

Quasi Steady State Petri Net (QSSPN) Andrzej M. Kierzek Head of Systems Modelling, Simcyp, a Certara Company Sheffield, UK

Visiting Professor of Systems Biology, University of Surrey, Guildford, UK a.kierzek@surrey.ac.uk

www.surrey.ac.uk

0

From 2004: Lecturer Reader, Professor, Visiting Professor of Systems Biology,

University of Surrey, Guildford, UK

UNIVERSITY OF SURREY

Pharsight

XenologiO

Quantitative Systems Pharmacology

ATripos

- Motivation: Computer simulation of molecular cell biology
- Motivation: Large mechanistic models in Large Pharma
- Flux Balance Analysis of Genome Scale Metabolic Networks
- Quasi-Steady State Petri Nets (QSSPN)

Statistical inference of genotypephenotype relationship.

LETTERS

genetics

A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

Al Olama AA¹, Kote-Jarai Z², Berndt Sl³, Conti DV⁴, Schumacher F⁴, Han Y⁵, Benlloch S⁶, Hazelett DJ⁴, Wang Z⁷, Saunders E⁸, Leongamomlert D⁹, Lindstrom S⁹, Jugumauth-Little S⁸, Dadaev T⁸, Tymrakiewicz M⁸, Stram DO⁴, Rand K⁵, Wan P⁵, Stram A⁵, Sheng X⁵, Pooler LC⁵, Park K⁵, Xia L⁵, Tyrer J⁶, Kolonel LN¹⁰, Le Marchand L¹⁰, Hoover RN³, Machiela MJ³, Yeager M³, Burdette L³, Chung CC³, Hutchinson A³, Yu K³, Goh C⁸, Ahmed M⁶, Govindasami K⁶, Guy M⁸, Tammela TL¹¹, Auvinen A¹², Wahlfors T¹³, Schleutker J¹⁴, Visakorpi T¹⁵, Leinonen KA¹⁵, Xu J¹⁶, Aly M¹⁷, Donovan J¹⁸, Travis RC¹⁹, Key TJ¹⁹, Siddig A²⁰, Canzian F²¹, Khaw KT²², Takahashi A²³, Kubo M²⁴, Pharoah P²⁵, Pashavan N²⁵, Weischer M²⁶, Nordestgaard BC²⁷, Nielsen SF²⁷, Klarskov P²⁸, Rader MA²⁹, Iversen P²⁹, Thibodeau SN³⁰, McDonnell SK³⁰, Schaid DJ³⁰, Stanford JL³¹, Kolb S³², Holt S³³, Knudsen B³⁴, Coll AH³⁵, Gapstur SM³⁶, Diver WR³⁶, Stevens V³⁸, Maier C³⁷, Luedeke M³⁷, Herkommer K³⁸, Binckleb A A²⁷, Storm SS³⁹, Pettawav C⁴⁰, Yeboah ED⁴¹, Tittey T⁴¹, Biritwum R8⁴¹, Adija AA⁴¹, Tay E⁴¹, Theioteau 4⁴², Niwa S⁴², Chokkalingam AP⁴³, Cannon-Albright L⁴⁴, Cybulski C⁴⁵, Wokokorczyk D⁴⁵, Kluźniak W⁴⁵, Park J⁴⁶, Sellers T⁴⁶, Lin HY⁴⁷, Isaacs WB⁴⁶, Partin AW⁴⁸, Brenner H⁴⁹, Dieffenbach AK⁴⁹, Stegmaier C⁵⁰, Chen C⁹, Giovannucci El⁵¹, Ma J⁵², Stampfer M⁵³, Penney KL⁵⁴, Mucci L⁵⁴, John EM⁵⁵, Ingles SA⁴, Kittles RA⁵⁶, Murphy AB⁵⁷, Pandha H⁵⁸, Michael A⁵⁶, Kibel AS⁶⁶, Rybicki BA⁵⁷, Neslund-Dudas C⁷¹, Higina AW⁵⁵, Chu L⁵⁵, Goodman PJ⁶⁸, Kiein EA⁶⁹, Zheng S¹⁶, Stever G⁴, Stever G⁴, Store C⁷³, Wu S⁴⁶, Hansia A⁵⁷, Storm A⁵⁷, Subrite JS⁷⁰, Coetzee GA⁴, LiQ⁶⁰, Freedman Ml⁸⁰, Hunter DJ⁹, Muir K⁴⁷, Gronberg H⁶², Neal DE³, Southey M⁸⁴, Giles G⁶⁵, Severi G⁶⁶, Breast and Prostate Cancer Cohort Consortium (BPC3); PRACTIOAL (Pro

We can determine any genotype of interest, including full genome sequence of an individual.

Genotype-phenotype relationship is fundamental problem in basic and applied science. Knowledge will revolutionise medicine and biotechnology.

Currently, statistical inference is attractive approach to study genotype-phenotype relationship.

Statistical inference of genotypephenotype relationship.

