BIOMODEL ENGINEERING FOR SYSTEMS AND SYNTHETIC BIOLOGY

MONIKA HEINER

BRANDENBURG TECHNICAL UNIVERSITY COTTBUS-SENFTENBERG
COMPUTER SCIENCE INSTITUTE

SYSTEMS BIOLOGY

monika.heiner@b-tu.de

July 2016

colours distorted

monika.heiner@b-tu.de

July 2016

Protein A rises, then falls before rising again.

Protein B starts decreasing after the first peak of A until it reaches its steady state.

Protein C peaks between the two peaks of A.

Protein A rises, then falls before rising again.

Protein B starts decreasing after the first peak of A until it reaches its steady state.

Protein C peaks between the two peaks of A.

■ Semi-qualitative

Protein rises then falls to less than 50% of its peak concentration.

Protein A rises, then falls before rising again.

Protein B starts decreasing after the first peak of A until it reaches its steady state.

Protein C peaks between the two peaks of A.

■ Semi-qualitative

Protein rises then falls to less than 50% of its peak concentration.

■ Semi-quantitative

Protein rises then falls to less than 50% of its peak concentration at 60 minutes.

Protein A rises, then falls before rising again.

Protein B starts decreasing after the first peak of A until it reaches its steady state.

Protein C peaks between the two peaks of A.

■ Semi-qualitative

Protein rises then falls to less than 50% of its peak concentration.

■ Semi-quantitative

Protein rises then falls to less than 50% of its peak concentration at 60 minutes.

Quantitative

Protein rises then falls to less than 100 microMol at 60 minutes.

Protein A rises, then falls before rising again.

Protein B starts decreasing after the first peak of A until it reaches its steady state.

Protein C peaks between the two peaks of A.

■ Semi-qualitative

Protein rises then falls to less than 50% of its peak concentration.

□ Semi-quantitative

Protein rises then falls to less than 50% of its peak concentration at 60 minutes.

Quantitative

Protein rises then falls to less than 100 microMol at 60 minutes.

Models explaining these observations?

MODELLING = FORMAL KNOWLEDGE REPRESENTATION

monika.heiner@b-tu.de

July 2016

MODELLING = FORMAL KNOWLEDGE REPRESENTATION

MODEL VALIDATION = CONFIDENCE INCREASE

MODELLING FORMAL KNOWLEDGE REPRESENTATION formalizing wetlab experiments understanding observed behaviour natural model model biosystem (knowledge) validation predicted analysis simulation model-based behaviour experiment design

MODEL VALIDATION = CONFIDENCE INCREASE

monika.heiner@b-tu.de July 2016

MODELLING = FORMAL KNOWLEDGE REPRESENTATION

MODEL VALIDATION = CONFIDENCE INCREASE

MODELLING = BLUEPRINT FOR SYSTEM CONSTRUCTION

monika.heiner@b-tu.de

July 2016

MODELLING = BLUEPRINT FOR SYSTEM CONSTRUCTION

RELIABLE AND ROBUST ENGINEERING REQUIRES VERIFIED MODELS

monika.heiner@b-tu.de July 2016

WHAT KIND OF MODEL SHOULD BE USED?

(BIOCHEMICAL NETWORKS)

monika.heiner@b-tu.de July 2016

monika.heiner@b-tu.de July 2016

[Reddy 1993]

[Reddy 1993]

$$\begin{array}{lll} \frac{d\alpha}{dt} = -v_1 & v_1 = \alpha[t] \cdot Barl_{active}[t] \cdot k_1 \\ \frac{dSte2}{dt} = -v_2 + v_3 - v_5 & v_2 = Ste2[t] \cdot \alpha[t] \cdot k_2 \\ \frac{dSte2_{active}}{dt} = v_2 - v_3 - v_4 & v_4 = Ste2_{active}[t] \cdot k_3 \\ \frac{dSte2_{active}}{dt} = v_46 - v_{47} & v_5 = Ste2[t] \cdot k_5 \\ \frac{dG\alpha\beta\gamma}{dt} = -v_6 + v_9 & v_6 = Ste2_{active}[t] \cdot k_6 \\ \frac{dG\alpha\beta\gamma}{dt} = v_6 - v_7 - v_8 & v_7 = G\alphaGP[t] \cdot k_7 \\ \frac{dG\alpha\beta\rho}{dt} = v_7 + v_8 - v_9 & v_8 = G\alphaGP[t] \cdot Sst2_{active}[t] \cdot k_8 \\ \frac{dG\alpha\beta\rho}{dt} = v_6 - v_9 - v_{10} + v_{11} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte3}{dt} = -v_{12} + v_{13} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte5}{dt} = -v_{14} + v_{15} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dFus3}{dt} = -v_{14} + v_{15} + v_{17} + v_{21} + v_{23} + v_{25} + v_{27} - v_{29} \\ \frac{dFus3}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21} + v_{23} + v_{25} + v_{27} + v_{32} \\ \frac{dSte20}{dt} = -v_{18} + v_{19} + v_{21}$$

