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Abstract

Colored Petri nets are an excellent formalism for modeling and analyzing complex sys-
tems. In Snoopy, we have implemented functionalities for editing, and animating/simu-
lating colored qualitative Petri nets (QPN C), colored stochastic Petri nets (SPN C), col-
ored continuous Petri nets (CPN C), and colored generalized hybrid Petri nets (GHPN C).
In this manual, we demonstrate how to construct colored Petri nets step by step using
a simple example and describe some key modeling problems, e.g. automatic coloring
Petri nets, specifying initial markings, or specifying rate functions. We also give our
annotation language and describe how to use this language to declare or define inscrip-
tions of colored Petri nets, e.g. color sets, arc expressions or guards. In addition, we
describe the animation, simulation, and analysis of colored Petri nets and show possible
import/export relationships among different net classes. Finally, we give some examples
to demonstrate the application of colored Petri nets. In summary, this manual contains a
number of relevant materials for understanding, constructing, simulating and analyzing
colored Petri nets so that the user will have no difficulties in using colored Petri nets.

∗Please sent all questions, comments and suggestions how to improve this material to this address.
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1 Introduction

Petri nets provide a formal and clear representation of systems based on their firm math-
ematical foundation for the analysis of system properties. However, standard Petri nets
do not easily scale. So attempts to simulate systems by standard Petri nets have been
mainly restricted so far to relatively small models. They tend to grow quickly for model-
ing complex systems, which makes it more difficult to manage and understand the nets,
thus increasing the risk of modeling errors. Two known modeling concepts improving
the situation are hierarchy and color. Hierarchical structuring has been discussed a lot,
while the color has gained little attention so far. Thus, we investigate how to apply
colored Petri nets to modeling and analyzing biological systems. To do so, we not only
provide compact and readable representations of complex systems, but also do not lose
the analysis capabilities of standard Petri nets, which can still be supported by automatic
unfolding. Moreover, another attractive advantage of colored Petri nets for a modeler
is that they provide the possibility to easily increase the size of a model consisting of
many similar subnets just by adding colors.

In Snoopy, we have implemented prototypes for editing, and animating/simulating
colored qualitative Petri nets (QPN C), colored stochastic Petri nets (SPN C), colored
continuous Petri nets (CPN C), and colored generalized hybrid Petri nets (GHPN C). In
this manual, we will give relevant materials for understanding, constructing, simulating
and analyzing colored qualitative/stochastic/continuous/hybrid Petri nets, so that the
user will have no difficulties in using colored Petri nets. In this manual, we concentrate on
color-specific features; see [HRR+08], [RMH10], and [MRH12] for a general introduction
into Snoopy, and [Liu12] for more background information re the use of colored Petri
nets in systems biology.

1.1 Colored Petri nets

Colored Petri nets [GL79], [GL81], [Jen81], combine Petri nets with capabilities of pro-
gramming languages to describe data types and operations, thus providing a flexible
way to create compact and parameterizable models. In colored Petri nets, tokens are
distinguished by the “color” rather than having only the “black” one. Additionally, arc
expressions, an extended version of arc weights, specify which tokens can flow over the
arcs, and guards that are in fact Boolean expressions define additional constraints on
the enabling of transitions [JKW07].

By way of introduction let us consider Figure 1 which gives a colored Petri net
modeling the well-known textbook example of dinning philosophers. Philosophers sit
around a round table. Between each pair of philosophers there is one fork on the table.
The philosophers either think or eat. In order to eat, they have to take the following
steps: (1) take the left fork, (2) take the right fork and then start eating, (3) put the
right fork back, and (4) put the left fork back. In the colored Petri net model, changing
the number of philosophers means changing the number of colors in the net.

In our implementation, QPN C is a colored extension of qualitative Place/Transition
nets (extended by different kinds of arcs, e.g. inhibitor arc, read arc, reset arc and equal

BTU CSR 02-12 9
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arc [HRR+08]), SPN C is a colored extension of biochemically interpreted stochastic
Petri nets introduced in [GHL07] and extended in [HLG+09], CPN C is a colored exten-
sion of continuous Petri nets introduced in [GHL07], and GHPN C is a colored extension
of generalized hybrid Petri nets introduced in [HH11].

thinking5

1`all()Phils

waitingPhils

eatingPhils

releasingPhils

forks

5
1`all()

Forks

take_left

take_right

put_right

put_left

x

x

x

x

x

x

x

x

left(x)

right(x)

right(x)

left(x)