genetics

A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

ALOlama AA¹, Kote-Jarai Z², Berndt Sl³, Conti DV⁴, Schumacher F⁴, Han Y⁵, Benlloch S⁶, Hazelett DJ⁴, Wang Z⁷, Saunders E⁸, Leongamorniert D⁸, Lindstrom S⁹, Jugurnauth-Little S⁸, Dadaev T⁶, Tymrakiewicz M⁸, Stram DO⁴, Rand K⁵, Wan P⁵, Stram A⁵, Sheng X⁵, Pooler LC⁵, Park K⁵, Xia L⁵, Tyrer J⁶, Kolonel LN¹⁰, Le Marchand L¹⁰, Hoover RN³, Machiela MJ³, Yeager M³, Burdette L³, Chung CC³, Hutchison A³, Yu K³, Goh C⁸, Ahmed M⁸, Govindasami K⁸, Guay M⁸, Tarmela TL¹¹, Auvinen A¹², Wahlfors T¹³, Schleutker J¹⁴, Visakorni T¹⁵, Leinonen KA¹⁶, Xu J¹⁶, AlW M¹⁷, Donovan J¹⁸, Travis RC¹⁹, Key J¹⁹, Siddig A²⁰, Canzian F²¹, Khaw KT²², Takahashi A²³, Kubo M²⁴, Pharoah P²⁵, Pashavan N²⁵, Weischer M²⁶, Nordestgaard BG²⁷, Nielsen SF²⁷, Klarskov P²⁸, Røder MA²⁹, Versen P²⁹, Thibodeau SN³⁰, McDonnell SK³⁰, Schaid DJ³⁰, Stanford JL³¹, Kolb S³², Holt S³³, Knudsen B³⁴, Coll AH³⁵, Gapstur SM³⁶, Diver VR³⁶, Stevens VL³⁶, Maier C³⁷, Luedeke M³⁷, Herkommer K³⁸, Rinckleb AE³⁷, Strom SS³⁹, Pettawav C⁴⁰, Yeboah ED⁴¹, Tettey Y⁴¹, Biritxwum RB⁴¹, Adiei AA⁴¹, Tay E⁴¹, Tutelove A⁴², Niwa S⁴², Chokkalingam AP⁴³, Cannon-Albright L⁴⁴, Cybulski C⁴⁵, Wockofrezyk D⁴⁵, Kluźniak W⁴⁵, Park J⁴⁶, Sellers T⁴⁶, Lin HY⁴⁷, Isaacs WB⁴⁸, Partin AW⁴⁶, Brenner H⁴⁹, Dieffenbach AK⁴⁹, Stegmaier C⁵⁰, Chen C⁹, Giovannucci EL⁵¹, Ma J⁵², Stampfer M⁵³, Penney KL⁵⁴, Mucci L⁵⁴, John EM⁵⁵, Ingles SA⁴, Kittles RA⁵⁶, Murphy AB⁵⁷, Pandha H⁵⁶, Michael A⁵⁸, Kierzek AM⁵⁸, Biot W⁶⁵, Signorello LB⁵⁴, Zheng W⁶⁰, Albanes D⁶¹, Virtam J⁶², Weinstein S⁶¹, Nemesure B⁵³, Caruten J⁶⁴, Leske C⁵³, Wus Y⁶³, Hennis A⁶⁵, Kibel AS⁶⁶, Rybicki BA⁶⁷, Neslund-Dudas C⁶⁷, Hising AW⁵⁵, Chu L⁵⁵, Goodman PL⁶⁸, Klein EA⁶⁹, Censonta R⁷⁶, Riest and Prostate Cancer Cohort Consortium (BPC3); PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-

What molecular/physiological mechanisms associate these 23 genes with cancer? How complex genotypeenvironment-phenotype interactions could be studied with GWAS approach? We can determine any genotype of interest, including full genome sequence of an individual.

Chromosome

Genotype-phenotype relationship is fundamental problem in basic and applied science. Knowledge will revolutionise medicine and biotechnology.

Currently, statistical inference is attractive approach to study genotype-phenotype relationship.

9 10 11 12 13 14 15 17 19 21 x

8

2

0

3

5 6 7 8

Mechanistic computer simulation of genotypephenotype relationship.

BIBLIOME* OF MOLECULAR BIOLOGY

*Formerly known as library www.surrey.ac.uk

Mechanistic computer simulation of genotypephenotype relationship.

ENVIRONMENT

GENOTYPE

10000

0

20000

time [s]

30000

40000

60 70 80 90 ATG TG C TG AAAGTTG GC G G TG C C G G AG TGC GC TC AC C G C Computer simulation SIMULATED PHENOTYPE of molecular cell 30000 biology. 25000 20000 15000 10000 *Formerly known as library 5000 www.surrey.ac.uk

BIBLIOME* OF MOLECULAR BIOLOGY

Physiologically Based Pharmacokinetics (PBPK) – whole system mechanistic simulation routinely used **CERTARA**? in Large Pharma. Physiologically Based Pharmacokinetics (PBPK) – whole system mechanistic simulation routinely used **CERTARA**? in Large Pharma.

Lung

Simulation of drug concentration in Heart:

Physiologically Based Pharmacokinetics (PBPK) – whole system mechanistic simulation routinely used **CERTARA**. In Large Pharma.

at the second	Simcyp Version 15 Release 1	- 🗆 ×
File Options Tools View Server Help Reso	sources	
Cpen Save Clear Simula	Julation Prediction Sensitivity P.E. Batch IVIVC Real Time Results Post P.	
Workspace - 0	Trial Decision	mii CVP
Workspace Not Loaded •		ar consultancy education
Population Sim-Healthy Volun •	○ Population Representative Image: Control of the sector of the sec	×
Substrate SV-Alprazolam Inhibitor 1 SV-Bupropion 🔇	Trials Calibri • 9 • E = = P General • Conditional Formatting * Paste No. of trials 10 Image: A interval and	
PKPD Types Parameters Profiles	No. of subjects in each trial 10 Clipboard % Font % Alignment % Number % Styles Cells	<u>^</u>
Trial Design	Size A B C D E F G H I J Redefine subjects ove A B C D E F G H I J	
Trials Dosing Regimen Sampling Plan Analytical Error Data Analysis	Day Clock Time Duration of study (h) 2 From (h) To (h) TMax (h) CMax (mg/L) AUC (mg/L) Start 1 9:00 AM 2 2 3:00:00 24:00 125 8:05:03 106:01 -<	
	· · · · · · · · · · · · · · · · · · ·	16:18 05/04/2016

Simcyp simulator

www.certara.com

PBPK: - whole system scale, bottom-up, literaturebased mechanistic simulation routinely used in Large **CERTARA**. Pharma.

Permeability-limited model are available for the intestine, liver, kidney, brain and lung.

Example drug label claim based on PBPK simulation.

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use IMBRUVICA safely and effectively. See full prescribing information for IMBRUVICA.

IMBRUVICA[®] (ibrutinib) capsules, for oral use

Initial U.S. Approval: 2013

Drug Interactions

Coadministration of Ibrutinib with CYP3A Inhibitors

In a sequential design trial of 18 healthy, fasted volunteers, a single dose of 120 mg of IMBRUVICA was administered alone on Day 1 and a single dose of 40 mg of IMBRUVICA was administered on Day 7 in combination with 400 mg of ketoconazole (given daily on Days 4 - 9). Ketoconazole increased ibrutinib dose-normalized C_{max} and AUC 29-fold and 24-fold, respectively. Simulations using fasted conditions indicate that moderate CYP3A inhibitors diltiazem and erythromycin may increase AUC of ibrutinib by 5- to 8-fold.

