Discrete-time leap method for stochastic simulation

Christian Rohr

Department of Computer Science Brandenburg University of Technology Cottbus-Senftenberg

Workshop on Biological Processes & Petri Nets 2016

Torun

June 20, 2016

2 Discrete-time Leap Method

3 Case Studies

4 Conclusion & Outlook

Christian Rohr (BTU Cottbus)

2 Discrete-time Leap Method

3 Case Studies

4 Conclusion & Outlook

Christian Rohr (BTU Cottbus)

- Biological models are steadily increasing in their size and complexity
 - advances in systems and molecular biology, in particular through the high-throughput omic technologies
 - arise of multi-scale modelling¹
- Smallbone and Mendes² raised issues of large-scale metabolic models:
 - "... the inherent stiffness of genome-scale models."
- \Rightarrow demands for faster and more efficient simulation algorithms

¹Heiner et al. 2013.

²Smallbone et al. 2013.

Definition

A stochastic Petri net $\mathcal{SPN}=(P,T,f,v,m_0)$ is defined as followed

- P a finite, non empty set of places \bigcirc
- $T\,$ a finite, non empty set of transitions \Box
- $f: \ ((P \times T) \cup (T \times P)) \to \mathbb{N}_0 \text{ (weighted directed arcs)}$

m_0 : initial state

- $\begin{aligned} v \colon T \to H \text{ (stochastic firing rate functions) with} \\ H := \bigcup_{t \in T} \left\{ h_t | h_t : \mathbb{N}_0^{|\bullet t|} \to \mathbb{R}^+ \right\} \\ v(t) = h_t \text{ for all transitions } t \in T \end{aligned}$
- Semantic: Continuous Time Markov Chain (CTMC)

Continuous Time Markov Chain

Definition

CTMC is a 3-tuple (R, \mathbf{Q}, m_0) with R denoting the state space of the underlying net and m_0 the initial state.

$$\mathbf{Q}: \ R \times R \longrightarrow \mathbb{R}_{\geq 0}$$
$$\mathbf{Q}(m, m') = \begin{cases} h_t(m) & \exists t \in T : m \xrightarrow{t} m' \\ 0 & \text{otherwise} \end{cases}$$

 $E(m) = \sum_{m' \in R} \mathbf{Q}(m,m')$, exit rate of state s

The probability of a transition t enabled in marking m to fire (which results in marking m') within n time units is

$$1 - e^{-\mathbf{Q}(m,m') \cdot n}$$

Definition

The change in the marking induced by firing transition t is denoted by

$$\Delta t = \{ p \in {}^{\bullet}t \cup t^{\bullet} \colon \Delta t(p) = f(t,p) - f(p,t) \} .$$

When t in m fires, a new marking $m' = m + \Delta t$ is reached. This is denoted by $m \xrightarrow{t} m'$. The firing itself does not consume any time and takes place atomically.

A transition t may still be enabled after firing once, i.e. it may fire in a sequence $m \xrightarrow{t} m' \xrightarrow{t} m'' \xrightarrow{t} \dots \xrightarrow{t} m^n$ until it is not enabled any more.

Definition

The number of occurrences of transition t in such a sequence starting in marking m is named *enabledness* (concurrency) degree

$$\operatorname{ed}_t = \min_{p \in \bullet_t} \left(\left\lfloor \frac{m(p)}{f(p,t)} \right\rfloor \right).$$

The standard firing rule can be extended by the enabledness degree

$$m' = m + \Delta t \cdot \operatorname{ed}_t(m).$$

Christian Rohr (BTU Cottbus)

2 Discrete-time Leap Method

4 Conclusion & Outlook

Christian Rohr (BTU Cottbus)

Discrete-time Leap Method

Basic idea

- converting the CTMC into a DTMC by uniformization³ \hookrightarrow CTMC \equiv DTMC with implicit Poisson process⁴
- generating paths through the DTMC is as expensive as for the CTMC
 - \hookrightarrow leaping over several states
- all enabled and not mutually exclusive transitions are forced to fire in a leap
- let each transition fire concurrently to itself

⁴Sandmann 2008.

³Jensen 1953; Stewart 1994.

Discrete-time Leap Method Transition firing

firing rate $\approx random[0, enablness degree]$

- Uniformized DTMC: the number of transitions in any time interval δ has a Poisson distribution with rate λ
- Poisson limit theorem

$$\operatorname{Pois}(\lambda) \Longrightarrow \lambda = k \cdot pr \Longrightarrow \mathcal{B}(k, pr)$$

Binomial distribution

$$k = \mathrm{ed}_t, \ pr = \begin{cases} 1 - e^{-\frac{h_t(m)}{\mathrm{ed}_t(m)} \cdot \delta} & \mathrm{ed}_t(m) > 0\\ 0 & otherwise. \end{cases}$$

Christian Rohr (BTU Cottbus)

First order reaction: $P1 \rightarrow P2$

Second order reaction: $P1 + P2 \rightarrow P3$

Discrete-time Leap Method Dependent Subnets

- conflicts and sequences
 - \hookrightarrow order of transition firings is important
- generate a weighted random sequence of all transitions in each step and let them fire (if enabled) sequentially
- modern version of the Fisher–Yates shuffle⁵
- Bernoulli sampling to realize a shuffling in accordance to transition weights
- transition weight approximates the expected firing rate, if the transition would be enabled

$$w_t = \sum_{p \in \bullet t} f(p, t)^{f(p, t)}$$

⁵Durstenfeld 1964; Fisher et al. 1963.

