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Introduction

m Biological models are steadily increasing in their size and
complexity
m advances in systems and molecular biology, in particular through
the high-throughput omic technologies
m arise of multi-scale modelling?
m Smallbone and Mendes? raised issues of large-scale metabolic
models:
“...the inherent stiffness of genome-scale models.”

= demands for faster and more efficient simulation algorithms

'Heiner et al. 2013.
2Smallbone et al. 2013.
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Introduction
Stochastic Petri net

Definition
A stochastic Petri net SPN = (P, T, f,v,mg) is defined as followed
P a finite, non empty set of places O
T a finite, non empty set of transitions [
fr (PxT)U(T x P)) — Ng (weighted directed arcs)
mg: initial state
v: T — H (stochastic firing rate functions) with
H :=Uyer {lulhe : Ng*' = RY}
v(t) = hy for all transitions t € T
Semantic: Continuous Time Markov Chain (CTMC)
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Introduction

Continuous Time Markov Chain

Definition
CTMC is a 3-tuple (R, Q,mg) with R denoting the state space of
the underlying net and myq the initial state.

Q: RXR—>RZO

atnn- |

E(m) = Y ,scr Q(m,m’), exit rate of state s

The probability of a transition ¢ enabled in marking m to fire
(which results in marking m') within n time units is

hy(m) FteT:m -/

0 otherwise .

1— e_Q(mvm/)'n
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Introduction
Standard Firing Rule

Definition
The change in the marking induced by firing transition ¢ is denoted
by

At ={p € tut®: At(p) = f(t,p) — f(p,1)} .
When t in m fires, a new marking m’ = m + At is reached. This is
denoted by m L5 m’. The firing itself does not consume any time
and takes place atomically.
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Introduction

Maximum Firing Rule

A transition ¢ may still be enabled after firing once, i.e. it may fire
in a sequence m —— m/ —— m” 5 ... -5 m" until it is not
enabled any more.

Definition

The number of occurrences of transition ¢ in such a sequence
starting in marking m is named enabledness (concurrency) degree

e |23

The standard firing rule can be extended by the enabledness degree

m' =m + At -edy(m).
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Discrete-time Leap Method

Basic idea
m converting the CTMC into a DTMC by uniformization3
< CTMC = DTMC with implicit Poisson process*

m generating paths through the DTMC is as expensive as for the
CTMC
< leaping over several states

m all enabled and not mutually exclusive transitions are forced to
fire in a leap

m let each transition fire concurrently to itself

3 Jensen 1953; Stewart 1994.

*Sandmann 2008.
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Discrete-time Leap Method ? 9

Transition firing

firing rate = random|0, enablness degree]

m Uniformized DTMC: the number of transitions in any time
interval & has a Poisson distribution with rate A

m Poisson limit theorem
Pois(\) = A =k - pr = B(k, pr)
m Binomial distribution

_ ht(m) )
1—e ™ edy(m) >0

otherwise.

k=edy, pr=
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Discrete-time Leap Method

First order reaction: P1 — P2

Transition firing

Cj) PI - - . —n
I‘I" T1
\ \
O P2 T
(a) PN (b) é-leaping (c) direct method
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Discrete-time Leap Method

Transition firing

Second order reaction: P1 + P2 — P3

%Pl/o b2 . 3
|]_‘| T1 B e s e R ) L
~__ ~_
O P3 T
(a) PN (b) é-leaping (c) direct method
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Discrete-time Leap Method ? 9

Dependent Subnets

m conflicts and sequences
— order of transition firings is important

m generate a weighted random sequence of all transitions in each
step and let them fire (if enabled) sequentially

m modern version of the Fisher—Yates shuffle®

m Bernoulli sampling to realize a shuffling in accordance to
transition weights

m transition weight approximates the expected firing rate, if the
transition would be enabled

wy = Z f(p, t)f(p’t)

pe®t

5Durstenfeld 1964; Fisher et al. 1963.
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Discrete-time Leap Method ? 9

Dependent Subnets

Conflict: P1 — P2 and P1 — P3

R TTTH S
2
L\|__| T1 I]__I T2 :
2
O P2 O P3 "t Yt
(a) PN (b) 4-leaping (c) direct method
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Discrete-time Leap Method

Sequence: P1 — P2 — P3

? pr @ s
L

P2
(a) PN

g
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Dependent Subnets

e — ~
(b) d-leaping (c) direct method
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Discrete-time Leap Method
Algorithm

Require: SPA with initial marking mg, time interval |70, Timaz], time step &
Ensure: marking m at time point Tmaz
1: time T + 19

2: marking m < mo
33T «T
4: while 7 < 7,4, do
5: T, <~ WEIGHTEDRANDOMSHUFFLE(T;.)
6 for all transitions t; € T} do
7 k < ENABLEDNESSDEGREE(t;, m)
8: h < TRANSITIONRATE(t;, m)
9: if £ > 0 then
10: f + BINOMIALSAMPLING(h, (1 — e~ #9))
11: m < m+ f- At
12: end if
13: end for
14: T T+0
15: end while
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Discrete-time Leap Method ? 9