Coadministration of Ibrutinib with CYP3A Inducers

PK data from a dedicated drug interaction trial showed that rifampin (a strong CYP3A inducer) decreases ibrutinib C_{max} and AUC by more than 13- and 10-fold. Simulations using PBPK suggested that a moderate CYP3A inducer (efavirenz) may decrease the AUC of ibrutinib by up to 3-fold.

PBPK impact on new drug approvals.

www.certara.com

We can determine full genome sequence of an individual. Genomics has entered clinical research and healthcare (UK NHS 100K genomes project).

UNIVERSITY OF

SURRFY

Currently, Simcyp simulator can mechanistically account for polymorphism of only about 20 genes (drug metabolism and drug transporters).

Bridging the gap between genomics and physiology through mechanistic modelling of "intracellular space" is a major challenge and solutions will revolutionise model-based drug development.

Quantitative simulation of molecular SURREY network dynamics

Stochastic kinetic model of two component system signalling. Kierzek, Zhou, Wanner, Molecular Biosystems, 2010, Hoyle, Avitabile, Kierzek, PLoS Comp Biol 2012

Quantitative simulation of molecular network dynamics

Stochastic kinetic model of two component system signalling. Kierzek, Zhou, Wanner, Molecular Biosystems, 2010, Hoyle, Avitabile, Kierzek, PLoS Comp Biol 2012

www.surrey.ac.uk

UNIVERSITY OF SURREY

By the way

Molecular networks are commonly represented as bipartite graphs even if it is not referred to as a Petri Net. SBGN and CellDesigner (above) as well as Matlab Simbiology (right) are good examples.

Mechanistic simulation of the relationship between genotype and metabolic phenotype with Flux Balance Analysis (FBA) of Genome Scale Metabolic Network.

Nutrients available in cell environment (external metabolites)

ASSUMPTION: Internal metabolites are at steady state.

Flux Balance Analysis – a constraint based approach dc/dt S

Variables of the model are reaction fluxes at steady state $F_{1,...,}F_{8}$. Stoichiometric matrix **S** represents contribution of metabolites (rows) to reactions (columns). The unique maximal value of any linear combination of fluxes can be calculated by linear programming. Maximal objective value can be achieved by many flux distributions (solutions). FBA generates insightful gualitative predictions based on network connectivity alone, but quantitative information can be used to constraint solution space.

From Orth, Thiele, Palsson Nature Biotechnology 2010, 28:245

www.surrey.ac.uk

UNIVERSITY OF

Computer simulation of genotypephenotype relationship.

File Edit	View A							
		nalyse F	Help					
Direction:	max 🛟	Objective:	BIOMASS					Solver: Simplex 🗘 Reduce matrix: 🗆 Comments: 🗹
				/Us	ers/andrzej/GSMN	s/Mtb_iDB7	26_GLvivo.s	fba x
		ſ	0 genes	726 en 70mes	744 reactions	651 meta	holites Pr	rohlem Objective value v
		(o genes	720 enzymes	744 (caccions	051 meta	bontes 11	objective value x
ID		Equation				LB	UB	Rule
R499		M_ACACP_c	+ 7.0 M_MA	LACP_c + 14.0	M_NADPH_c = 7	0.0	100000.0	Rv2524c
R498		M_ACACP_c	+ 6.0 M_MA	LACP_c + 12.0	M_NADPH_c = 6	0.0	100000.0	Rv2524c
R552		M_COA_c +	M_FAD_c + M	M_NAD_c + M_O	CTACOSANOYL-C	0.0	100000.0	(Rv0131c OR Rv0154c OR Rv0215c OR Rv0231 OR Rv024
R553		M_COA_c +	M_FAD_c + M	M_HEXACOSANO	YL-COA_c + M_N	0.0	100000.0	(Rv0131c OR Rv0154c OR Rv0215c OR Rv0231 OR Rv024
R554		M_COA_c +	M_FAD_c + M	M_NAD_c + M_T	ETRACOSANOYL	0.0	100000.0	(Rv0131c OR Rv0154c OR Rv0215c OR Rv0231 OR Rv024
R 5 5 5		M_COA_c +	M_DOCOSAN	IOYL-COA_c + N	_FAD_c + M_NA	0.0	100000.0	(Rv0131c OR Rv0154c OR Rv0215c OR Rv0231 OR Rv024
R556		M_COA_c +	M_EICOSANC	YL-COA_c + M_	FAD_c + M_NAD	0.0	100000.0	(Rv0131c OR Rv0154c OR Rv0215c OR Rv0231 OR Rv024
R551		M_ATP_c +	M_COA_c + M	M_NONADECANO	$DATE_c = M_AMP$	0.0	100000.0	Rv0035 OR Rv0099 OR Rv0119 OR Rv0166 OR Rv0214 O
R491		M_ACCOA_c	+ M_MALCO	A_c + M_MBT-H	OLO_c = 2.0 M	0.0	100000.0	Rv2382c AND Rv2381c
R490		M_ATP_c +	$M_LYS_c + M$	_MBT-HOLO_c =	• M_AMP_c + M	0.0	100000.0	Rv2380c
R493		2.0 M_ACCO	DA_c + M_MB	T_c + 2.0 M_NA	DPH_c = 2.0 M	0.0	100000.0	nogene
R492		M_MBTA-SA	L_c + M_MBT	<pre>FB-SER_c + M_M</pre>	BTCD-HBA_c +	0.0	100000.0	nogene
R495		M_ACCOA_c	+ M_BIOTIN	$-CO2_c = 0.999$	M_BIOTIN_c + M	0.0	100000.0	Rv0904c OR Rv2502c OR Rv0974c OR Rv0904c OR Rv379
R494		9.0 M_ACCC	DA_c + M_MB	T_c + 18.0 M_N	ADPH_c = 9.0 M	0.0	100000.0	nogene
R497		M_ACACP_c	+ 2.0 M_MA	LACP_c + 4.0 M	_NADPH_c = 2.0	0.0	100000.0	Rv2524c
R496		M_ACCOA_c	+ M_ACP_c	= M_ACACP_c +	M_COA_c	-100000.0	100000.0	(Rv2243 OR Rv0649) AND Rv2244
R396		M_4PPNTE_	c + M_ATP_c	= M_DPCOA_c	+ M_PPI_c	0.0	100000.0	Rv2965c
R397		M_ATP_c +	M_DPCOA_c	$= M_ADP_c + M$	_COA_c	0.0	100000.0	Rv1631
R394		M_4PPNTO_	c + M_CTP_c	$+ M_CYS_c = N$	1_4PPNCYS_c + M	0.0	100000.0	Rv1391
R395		M_4PPNCYS	$c = M_4PPN$	ITE_c + M_CO2_	c	0.0	100000.0	Rv1391
R392		M_ATP_c +	M_PANT_c +	$M_bALA_c = M_bALA_c $	AMP_c + M_PNT	0.0	100000.0	Rv3602c
R393		M_ATP_c +	M_PNTO_c =	M_4PPNTO_c +	M_ADP_c	0.0	100000.0	Rv1092c
R259		M_ATP_c +	M_MET_c = M	M_PI_c + M_PPI_	c + M_SAM_c	0.0	100000.0	Rv1392
R258		$M_LLCT_c =$	M_CYS_c + I	$M_NH3_c + M_C$	BUT_c	0.0	100000.0	Rv1079
R257		M_HCYS_c +	M_SER_c =	M_LLCT_c		0.0	100000.0	Rv1077
R256		M OSLHSER	c = M NH3	c + M OBUT c ·	+ M SUCC c	0.0	100000.0	Rv1079

