Analysis of the Signal Transduction Dynamics
Regulating mTOR with Mathematical
Modeling, Petri Nets and Dynamic Graphs
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What is synaptic plasticity?

Normal » Potentiated
synaptic
strength

Neurotransmitter

Presynaptic
terminal
synaptic cleft

- ~20 nm
\u}\v,) {1}

Nat, Ca?*

spine
dendrite

(Image: Alan Woodruff / QBI)




Translation control by the mTOR pathway and its
role 1n late long term potentiation (LTP)
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Synaptic stimulation,
through the mTOR
and p70S6K pathway,
can increase the local

synthesis of proteins
in CA1 neurons and
contributes to the

maintenance phase of
LTP.
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Source : Tsokas et al, J Neuroscience 25, 2005




mTOR, memory and sleep deprivation
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Sleep deprivation impairs memory by attenuating
MTORC1-dependent protein synthesis




The Wnt pathway contributes to the activation
of mTOR during LTP
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Akt and Wnt mediate the phosphorylation
of p70S6K (target of mTOR)
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Prolonged activation of mTOR and
p70S6K following the induction of LTP
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Questions

* What 1s the contribution of the Akt and Wnt
signaling pathways to the activity of mTOR?

What signaling mechanisms (i.e. network of

regulatory motifs) can the activity of
mTOR and p70S6K and thus create the
window for synaptic capture?

Can modeling and simulation suggest some
answers”?




Methodology

The dynamic behavior of biological systems and their
processes depends largely on the interaction of
regulatory mechanisms.

Negative feedback loop

Feedforward motif




Methodology

* Modeling — FLAB]IC]
Tk, +[C]

 Simulation

 Systems analysis with dynamics graphs




Dynamic graphs

1. Transtorm ODEs into a Petri net.

b1
B-Raf €FPKA

K ]
MEK
v &
MAPK »-PTP

SEC

Compartment Resction Parameters References and

cytoplasmic reactions.

PDE4-> AP

VP + highKm_PDE -> AP

MEK + BRAF _active




Dynamic graphs

1. Transform ODEs into a Petri net.

2. Find P-invariants and compute an

interaction graph.

— Verify mass conservation condition and identify
marking invariants ( = different configurations of the

same molecular component)
— Determine connectivity between invariants.

I. P, N P, #@; the P-invariants P, and P have at least one place in common, or

2. EII (W(pl t)>0AW(t, p2) > O)\/(W(pv t)>0AW(t, p1) > 0), where p| €
P..ppeP,,teT and W:((P xT)U(T x P)— N); the places p; and p»
from the P-invariants P/ and P! are connected through transition  from the set
of transitions 7. W is the multiset of arcs of the Petri net.










Dynamic graphs

1. Transtorm ODEs into a Petri net.

2. Find P-invariants and compute an
interaction graph.

3. Find T-invariants within P-invariant
subnets and perform union operation of
invariants sharing transitions.
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Dynamic graphs

. Transtorm ODEs into a Petri net.

. Find P-invariants and compute an
interaction graph.

. Find T-invariants within P-invariant
subnets and perform union operation of
invariants sharing transitions.

. Compute influence graph (algorithm still
in development to accomodate models
with complex regulation).




For a signaling network, the
influence graph shows the
activation and inhibition
interactions between nodes
(molecules) as the signal
propagates from a source.

Most nodes correspond to
more than one variable (place).

Most edges correspond to
more than one flux (transition).




Dynamic graph

I The simulation data from the
(o) mathematical model that 1s
numerically solved can then be
color coded onto the influence
graph to create a dynamic
representation of the model. A

systems view.
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Building a model of a regulatory network
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Signaling patways
of the model

1. Electrical stimulation
causes calcium influx.

2. Calcium activates the Akt
pathway.

3. Calcium causes Wnt
exocytosis.

4. Akt and Wnt interact in
the regulation of GSK3 and
TSC2.




Ca_cell cell

CaM cell
wnt_cell Betacatenin_APC_cell

CaM_Ca4_cell

ca3_cell
= TCF_cel

Dsh_cell
CaM_GEF_cell

GEF_cell
RasGDP_cell

RasGAP_cell Betacaterin_TC

PI3K_act_cell PI3K cell

Akt cell PP2A cell

Akt_memb_cell

Batacatenin_p_APC_p_Axin_p_

PTEN_cell PDKL

PHLPP cell

1 _TSCZ S1337_cell

TSC1_TSC2 _‘_D//‘”).

+7 TSC1_TSC2_S1337_T1462_cell

Model from first iteration:
Akt pathway from Jain and Bhalla

Rheb GTP

. Wnt pathway from Tan et al.

mTOR_ipact \TOR




Model 1: Simulation results
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Model 1: Simulation results
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Different values of the kcat parameter of the phosphorylation of
TSC2 by GSK3 modifies the balance between the Akt and Wnt

inputs on the activity of mTOR.




Model 1 failed to reproduce
experimental data
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Model 2: Simulation results
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With the modifications, the model 1s now 1n good
agreement with experimental data.
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Conclusion

* There are still controversial issues around the Wnt pathway
because of conflicting experimental results. A tighter
integration than expected of the two pathways in the model
was needed to reproduce experimental data.

The Akt-GSK3-TSC2 feedforward motif can behave as a

coincidence detector (an AND logical gate) only under certain
conditions.

— Abundance of APC




APC 1n neurons
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“Our finding that APC is expressed at high levels in neuronal cell
bodies, dendrites and axons raise the possibility that this tumor

suppressor protein may help regulate b-catenin signalling in multiple
neuronal compartments.”




Conclusion

There are still controversial issues around the Wnt pathway
because of conflicting experimental results. A tighter
integration than expecteg of the two pathways in the model
was needed to reproduce experimental data.

The Akt-GSK3-TSC2 feedforward motif can behave as a

coincidence detector (an AND logical gate) only under certain
conditions.

— Abundance of APC

A better understanding of the regulatory network with
modeling and simulation can lead to better experiments.

Future work: complete the dynamic graph algorithm, adding
the ERK pathway and the target of mTOR, p70S6K.
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