Declarations:

constant int N=5;

colorset Phils=int with 1-N;

colorset Forks=int with 1-N;

variable x:Phils;

function Forks left(Phils x){x};

function Forks right(Phils x){(x%N)+1};

Figure 1: A colored Petri net modeling dinning philosophers. All declarations are given
on top (see Section 3 for how to read them). all() is a marking function to specify that
all the colors in one color set are set to the same coefficient (here it is 1). See B.2 for a
textual notation of this Petri net.
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1.2 Some notes

In Snoopy, we provide a similar editing environment for QPN C , SPN C , CPN C and
GHPN C ; therefore the following descriptions will equally apply to QPN C , SPN C ,
CPN C and GHPN C , except those concerning animation, simulation and analysis, but
all these differences will be noted clearly.

1.3 Features - overview

Before exploring all features in detail in the following sections, we give a brief overview
for the expected features here.

1.3.1 Features for modeling

• Drawing of the Petri net graph as usual.

• Rich data types for color set definition, see Section 3.1.1.

– Simple types: dot, int, string, bool, enum, index,

– Compound types: product, union.

• Flexible user-defined functions.

• Concise specification of initial marking for larger color sets, see Section 2.4.1.

• Rate function definition for each transition instance (for SPN C/CPN C/GHPN C),
see Section 2.4.3.

• Several extended arc types, such as inhibitor arc, read arc (often also called test
arcs), equal arc, reset arc, and modifier arc, which are popular add-ons enhancing
modeling comfort [HRR+08], see Section 2.4.4.

• Several special transitions. Snoopy supports stochastic transitions with freestyle
rate functions as well as three deterministically timed transition types: immediate
firing, deterministic firing delay, and scheduled firing, see [HLG+09] for details.

• Automatically convert the type of a node or edge to another type.

• Compute and show bindings (instances) for each transition.

• Compute and show token colors and numbers for each place.

• Random Generation of initial marking (only for SPN C), see Section 2.4.2.

• Define auxiliary variables (observers) based on colored places, see Section 2.4.5.

• Automatically colorize some special subnets:

– Colorize any selected subnet,

BTU CSR 02-12 11
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– Colorize twin nets,

– Colorize T-invariants/master nets.

1.3.2 Features for animation (for QPN C/SPN C)

• Running animation automatically or controlling the animation manually.

– Automatic animation,

– Single-step animation by manually choosing a binding.

1.3.3 Features for simulation (for SPN C/CPN C/GHPN C)

• Simulation is done on an automatically unfolded Petri net.

• Show or export simulation results for colored or uncolored places/transitions sep-
arately or together.

• Several simulation algorithms to simulate SPN C , including the Gillespie stochastic
simulation algorithm (SSA) [Gil77].

• Several simulation algorithms to simulate CPN C , including the Euler algorithm,
Runge-Kutta algorithm, etc. [HH11].

1.3.4 Other features

• Highlighting places of the same color set by specifying a true color.

• Highlighting different inscriptions (color sets, marking, arc expressions or guards)
with different colors.

• All colored net classes are exported to different net formalisms within Snoopy (see
Figure 2), see Section 5 for details.

• Export QPN C and SPN C to APNN.

• Export/import beyond Snoopy, e.g. export to CPN tools, see Section 5 for details.
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time-free

timed,
quantitative

discrete state space

continuous state spaceQPN C

QPN

SPN C

SPN

CPN C

CPN

GHPN C

GHPN

molecules/levels
LTS, PO
CTL/LTL

molecules/levels
stochastic rates
CTMC
CSL/PLTLc

concentrations
deterministic rates
ODEs
LTLc

folding

unfolding

abstraction

extension

approximation

molecules and concentrations
stochastic and deterministic rates
CTMC coupled by Markov jumps
PLTLc

Figure 2: Export relationships among different net formalisms.
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2 Modeling

In this section, we will first demonstrate how to construct a colored Petri net and consider
several key modeling problems afterwards.

2.1 General modeling procedure - an introductory example

This section will present a general step-by-step procedure of how to construct a colored
Petri net (QPN C/SPN C/CPN C/GHPN C) on the basis of a standard Petri net. A
simple example will be used for the illustration of the procedure.