SurreyFBA software: Gevorgyan, Bushell, Avignone-Rossa, Kierzek, Bioinformatics 2011.

Research

Highly accessed Open Access

Genome

106 citations.

Biology

2007.

GSMN-TB: a web-based genome-scale network model of *Mycobacterium tuberculosis* metabolism

Dany JV Beste^{**}, Tracy Hooper^{**}, Graham Stewart^{*}, Bhushan Bonde^{*}, Claudio Avignone-Rossa^{*}, Michael E Bushell^{*}, Paul Wheeler[†], Steffen Klamt^{*}, Andrzej M Kierzek^{**} and Johnjoe McFadden^{**}

Addresses: "School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK. "Tuberculosis Research Group, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone KT15 3NB, UK. "Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, D. 39106 Magdeburg, Germany.

× These authors contributed equally to this work.

Correspondence: Johnjoe McFadden. Email: j.mcfadden@surrey.ac.uk

Published: 23 May 2007 Genome **Biology** 2007, **8:**R89 (doi:10.1186/gb-2007-8-5-r89) Received: 25 January 2007 Revised: 16 April 2007 Accepted: 23 May 2007

Abundance of mutants in output pool is quantified relative to abundance in the input pool by co-hybridisation of labelled transposon flanking regions

Sensitivity 71%, Specificity 80%, Correct predictions 78%.

Reconstruction and Simulation of Genome Scale Metabolic Networks @Surrey

Mendum et al. BMC Genomics (2015) 16:372 DOI 10.1186/s12864-015-1569-2

вмс Genomics

OPEN a ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

RESEARCH ARTICLE

Open Access

METABOLI

āæ

Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells

Metabolic Engineering 10 (2008) 227-233

Differential Producibility Analysis (DPA) of Transcriptomic Data with Metabolic Networks: Deconstructing the Metabolic Response of M. tuberculosis

Bhushan K. Bonde, Dany J. V. Beste, Emma Laing, Andrzej M. Kierzek, Johnjoe McFadden* Microbial Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom

Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to

assess gene fitness in vitro and in sera

Mendum et al. Genome Biology 2011, 12:R127 http://genomebiology.com/2012/12/12/R127

RESEARCH

Open Access

Research

Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/vmben

Selection of objective function in genome scale flux balance analysis for process feed development in antibiotic production

Chiraphan Khannapho¹, Hongjuan Zhao, Bhushan K. Bonde, Andrzej M. Kierzek, Claudio A. Avignone-Rossa, Michael E. Bushell*

Microbial Science Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK

Tom A Mendum*, Huihai Wu, Andrzej M Kierzek and Graham R Stewart

GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism

Dany JV Beste^{#*}, Tracy Hooper^{#*}, Graham Stewart^{*}, Bhushan Bonde^{*}, Claudio Avignone-Rossa*, Michael E Bushell*, Paul Wheeler+, Steffen Klamt^{*}, Andrzej M Kierzek^{#*} and Johnjoe McFadden^{#*}

Addresses: *School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK. *Tuberculosis Research Group, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone KT15 3NB, UK. ‡Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, D-39106 Magdeburg, Germany.

* These authors contributed equally to this work.

Correspondence: Johnjoe McFadden. Email: j.mcfadden@surrey.ac.uk

Published: 23 May 2007 Genome Biology 2007, 8:R89 (doi:10.1186/gb-2007-8-5-r89) Received: 25 January 2007 Revised: 16 April 2007 Accepted: 23 May 2007

Open Access

Mechanistic interpretation of transcriptome data.

Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E. Network-based prediction of human tissue-specific metabolism. Nature Biotechnology. 2008 26(9):1003-10. www.surrey.ac.uk

Mechanistic interpretation of omics data in JyMet GUI and sfba command line tool.