Caveat

Simplified birth-death process

D — PL() — P1(D
T1 |— P10 — P1(0.5)

P1
Z(D \ \
\\\

T2

(a) PN (b) d-leaping (c) direct method

The results for different rate constants of T2, i.e. ¢pe = 1 (blue)
and crg = 0.5 (green).
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Case Studies
RKIP inhibited ERK pathway

RafiStar

KKpp_ERK
g \

(&' Mekpp

m non-linear ODE model®, Petri net model”

m stochastic Petri net with 11 places and 11 transitions
connected by 34 arcs

m mass action kinetics with original parameter values

®Cho et al. 2003.

"Gilbert et al. 2006; Heiner et al. 2010.
Christian Rohr (BTU Cottbus) BioPPN 2016 Torun, June 20, 2016 20/ 32




Case Studies
RKIP inhibited ERK pathway
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(a) direct method, N = 100 (b) S-leaping, N = 100
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m ODE model?, Petri
net model®?

m stochastic Petri net
with 22 places and
30 transitions
connected by 90 arcs

®m mass action kinetics
with original
parameter values

Case Studies

Mitogen-activated Protein Kinase

RasGTP

?Levchenko et al. 2000.
bHeiner et al. 2008.
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Case Studies

Mitogen-activated Protein Kinase

— Phasel
£ 5 —
z z S
1 1
20 40 60 80 100 20 40 60 80 100
Time Time
(a) direct method, N = 10 (b) S-leaping, N = 10
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Case Studies
E.coli K-12 Core Metabolic model

m FBA model?, Petri
net model®? 10

m stochastic Petri net
with 93 places and
172 transitions
connected by 589 arcs

10"

m mass action kinetics
with unknown
parameter values 10 |

10 0 30 40 50 60

aOrth et aI. 2010. connectivity of places
®Gilbert et al. 2016.

# of places with same connectivity
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Case Studies

E.coli K-12 Core Metabolic model
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(a) direct method, N = 100
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Case Studies

E.coli K-12 Genome Scale Metabolic model

m FBA model?, Petri
net model?

10

m stochastic Petri net
with 2046 places and
3703 transitions
connected by 13001
arcs

LA

2

# of places with same connectivity

<

m mass action kinetics
with unknown
parameter values ol 1

0 200 400 600 800 1000 1200
connectivity of places

?Monk et al. 2013.
bGilbert et al. 2016.
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Case Studies

E.coli K-12 Genome Scale Metabolic model

/ — M _tdeACP ¢ — M _tdeACP ¢
[ — M ttdcap_c B — M ttdcap_c
‘ == M ttdceap ¢ — M ttdceap ¢
M sufbed ¢ M sufbed ¢
— M_thmmp ¢ “= M _thmmp ¢
P <
2 2
5 =y
fﬁ:g
. T
[ e A T —|
0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Time Time
(a) direct method, N = 100 (b) S-leaping, N = 100
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Case Studies

Comparison

Run-times for the direct method (a) and J-leaping (b).
1 is placed, if the simulation did not finish in reasonable time (>40 days).

model N 1 run 10 runs 100 runs 100000 runs
a b a b a b a b
ERK 10 <ls <ls <ls <ls <ls <ls 9s 35s
ERK 100 <ls <ls <ls <ls <ls <ls 1m21s 46s
ERK 1000 <ls <ls <ls <ls <ls <ls 13m27s 1mbs
MAPK 1 <1s <1s <1s <ls <ls <ls 12s Im7s
MAPK 10 <ls <ls <ls <ls <ls <ls 1m47s 2mls
MAPK 100 <ls <ls <ls <ls <ls <ls 16m50s  2m38s
E.coli core 50 13s <1ls | 2mls 3s 50m8s 50s i 11h20m
E.coli core 100 | 1Im47s <1s| 18mé4s 3s 6h56m 56s i 11h50m
E.coli core 500 | 46m30s <1s | 10h31m 4s 7d10h  1ml2s T 14h10m
E.coli K-12 50 | 18h33m 9s | 10d16h 1m31s T 33m1ls T 12d13h
E.coli K-12 100 2d17h 9s 40d7h  1m32s t 33m4s i 12d14h
E.coli K-12 500 T 9s T 1m32s T 33m20s i 13d12h
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Conclusion

m efficient simulation algorithm for larger and dense networks

m less sensitive to higher number of tokens and thus higher
transition rates

m suitable for in silico experiments, i.e. knock-out scenarios of
certain species or reactions

m implemented and available in Snoopy and MARCIE
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Outlook

m improve transition weight heuristic
m improve accuracy by adaptive ¢ selection
m apply on further case studies
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Thank you for your attention!

http://www-dssz.informatik.tu-cottbus.de
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