$$\frac{d\alpha}{dt} = -\nu_1 \\ \frac{dSte2}{dt} = -\nu_2 + \nu_3 - \nu_5 \\ \frac{dSte2}{dt} = -\nu_2 + \nu_3 - \nu_5 \\ \frac{dSte2_{active}}{dt} = \nu_2 - \nu_3 - \nu_4 \\ \frac{dSte2_{active}}{dt} = \nu_4 - \nu_4 \\ \frac{dG\alpha\beta\gamma}{dt} = \nu_6 - \nu_7 \\ \frac{dG\alphaGDP}{dt} = \nu_6 - \nu_7 - \nu_8 \\ \frac{dG\alphaGDP}{dt} = \nu_7 + \nu_8 - \nu_9 \\ \frac{dG\beta\gamma}{dt} = \nu_6 - \nu_9 - \nu_1 + \nu_1 + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} + \nu_{32} \\ \frac{dSte3}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} + \nu_{32} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{23} + \nu_{25} + \nu_{27} - \nu_{29} \\ \frac{dF\alpha}{dt} = -\nu_{14} + \nu_{15} + \nu_{17} + \nu_{21} + \nu_{22} + \nu_{25}$$

-> PROBLEM 1

- -> uncertain
- -> growing, changing
- -> distributed over independent data bases, papers, journals, . . .

-> PROBLEM 1

- -> uncertain
- -> growing, changing
- -> distributed over independent data bases, papers, journals, . . .
- **□** various, mostly ambiguous representations

-> PROBLEM 2

- -> verbose descriptions
- -> diverse graphical representations
- -> contradictory and / or fuzzy statements

-> PROBLEM 1

- -> uncertain
- -> growing, changing
- -> distributed over independent data bases, papers, journals, . . .
- **□** various, mostly ambiguous representations

-> PROBLEM 2

- -> verbose descriptions
- -> diverse graphical representations
- -> contradictory and / or fuzzy statements
- network structure

-> PROBLEM 3

- -> tend to grow fast
- -> dense, apparently unstructured
- -> hard to read

-> PROBLEM 1

- -> uncertain
- -> growing, hand g
 -> distributed over independent data bases, papers, journals, . . .
- □ various, mostly ambiguous representations
 - -> prb se scrip ons
 - -> ra hica representa
 - -> ontrac<mark>pion an / or uzz satemen</mark>
- network structure

-> PROBLEM 3

-: tend to grow fact
-: cease, appare atly a structured SSUDDIO
-: I and to read

monika.heiner@b-tu.de

- ☐ readable & unambigious
 - -> fault avoidant model construction
- various abstraction levels
- □ locality causality concurrency
- compositional

- □ readable & unambigious
 - -> fault avoidant model construction
- various abstraction levels
- □ locality causality concurrency
- compositional
- executable
 - -> to experience the model, spec. causality
- analysable, with unifying power
 - -> formal = mathematical representations
 - -> high-level description for various analysis approaches

- readable & unambigious
 - -> fault avoidant model construction
- various abstraction levels
- □ locality causality concurrency
- compositional
- executable
 - -> to experience the model, spec. causality
- analysable, with unifying power
 - -> formal = mathematical representations
 - -> high-level description for various analysis approaches
- AS SIMPLE AS POSSIBLE
 - -> how many model types do we need?

MODELLING = ABSTRACTION

- □ hierarchical organisation of components -> model variables genes, molecules, organelles, cells, tissues, organs, organisms
- ☐ functionality of atomic events

chemical reactions with/out stoichiometry, conformational change, transport, . . .

hierarchical organisation of components -> model variables
 genes, molecules, organelles, cells, tissues, organs, organisms
 functionality of atomic events

chemical reactions with/out stoichiometry, conformational change, transport, . . .

- ☐ time qualitative versus quantitative models
- individual vs population behaviour

hierarchical organisation of components -> model variables genes, molecules, organelles, cells, tissues, organs, organisms
functionality of atomic events chemical reactions with/out stoichiometry, conformational change, transport,
time qualitative versus quantitative models
individual vs population behaviour
(hierarchical) space

hierarchical organisation of components -> model variables genes, molecules, organelles, cells, tissues, organs, organisms
functionality of atomic events chemical reactions with/out stoichiometry, conformational change, transport,
time qualitative versus quantitative models
individual vs population behaviour
(hierarchical) space
shape and volume of components
biosystem development

A USE CASE (LET'S LOOK IN THE FUTURE)

MEDICAL TREATMENT

MEDICAL TREATMENT, APPROACH 1- TRIAL-AND-ERROR DRUG PRESCRIPTION

MEDICAL TREATMENT, APPROACH 1- TRIAL-AND-ERROR DRUG PRESCRIPTION

MEDICAL TREATMENT, APPROACH 1- TRIAL-AND-ERROR DRUG PRESCRIPTION

MEDICAL TREATMENT, APPROACH 2