File Edit View	Analyse Solve Help						File E	dit View	Analyse	Solve H	Help							
Expression: Live	Objective value	Reactions/Genes:	So	lver: Gurobi	Reduce matrix:	Comments: 🖌	Expres	ssion: Liv	er	T	hreshold: 1.	0 React	ions/Genes:	Sol	ver: Gurobi	- Reduce r	natrix: 🔲 🛛	Comments: 🔽
human record s	Objective value and status						huma	n racand	offen		I							
numun_recont.a	O FBA		K				numa	III_recoll1	SIDa X									
0 genes 1501	O FVA	3188 metabolites Prot	em Expr	ession x	GFAA x		0 gen	nes 150	1 enzymes	3742	reactions	3188 metab	olites Pro	blem E	xpression x	GFAA x	GFAA cha	rt x
ID	O FSA	uation	LB	U	B Rule	С	gen	nes	Liver	Brain	Heart	Kidney	Lung	Pancreas	Prostate	Spleen	Thymus	Skeletal_Mu
R_10FTHF5GLUtt	Elementary modes	fthf5glu_l	0.0	999999.	0	#5-glutamyl-10 A	195814	4 0	0		0	-1	0 0)	0	-1 (6)
R_10FTHF5GLUtr	O Kasek eutenahusia	Ofthf5glu_c	0.0	999999.	0	#5-glutamyl-10	22305	0	0		0	0	0 0)	0	0 0)
R_10FTHF6GLUt	C Knock-out analysis	fthf6glu_l	0.0	999999.	0	#6-glutamyl-10	2351	0	0		0	0	0 0)	0	0 0		
R_10FTHF6GLUtr	Essential reactions	Offnfisglu_c	0.0	999999.	0	#6-glutamyl-10	2544	0	0	1	0	0	0 0	2	0	0 0)
R_10FTHF7GLUB	Live reactions	nni/giu_i	0.0	9999999	0	#7-glutamyl-10	26237	0	0		0	0	0 0)	0	0 0		
P 10FTHF/GLUU	O Dist	umi/giu_c	-000000.0	999999	0	#10-Eormyltetr	2055	0	0		0	0	1	1	0	0	4	1
R 10FTHEtm	U PIOL	m	-9999999.0	000000	0	#10-Formyltetr	27206	- 1	- 1		- 1	0	0	1	0	0		.,
R 11DOCRTSLtm	Plot 3D	docrtsl m	-9999999.0	999999	0	#11-deoxycortis	285216	6 0	0		0	0	0)	0	0 0		
R 11DOCRTSLtr	 Minimal substrate sets 	docrtsl r	-9999999.0	999999	0	#11-deoxycorti:	286016	6 0	0		0	0	0)	0	0 0		
R_11DOCRTSTR	Minimal product patr	1docrtstrn_m	-9999999.0	999999.	0	#11-deoxycortic	286297	7 0	0		0	0	0)	0	0 0		
R_11DOCRTSTR	o mininai product sets	1docrtstrn_r	-9999999.0	999999	0	#11-deoxycortie	29796	0	0		0	0	0 0)	0	0 0	1	
R_13DAMPPOX	Unconserved metabolites	o_c+M_o2_c=M_bam	0.0	999999.	0 (AOC3) OR (A.	#1,3-Diaminop	348477	7 0	0		0	0	0 0)	0	0 0		
R_1MNCAMti	Orphan metabolites	_c + M_h2o_c = M_1mnc	0.0	9999999.	0	#N1-Methylnico	4512	0	0		0	0	0 0)	0	0 0)
R_1PPDCRp		t + M_nadh_x = M_Lpipe	0.0	999999.	0	#delta1-piperic	4514	0	0		0	0	0 0)	0	0 0	Filler III)
R_1a,24,25VITD2	Connected components	_h_m + M_nadph_m + M	0.0	999999.	0	#1-alpha-Vitarr	4535	0	0		0	0	0 0)	0	0 0)
R_1a,24,25VITD3	GFAA	_h_m + M_nadph_m + M	0.0	999999.	0	#1-alpha-Vitarr	4536	0	0		0	0	0 0)	0	0 0)
R_1a,25VITD2Hm	O GEVA	_h_m + M_nadph_m + M	0.0	999999.	0	#1-alpha,24R,2	4537	10	10		0	10	0 10	0	10	0 10		
R_1a,25VITD3Hm	0.000	_h_m + M_nadph_m + M	0.0	999999.	D	#1-alpha,24R,2							Flux	activity				
R_24,250HVIT02	O SGNI	24250rivitd2_e	0.0	9999999.	0	#24,25-Dinydro			-2.0	-1.5 -1	1.0 -0.5	0.0 0.5	1.0 1.5 :	2.0 2.5	3.0 3.5	4.0 4.5	5.0 5.5	6.0
R_24,250HVITD2	O WGNI	2425dbuild3_e	0.0	000000	0	#24,25-Dillydro	E .											
R 24 250HVITD3	O DPAplot	2425dhvitd3_c	0.0	000000	0	#24,25-Dihydro												
R 24 25VITD2Hm		m + M nadph $m + M$ o2	0.0	999999	0 (CYP24A1)	#24R-Vitamin I		ABCB	¥ 1			- 1	_					1
R 24.25VITD3Hm	O DPAsig	m+M nadph m+M o2	0.0	999999	0 (CYP24A1)	#24R-Vitamin I		ACAT	1									
R_24NPHte	M_24nph_e = M_24np	h_c	-999999.0	999999.	0	#xenobiotic trai		ACAT:	2									
R_25HVITD2t	M_25hvitd2_c = M_25h	hvitd2_e	0.0	9999999.	0	#25-hydroxyvita		ACLY	(-									
R_25HVITD2tin	M_25hvitd2_e = M_25h	hvitd2_c	0.0	999999.	0	#25-hydroxyvita		ACO:	2									
R_25HVITD2tin_m	M_25hvitd2_c = M_25h	hvitd2_m	0.0	999999.	0	#25-hydroxyvita		ADH10										
R_25HVITD2tm	M_25hvitd2_m = M_25	5hvitd2_c	0.0	999999.	0	#25-hydroxyvita		ADH	4 -									
R_25HVITD3t	M_25hvitd3_c = M_25h	hvitd3_e	0.0	999999.	0	#25-hydroxyvita	les	ADH	5								-	
R_25HVITD3tin	M_25hvitd3_e = M_25h	nvitd3_C	0.0	999999.	0	#25-hydroxyvita	er	ADH	7 -									
R_25HVITD3tin_m	M_25hvitd3_c = M_25h	hvitd3_m	0.0	9999999.	0	#25-hydroxyvita	9	ADS										
R_25VITD2Hm	M_25hvitd2_m+H_b	m+M nadph m+H a2	0.0	9999999.	0 (CVP27P4)	#1-alpha-Vita	SUI	ALD1D		1	1							
R 25VITD3Hm	M 25hvitd3 m + M h	m + M nadph_m + M o2	0.0	9999900	(CYP27B1)	#1-alpha-Vitam	tio	ALDIC.								26		
R 2AMACHYD	M 2amac c+M h2o	c=M nh4 c+M pvr c	0.0	9999999	0	#2-Aminoacrvia	Gac	ALDID										
R_2AMACSULT	M_2amac_c+M_nade	ph_c+M_paps_c=M Lc	0.0	999999	0	#2-Aminoacrvia	l x	AKKID.				-						
R_2AMADPTm	M_L2aadp_c+M_akg	_m = M_L2aadp_m + M	-9999999.0	999999	0 (SLC25A21)	#L-2-aminoadi	1.000	ALDO	1			-						
R_2DR1PP	M_2dr1p_c + M_h2o_c	c = M_drib_c + M_pi_c	0.0	999999.	0	#2-deoxy-D-rib		BPNT:										
R_2HBO	M_2hb_c+M_nad_c=	= M_2obut_c + M_h_c + M	-999999.0	999999.	0 (LDHAL6B) 0	#2-Hydroxybuty		BTD										
R_2HBt2	$M_2hb_e + M_h_e = M$	1_2hb_c + M_h_c	-999999.0	999999.	0 (SLC16A3) OR.	#2-hydroxybuty	1	CPT:	2									
R_2HCO3_NAt	2.0 M_hco3_e + M_na	1_e = 2.0 M_hco3_c + M	-9999999.0	999999.	0 (SLC4A5) OR (.	#bicarbonate tr		CYP24A	L									
R_2MCITt	M_2mcit_c = M_2mcit_	_e	-9999999.0	999999.	0	#2-methylcitrat		CYP27A	1									
R_20X0AD0Xm	M_2oxoadp_m + M_co	pa_m + M_nad_m = M_co	0.0	999999.	0 (OGDH) AND (.	#2-Oxoadipate		FDFT										
R_20XOADPTM	M_20x0adp_c+M_akg	g_m = M_20x0adp_m + M	-9999999.0	9999999.	(SLC25A21)	#2-0x0adipate						1000	1	1				
R_34DHOXPEGO	M_34dnmaid_C+M_h	$c \neq m_nadn_c = m_34d$	-9999999.0	9999999.	(ADHb) UR (A.	#3,4-DINydroxy	E.				_							
R 34DHPHAMT	M 34dbpba c+M an	net c = M above c+M h	0.0	000000	COMTIOP(C	#3.4-Dihydroxy	E				- P	ostUpRegula	ted = Post	DownReg	ulated			-
4	Im_o+unpria_c+ M_dit	III	10.0	1000088.	Comination (C.	In o, 4-Dinyaroky	1						II					