Conflict: $P1 \rightarrow P2$ and $P1 \rightarrow P3$

Discrete-time Leap Method Dependent Subnets

Sequence: $P1 \rightarrow P2 \rightarrow P3$

Discrete-time Leap Method Algorithm

Require: SPN with initial marking m_0 , time interval $[\tau_0, \tau_{max}]$, time step δ **Ensure:** marking m at time point τ_{max}

```
1: time \tau \leftarrow \tau_0
 2: marking m \leftarrow m_0
 3: T_r \leftarrow T
 4: while \tau < \tau_{max} do
 5:
          T_r \leftarrow \text{WEIGHTEDRANDOMSHUFFLE}(T_r)
 6:
          for all transitions t_i \in T_r do
 7:
               k \leftarrow \text{ENABLEDNESSDEGREE}(t_i, m)
               h \leftarrow \text{TRANSITIONRATE}(t_i, m)
 8:
 <u>9</u>.
               if k > 0 then
                    f \leftarrow \text{BINOMIALSAMPLING}(h, (1 - e^{-\frac{h}{k} \cdot \delta}))
10:
11:
                    m \leftarrow m + f \cdot \Delta t_i
12:
               end if
13:
          end for
14: \tau \leftarrow \tau + \delta
15: end while
```

Discrete-time Leap Method

Simplified birth-death process

The results for different rate constants of *T2*, i.e. $c_{T2} = 1$ (blue) and $c_{T2} = 0.5$ (green).

Christian Rohr (BTU Cottbus)

2 Discrete-time Leap Method

3 Case Studies

4 Conclusion & Outlook

Christian Rohr (BTU Cottbus)

RKIP inhibited ERK pathway

- non-linear ODE model⁶, Petri net model⁷
- stochastic Petri net with 11 places and 11 transitions connected by 34 arcs
- mass action kinetics with original parameter values

⁷Gilbert et al. 2006; Heiner et al. 2010.

Christian Rohr (BTU Cottbus)

⁶Cho et al. 2003.

(a) direct method, N = 100

(b) δ -leaping, N = 100

Christian Rohr (BTU Cottbus)

BioPPN 2016

Torun, June 20, 2016 21 / 32

Mitogen-activated Protein Kinase

- ODE model^a, Petri net model^b
- stochastic Petri net with 22 places and 30 transitions connected by 90 arcs
- mass action kinetics with original parameter values

^aLevchenko et al. 2000. ^bHeiner et al. 2008.

Mitogen-activated Protein Kinase

E.coli K-12 Core Metabolic model

- FBA model^a, Petri net model^b
- stochastic Petri net with 93 places and 172 transitions connected by 589 arcs
- mass action kinetics with unknown parameter values

^aOrth et al. 2010. ^bGilbert et al. 2016.

E.coli K-12 Core Metabolic model

Christian Rohr (BTU Cottbus)

BioPPN 2016

Torun, June 20, 2016 25 / 32

E.coli K-12 Genome Scale Metabolic model

- FBA model^a, Petri net model^b
- stochastic Petri net with 2046 places and 3703 transitions connected by 13001 arcs
- mass action kinetics with unknown parameter values

^aMonk et al. 2013. ^bGilbert et al. 2016.

E.coli K-12 Genome Scale Metabolic model

Christian Rohr (BTU Cottbus)

BioPPN 2016

Torun, June 20, 2016 27 / 32

Run-times for the direct method (a) and δ -leaping (b). † is placed, if the simulation did not finish in reasonable time (>40 days).

model	Ν	1 run		10 runs		100 runs		100 000 runs	
		а	b	а	b	а	b	а	b
ERK	10	< 1s	< 1s	<1s	< 1s	<1s	< 1s	9s	35s
ERK	100	< 1s	< 1s	< 1s	< 1s	<1s	< 1s	1m21s	46s
ERK	1000	< 1s	< 1 s	< 1s	< 1s	<1s	< 1s	13m27s	1m5s
MAPK	1	< 1s	< 1s	< 1s	< 1s	<1s	< 1s	12s	1m7s
MAPK	10	< 1s	< 1 s	< 1s	< 1s	<1s	< 1s	1m47s	2m1s
MAPK	100	< 1s	< 1 s	< 1s	< 1s	<1s	< 1s	16m50s	2m38s
<i>E.coli</i> core	50	13s	< 1s	2m1s	3s	50m8s	50s	†	11h20m
<i>E.coli</i> core	100	1m47s	< 1s	18m4s	3s	6h56m	56s	†	11h50m
<i>E.coli</i> core	500	46m30s	< 1s	10h31m	4s	7d10h	1m12s	†	14h10m
E.coli K-12	50	18h33m	9s	10d16h	1m31s	†	33m1s	†	12d13h
E.coli K-12	100	2d17h	9s	40d7h	1m32s	†	33m4s	†	12d14h
E.coli K-12	500	†	9s	†	1m32s	†	33m20s	†	13d12h

2 Discrete-time Leap Method

3 Case Studies

4 Conclusion & Outlook

Christian Rohr (BTU Cottbus)

Conclusion

- efficient simulation algorithm for larger and dense networks
- less sensitive to higher number of tokens and thus higher transition rates
- suitable for in silico experiments, i.e. knock-out scenarios of certain species or reactions
- implemented and available in Snoopy and MARCIE

Outlook

- improve transition weight heuristic
- improve accuracy by adaptive δ selection
- apply on further case studies

Thank you for your attention!

http://www-dssz.informatik.tu-cottbus.de