
 - fully open
 - selectively open with the canonical choice

Common characteristic of the selected pathways: many irreversible reactions and few internal cicles

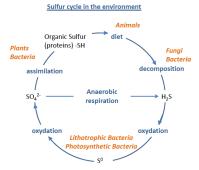

Experiments

- Goal: explore how the different treatment of the environment may affect the results of the comparison
- Only the invariant based distance is considered
- Three different approaches are compared:
 - isolated
 - fully open
 - selectively open with the canonical choice

Common characteristic of the selected pathways: many irreversible reactions and few internal cicles \Rightarrow few internal T-invariants

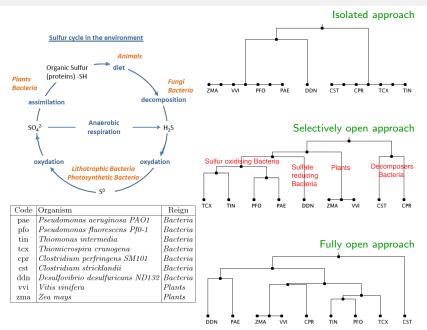

First Experiment: Sulfur metabolism

Sulfur cycle in the environment

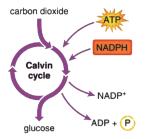


Code	Organism	Reign
hsa	Homo sapiens	Mammals
ecb	Equus caballus	Mammals
gga	Gallus gallus	Birds
tgu	Taeniopygia guttataa	Birds
ath	Arabidopsis thaliana	Plants
osa	Oryza sativa japonica	Plants
bdi	Brachypodium distachyon	Plants
nfi	Neosartorya fischeri	Fungi
ang	Aspergillus niger	Fungi
cpw	Coccidioides posadasii	Fungi
cow	Caldicellulosiruptor owensensis	Bacteria
toc	Thermosediminibacter oceani	Bacteria
hsl	Halobacterium salinarum R1	Archaea
hvo	Haloferax volcanii	Archaea
pto	Picrophilus torridus	Archaea

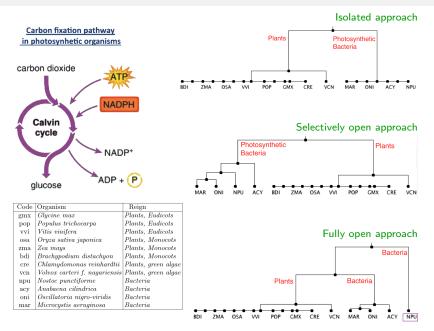
First Experiment: Sulfur metabolism



Second Experiment: Sulfur metabolism


Code	Organism	Reign
pae	Pseudomonas aeruginosa PAO1	Bacteria
pfo	Pseudomonas fluorescens Pf0-1	Bacteria
tin	Thiomonas intermedia	Bacteria
tcx	Thiomicrospira crunogena	Bacteria
$_{\rm cpr}$	Clostridium perfringens SM101	Bacteria
\mathbf{cst}	Clostridium stricklandii	Bacteria
ddn	Desulfovibrio desulfuricans ND132	Bacteria
vvi	Vitis vinifera	Plants
\mathbf{zma}	Zea mays	Plants

Second Experiment: Sulfur metabolism


Third Experiment: Carbon metabolism

Carbon fixation pathway in photosynhetic organisms

Code	Organism	Reign
gmx	Glycine max	Plants, Eudicots
pop	Populus trichocarpa	Plants, Eudicots
vvi	Vitis vinifera	Plants, Eudicots
osa	Oryza sativa japonica	Plants, Monocots
zma	Zea mays	Plants, Monocots
bdi	Brachypodium distachyon	Plants, Monocots
cre	Chlamydomonas reinhardtii	Plants, green algae
vcn	Volvox carteri f. nagariensis	Plants, green algae
npu	Nostoc punctiforme	Bacteria
acy	Anabaena cilindrica	Bacteria
oni	Oscillatoria nigro-viridis	Bacteria
mar	Microcystis aeruginosa	Bacteria

Third Experiment: Carbon metabolism

Concluding remarks

- Considering the environment in PN models of metabolic pathways:
 - Isolated \Rightarrow correctness of minimal T-invariants
 - ► Fully open ⇒ completeness of minimal T-invariants

Neither of them is definitively better than the other:

- Isolated: works well in most cases, but only internal fluxes are captured
- Fully open: increase the size of the Hilbert basis without guaranteeing a better characterisation. Links between pathways become relevant... but KEGG links are imprecise
- We propose the Selectively open approach, where the user can freely decide the compounds to be opened
- The performed experiments suggest the appropriateness of the canonical choice for opening the model

Future works will deal with:

- further experimenting with the selectively open approach
- extending the comparison to whole metabolic networks

However, the size of the Hilbert basis can be exponential in the size of the network

Two possible ways to ensure scalability of the approach:

- incrementality: compare networks obtained by merging a number of pathways of interest
- network simplification: detect portions of the whole network which are not active under some specific conditions and crop the network accordingly