Huihai Wu

Large number of ~omics data analysis approaches available through Graphics User Interface: iMAT, GIMME,GIM3E, DPA, Fast iMAT, GNI www.surrey.ac.uk

UNIVERSITY OF

SCIENTIFIC REPORTS

Received: 24 June 2015 Accepted: 07 December 2015 Published: 27 January 2016

OPEN Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production

Vytautas Leoncikas¹, Huihai Wu¹, Lara T. Ward², Andrzej M. Kierzek^{1,*} & Nick J. Plant^{1,*}

Vytautas Leoncikas

Summary

ARTICLE

doi:10.1038/nature10983

The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups

Christina Curtis^{1,2}⁴*, Sohrab P. Shah^{3,4}*, Suet-Feung Chin^{1,2}*, Gulisa Turashvill^{3,4}*, Oscar M. Rueda^{1,2}, Mark J. Dunning², Doug Speed^{2,5}*, Andy G. Lynch^{1,2}, Shamith Samarijus^{1,2}, Yinyin Yuan^{1,2}, Stefan Gräf^{4,2}, Gavin Ha³, Gholamreza Haffari³, Ali Bashashat³, Rosilin Russel², Steven McKinnev^{3,4}, METASRIC Groupt, Anita Langerod⁶, Andrew Green⁷, Elena Provenzano⁸, Gordon Wishart⁸, Sarah Pinder^{*}, Peter Watson^{3,4}, O'forian Markowet^{2,1,2}, Ligh Murph¹⁰, Ian Ellis⁷, Amie Purushotham^{9,11}, Anne-Lise Borresen-Dale^{6,12}, James D. Brenton^{2,13}, Simon Tavaré^{1,2,5,14}, Carlos Caldas^{1,2,8,13} & Samuel Apariclo^{3,4}

Nature. 2012 486:346-52. doi: 10.1038/nature10983.

computational

RESOURCE

A community-driven global reconstruction of human metabolism

Ines Thiele^{1,2,37}, Neil Swainston^{3,4,37}, Ronan M T Fleming^{1,5}, Andreas Hoppe⁶, Swagatika Sahoo¹, Maike K Aurich¹, Hulda Haraldsdotti¹, Monica L Mo⁷, Ottar Rolfsson¹, Miranda D Stoble^{8,9}, Stefan G Thorleifsson¹, Rasmus Agren¹⁰, Christian Bölling⁶, Sergio Bordel¹⁰, Arvind K Chavali¹¹, Paul Dobson¹², Warwick B Dunn^{3,13}, Lukas Endler¹⁴, David Hala¹⁵, Michael Hucka¹⁶, Duncan Hull⁴, Daniel Jameson^{3,4}, Neema Jamshidi⁷, Jon J Jonson⁵, Nick Juty¹⁷, Sarah Keating¹⁷, Intawat Nookaew¹⁰, Nicolas Le Novet^{77,18}, Nagiis Malys^{3,19,20}, Alexander Mazein²¹, Jason A Papin¹¹, Nathan D Price²², Evgeni Selkov, Sr²³, Martin I Sigurdsson¹, Evangelos Simeonidi^{22,24}, Nikolaus Sonnenschein²⁵, Kieran Smallbone^{3,26}, Anatoly Sorokin^{21,27}, Johannes H G M van Beek^{28–30}, Dieter Weichart^{13,31}, Igor Goryanin^{21,32}, Jens Nielsen¹⁰, Hans V Westerhoff^{2-28,332}, Jouglas B Kell^{3,35}, Pedro Mendes^{3,4,48} & Bernhard O Palsson^{1,7}

Nat Biotechnol. 2013 31:419-25. doi: 10.1038/nbt.2488.

Mechanistic model-based meta-analysis of clinical transcriptomes to stratify disease progression in individual patients.

Quasi-steady state metabolic fluxes.

Metabolism: COPASI example file YeastGlycolysis

From Pritchard and Kell (2002) Eur. J. Biochem. , modified from Teusink et al.(2000) Eur J Biochem 267, 5313-5329.