2.1.1 Transform a standard Petri net into a colored Petri net

One possibility to construct a colored Petri net is the transformation of an existing stan-
dard Petri net into a QPN C/SPN C/CPN C/GHPN C . The following sections will con-
centrate on SPN C , but all steps can be equally applied to QPN C , CPN C and GHPN C .
We start with the following steps:

• Open a standard SPN (in our example “Copynet.spstochpn”, see Figure 3) that
should be transformed into a colored SPN C .

• Go to the menu bar, select File/Export and choose “Export to colored stochastic
Petri net” (see Figure 4). Define the path where you want to save the transformed
Petri net. All Petri net elements (places, transitions, arcs) and their properties
(markings, rate functions, arc weights) will be used for the construction of the
corresponding colored Petri net.

Figure 3: Open a stochastic Petri net.
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Figure 4: Export to colored stochastic Petri net.

2.1.2 Define similar subnets in the Petri net

We now need to subdivide the Petri net and fold it. We proceed as follows:

• Open the transformed Petri net (shown in Figure 5 ). Please note that the trans-
formed Petri net is now opened in the SPN C environment. The transformation of
the Petri net can be recognized by the assigned default color set Dot to all places
of the original Petri net.

• Define similar subnets contained in the Petri nets. The Petri net shown in Figure 5
can obviously be divided into two subnets. Therefore, the color set that we will
assign to the Petri net consists of two colors. For example: colorset Copy = int
with 1-2. See Section 3.1.1 for how to define color sets.

2.1.3 Define declarations

We have to declare or define the color sets, variables, constants and functions that we
want to apply to our SPN C model. In the first step we define the color set according
to the following procedure:

• Click on the tab “Colorsets” in declarations menu (left sidebar) and the color set
definition dialogue will appear (shown in Figure 6).

• Define name, type (choose one in the drop down list) and colors of your color set.

• Check the syntax to proof your expressions.

For our running examples we will define the color set named “Copy” of the type
integer (shortly int) with the colors 1 and 2 (see Figure 6)

BTU CSR 02-12 15
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Figure 5: The transformed colored Petri net.

Figure 6: Define color sets.
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In the next step we define the variables (shown in Figure 7) that we want to use.
The procedure is analogous to the definition of the color set. In our running examples
we define the variable “x”, whose color set is “Copy” that can be chosen in the drop
down list.

Following the same procedure to declare constants and functions.

Figure 7: Declare variables.

2.1.4 Assign color sets to places and define initial markings

Now we need do apply the defined color set to the places of the colored Petri net.

• Open the “Edit Properties dialog” of a certain place.

• In the General tab, specify the name of a place.

• In the Marking tab, specify the color set in the “Colorset” box and edit the initial
marking in the “MarkingList” (see Figure 8). You can always check the defined
color sets with a click open the button “Colorset”. If you want to apply the same
marking for every color of this place use the function “all()”, which means that all
the colors in this color set are set to the same coefficient (here it is 1). (See Section
2.4.1 for more details on how to define initial markings.)

It is also possible to edit a group of places and set their color set and marking at
once. Just selected the places you want to edit and proceed like above.

• Select a group of places.

• Click Edit—Edit selected elements, and then a dialogue to specify the properties
appear, e.g. see Figure 9 .

• In the Marking tab, specify the color set in the “Colorset” box and edit the initial
marking in the “MarkingList”.

BTU CSR 02-12 17



Liu, Heiner, Rohr

Figure 8: Specify initial marking.

Figure 9: Specify inital markings for a group of places.
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2.1.5 Define arc expressions

In the next step, we define the expression for each arc. (See Section 3.2.2 for how to
write arc expressions.)

• Open the “Edit Properties dialog” of a certain arc.

• In the Expression tab, write the expression, which can be aided by the expression
assistant (Figure 10 ). Please note that this field should not be empty.

Figure 10: Write arc expressions.

In our example, we use the arc weight separated with “`” from the variable x.
You can also edit multiple arcs by selecting a group of arcs and edit them like above.

2.1.6 Define guards for transitions

The guard of a transition can be edited as follows, if they are needed (see also section
Section 3.2.3).

• Open the “Edit Properties dialog” of a transition.

• Write the guard expression in the “Guard” tab (see Figure 11). You have also the
possibility to use the guard assistant to define the guard.

Again, you can edit multiple transitions by selecting a group of transitions.

BTU CSR 02-12 19
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Figure 11: Write guards.

2.1.7 Define rate functions for transitions (for SPN C/CPN C/GHPN C)

You can also edit the rate functions for transitions if they are needed by applying the
following procedure. You have also the possibility to use the rate function assistant to
define the rate functions.