Gene regulation: COPASI example file NF-kappaB

NELSON, D.E., IHEKWABA, A.E., et al.(2004). Science 306, 704-708.HOFFMANN, A., LEVCHENKO, A., SCOTT, M. L. & BALTIMORE, D. (2002). Science 298, 1241-1245.

The timescale separation between gene regulation and metabolism justifies Quasi-Steady State assumption: Following the change of gene expression state metabolism quickly reaches state where metabolic flux is constant and metabolite concentrations are balanced.

BIOINFORMATICS ORIGINAL PAPER

Vol. 29 no. 24 2013, pages 3181–3190 doi:10.1093/bioinformatics/btt552

Systems biology

Advance Access publication September 23, 2013

QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells

Ciarán P. Fisher, Nicholas J. Plant, J. Bernadette Moore and Andrzej M. Kierzek* Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK

Associate Editor: Igor Jurisica

Ciaran Fisher

Nick Plant

Bernadette Moore

Andrzej Kierzek

Quasi Steady State Petri Net (QSSPN)

- 1. Method integrates Petri Net simulations with Flux Balance Analysis using quasi-steady state approximation.
- 2. Slow, dynamic, regulatory processes are modelled by Petri Net
- 3. For each state of regulatory network fast metabolic reactions are assumed to be at steady state.
- 4. Constraint places set flux bounds of FBA fluxes. Objective places execute FBA evaluation of objective functions.

Fisher, Plant, Moore, Kierzek Bioinformatics 29, 3181-3190 (2013)

Propensity function and transition

types.

To allow formulation of general rules involving token number thresholds, we define transition propensity:

$$P_t = c_t \prod_{i=1}^N \mu_i(x_i)$$

where P_t is a propensity function of transition t, c_t is a rate constant, N is the number of pre-places of transition t, x_i is the number of tokens at preplace i and μ_i is the pre-place activity in the transition depending on the pre-place state. The activity function is a look-up table of T thresholds t_i and activities a_i allowing general definition of the preplace contribution to the transition propensity

$$\mu(x) = \begin{cases} x \in [t_1, t_2), & \mu(x) = a_1 \\ x \in [t_i, t_{i+1}), & \mu(x) = a_i \\ & \dots \\ x \in [t_{T-1}, t_T), & \mu(x) = a_T \end{cases}$$

In new version of the software any arithmetic expression involving pre-place states x_i can also be used to calculate propensity P_t

The interpretation of a transition propensity during simulations is dependent on the transition class:

Stochastic transition - propensity is interpreted as the probability density of the transition firing in the next, infinitesimally small, time step. We allow stochastic transitions to be **delayed**.

Continuous transitions – propensity is interpreted as reaction rate.

Immediate transition - fires once whenever its propensity function is different than 0.

In new version of the QSSPN software the following transition classes were added:

Reset transition – sets state of post places to the value specified by arithmetic expression involving pre-place states x_i .

Flux transition has only one pre-place which has to be objective node. It resets state of one post-place to one of FBA solution fluxes.

QSSPN simulation algorithm.

setQSSFbounds() - This function sets the bounds of fluxes in the quasisteady state flux (QSSF) part of the model according to the state of the constraint node.

evaluateObjective() - This function uses Flux Balance Analysis to evaluate the objective function specified by a particular objective node. The objective function is specified as the name of the flux or the name of the metabolite in the QSSF network. If the objective is specified as the flux the linear programming (LP) maximises value of this flux. If the objective is specified as a metabolite, the sum of fluxes producing this metabolite is maximised.

updateObjectiveNode() - This function sets the state of a particular objective node according to the objective function value, thus feeding back information about steady state metabolic capabilities to the dynamic part of the model.

fireDeterministicTransitions(Δt) - Each immediate transition for which propensity function is greater than 0 is fired once. In recent version of the software adaptive timestep Euler algorithm is used to simulate state change of places connected to continous transitions within Δt . All node state updates within this function are executed synchronously.

fireDelayedTransition(t, t_d) - This function returns a Boolean value; the function checks if there are any delayed transitions to be fired in the time interval (t, t+t_d). If there are no delayed transitions scheduled to fire the function returns FALSE. Otherwise, it fires one delayed transition and sets simulation time t to the time t_s at which this transition has been scheduled. The Δt parameter is then set to t_s – t. If there are multiple delayed transitions set to fire in the time interval (t, t+t_d) the transition that is scheduled at the earliest time is fired. After firing the transition the function returns TRUE.

scheduleDelayedTransition(m) - If the stochastic transition m selected to be fired has delay time td greater than 0 this function adds the transition to the list of delayed transi-tions to be fired. The transition is scheduled to fire at time ts = t + td.

QSSPN = HPN + FBA

Qualitative gene expression model

Fisher, Plant, Moore, Kierzek Bioinformatics 29, 3181-3190 (2013)

The model of bile acid homeostasis in human hepatocyte.

UNIVERSITY OF

Hepatocyte QSSPN Model					
Petri net Places	206				
Enzymes	6				
Transporters	9				
Nuclear Receptors	6				
Petri net Transitions	214				
Hepatocyte-specific Reactions	2539				
Enzymatic	953				
Transport	1454				
Hepatocyte-specific Metabolites	777				
Reactions dynamically regulated	11.1%				

Fisher, Plant, Moore, Kierzek Bioinformatics 29, 3181-3190 (2013)

Model validation

Fraction of trajectories exhibiting dynamic qualitative behaviour of interest has been compared with experimental data of Song and Chiang, Hepatology 2009.

www.surrey.ac.uk

Fisher, Plant, Moore, Kierzek Bioinformatics 29, 3181-3190 (2013)

Model validation

Supplemental,	Table 1101 Comparison of benavious exhibited by experimental data and sind		·				
Molecule	Experimental data	Experimental behaviour	Simulation behaviour				
FGF19	Relative amount after treatment with GW4064 for 0, 0.6, 1, 3, 6, 24 hours	activation	activation				
transcript	(Section 4.2.1).	activation	activation				
CYP7A1	Relative amount after treatment with GW4064 for 0, 0.6, 1, 3, 6, 24 hours	inhibition	inhibition				
transcript	(Section 4.2.2).	limotion	limonon				
SHP tran-	Relative amount after treatment with GW4064 for 0, 0.6, 1, 3, 6, 24 hours	based	buest				
script	(Section 4.2.3).	ourst	ourst				
HNF4α	Relative amount after treatment with GW4064 for 0, 0.6, 1, 3, 6, 24 hours	constant	constant				
transcript	(Section 4.2.4).	constant	constant				
CYP7A1	Relative amount after treatment with FGF19 for 0, 0.6, 1, 3, 6, 24, 48 hours	inhibition	inhibition				
transcript	(Section 4.2.5).	limitotion					
SHP tran-	Relative amount after treatment with FGF19 for 0, 0.6, 1, 3, 6, 24, 48 hours	burget	buyet				
script	(Section 4.2.6).	ourst	ourst				
CYP7A1	Relative amount with respect to untreated control after treatment with FGF19	deoreose	deoreose				
transcript	(Section 4.2.7)	decrease	decrease				
CYP7A1	Relative amount with respect to untreated control after treatment with SHP	inoransa	ingrange				
transcript	siRNA (Section 4.2.8)	liferease	liferease				
CYP7A1	Relative amount with respect to untreated control after treatment with SHP	deoreose	deoreose				
transcript	siRNA and FGF19 (Section 4.2.9)	decrease	decrease				
SHP tran-	Relative amount with respect to untreated control after treatment with FGF19	agual	aqual				
script	(Section 4.2.10)	equal	equai				
CYP7A1	Relative amount with respect to GW4064 treatment after FGF19 antibody	inorance	equal				
transcript	treatment (Section 4.2.11)	liferease	equai				
CYP7A1	Relative amount with respect to GW4064 treatment after FGFR4 siRNA	increase	equal				
transcript	(Section 4.2.12)	literease	equar				
Chenodiol	Physiological response to rise of cholesterol. (Section 4.2.13)	burst	burst				
Cholate	Physiological response to rise of cholesterol. (Section 4.2.13)	burst	burst				
		·					
Number of Tr	ue Positive predictions (TP)		12				
Number of True Negative predictions (TN) 42							
Number of Fa	Number of False Positive predictions (FP) 2						
Number of Fa	lse Negative predictions (FN)		2				
Matthews Co	rrelation Coefficient (MCC)		0.812				

Supplementary Table 4.16. Comparison of behaviours exhibited by experimental data and simulation results.

Fisher, Plant, Moore, Kierzek Bioinformatics 29, 3181-3190 (2013)

Mechanistic simulation of genotype-

Colour spectrum represents fraction of trajectories exhibiting behaviour of interest. Increasing colour intensity represents higher fraction of trajectories. The knockdown/behaviour pairs where fractions are within 95% CIs of WT are assigned the same colour as WT.

Model of signalling pathways regulating translation in mammalian cells.

Significant predictive power evaluated by comparison with comprehensive benchmark of literature data on signalling network inhibitors (MCC = 0.45)

Work of David Taylor.

300 molecular species, 241 interactions based on 1,158 literature references.

Reachability of molecular targets under experimental conditions (input) studied by Statistical Model Checking.

Colour reflect the change in the number of transition firings resulting from application of Ku0063794 inhibitor of mTOR pathway.

Simulation led to hypotheses that were experimentally validated.

Manuscript in preparation.

Formal verification of qualitative QSSPN model.

All possible sequences of transitions (reachability graph) are examined to prove that certain behaviour is not feasible.

Marek Grabowski (University of Warsaw, now Google), Ciaran P. Fisher, Nick J. Plant, J. Bernadette Moore, Andrzej M. Kierzek, Jacek Sroka (University of Warsaw). Formal verification of dynamic behaviour existence in molecular networks describing gene regulation, signalling and whole-cell metabolism. (in preparation). WWW.SUrrey.ac.uk

Multi-scale, multi-formalism simulation.

Nilgun Sahin

Andrzej Kierzek

Hans Westerhoff

Nick Plant

The dynamic model of cortisol mediated signalling integrated with Recon 2 FBA model of human metabolism and PBPK models.

Multi-scale, multi-formalism simulation to integrate existing models.

Physiologically Based Pharmacokinetic Models (PBPK)

Atox for 3 subjects

PBPK model of drug A and its toxic liver metabolite Atox detoxified through GSH conjugation (e.g. paracetamol and NAPQI).

Model structure and parameters adapted from Jones and Rowland Yeo 2013 CPT: Pharmacometrics & Systems Pharmacology Volume 2, Issue 8, pages 1–12, August 2013.

Simulation in qsspn.

Integration of molecular network models with PBPK.

Expanding Pharmacogenomics by 2192 genes. Expanding DDI analysis by 7440 potential targets. Enabling incorporation of ~omics data.

FVA simulation: 127 reactions affect glutathione production. Recon 2 model constrained by ~200 exametabolome fluxes from Jain et al, Science, 2012

www.surrey.ac.uk

CTH

MUFINS: <u>Multi-F</u>ormalism <u>Interaction Networks Simulator</u>.

http://sysbio3.fhms.surrey.ac.uk/mufins/

Manuscript in third stage of review in NPJ: Systems Biology & Applications.

Acknowledgements

MUFINS software

Huihai Wu (Surrey) Axel von Kamp (Max Planck Institute) Vytautas Leoncikas (Surrey) Wataru Mori (Yamaguchi University) Nilgun Sahin (Free University Amsterdam) Albert Gevorgyan (MedImmune) Catherine Linley (Surrey), Marek Grabowski (University of Warsaw, Google) Ahmad A. Mannan (ICL) Nicholas Stoy (Surrey) Graham R. Stewart (Surrey) Lara T. Ward (AstraZeneca) David J.M. Lewis (Surrey) Jacek Sroka (University of Warsaw) Hiroshi Matsuno (Yamaguchi University) Steffen Klamt (Max Planck Institute) Hans V. Westerhoff (University of Manchester) Johnjoe McFadden (Surrey) Nicholas J. Plant (Surrey) Andrzej M. Kierzek (Surrey)

Cancer

Amy Barber (Surrey) Agnieszka Michael (Surrey) Hardev Pandha (Surrey) Rosalind Eeles (ICR, Sutton)

Liver

Elaina Maldonado (Surrey) Ciaran Fisher (Simcyp, a Certara company) Bernadette Moore (University of Leeds)

Funding

CERTAR

sım#C

Tuberculosis

Tom Mendum (Surrey) Dany Beste (Surrey)