• Open the “Edit Properties dialog” of a transition.

• Write the rate function expression in the “Function” tab (see Figure 12).

See Section 2.4.3 for how to write rate functions. Rate functions are only available
for SPN C , CPN C and GHPN C .

For every mentioned step above there exists a check of the syntax. With the help of
the check function you can find and avoid mistakes. You can find this function in each
dialogue mentioned above.

After applying all the steps to our running example, we obtain the following colored
Petri net model (see Figure 13). We don’t need the right subnetwork anymore, because
we established this copy by assigning a color set consisting of two colors to the left one.
This Petri net is equivalent to the original Petri net of Figure 3. With the help of colored
Petri nets we can easily increase the number of copies by changing the declaration of the
color set instead of creating multiple graphical copies of the same subnet.
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Figure 12: Write rate functions.

Figure 13: The colored Petri net model.
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2.2 Constructing colored Petri nets

Colored Petri nets allow a more compact and parametric representation of a system
by folding similar subnets. So it is possible to represent very concisely systems that
would have required a huge uncolored net. In this section, we will demonstrate how
to construct basic colored Petri net components, so that we can build the whole model
based on these components.

2.2.1 Basic colored Petri net components

The key step in the design of a colored Petri net is to construct basic colored Petri net
units, through which we can obtain the whole colored Petri net model step by step. This
process is also called folding. In the following we will introduce some folding ways to
construct basic colored Petri net components, which are illustrated in Figure 14.

p1 p2 p2p1p CS

p1 p2

p CS

p

CS

t1 t2 t2t1t

t1 t2

t

t

x
x++

(+x)

[x=1](x++

(+x))++

[x=2]x

-->-->

-->

(a)

(c)

(b)

Declarations:

colorset CS = int with 1,2;

variable x : CS ;

(d)

Figure 14: Basic colored Petri net components. For all these three cases, we define the
color set as “CS” with two integer colors: 1 and 2. We use color “1” to represent the
subnet containing p1 and t1, and color “2” to represent the subnet containing p2 and
t2.

Figure 14 (a) shows the folding of two isolated subnets with the same structure.
For this simple case, we only need to assign the color set “CS” to the place. We write
the arc expression as x, where x is a variable of the type “CS”. Thus, we get a basic
colored Petri net component, illustrated on the right hand of Figure 14 (a).

In Figure 14 (b), the net to be folded is extended by two extra arcs from p2 (p1)
to t1 (t2), respectively. To fold it, we use the same color set, and just modify the arc
expression to x + +(+x), where the “+” in the (+x) is the successor operator, which
returns the successor of x in an ordered finite color set. If x is the last color, then it
returns the first color. The “++” is the multiset addition operator.

In Figure 14 (c), the net to be folded gets one extra arc from p2 to t1. To fold it, we
use the same color set, and just modify the arc expression to [x = 1](x++(+x))++[x =
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2]x, meaning: if x = 1, then there are two arcs connecting p with t, while if x = 2, then
there is only one arc connecting p with t.

In summary, the following rules apply when folding two similar nets to a colored
Petri net. If the two subnets share the same structure, we just have to define a color
set and set arc expressions without predicates. If the subnets are similar, but do not
have the same structure, we may need to use guards or arc expressions with predicates.
However, in either case, if we want to continue to add other similar nets, what we should
do is usually to add new colors, and slightly change arc expressions or guards. Using
these basic colored Petri net components, we can construct the whole colored Petri net
model step by step.

2.2.2 Modeling branch and conflict reactions

In this section, we demonstrate how to construct colored models for two special situ-
ations: a branching reaction (One reaction produces several products from reactants.)
and conflicting reactions (Several reactions use the same reactants and produce their
products independently or concurrently.) Figure 15 and Figure 16 illustrate how to
model these two situations, respectively.

Figure 15 shows how to fold a branching reaction into a colored component. For this
case, we define two color sets: Dot with one color dot, and CS with two colors b and c.
We then assign the color set “Dot” to the place A, and CS to the place P . We define
the expression dot for the arc from A to r and b++c for the arc from r to P , which
means that when r fires two tokens with colors b and c will be added to P . Please note
that the “++” is the multiset addition operator.

Figure 16 shows how to fold conflicting reactions into a colored component. For this
case, we use the same color sets. We assign the color set “Dot” to the place A, and CS
to the place P . We define the expression dot for the arc from A to r and x for the arc
from r to P , where x is a variable of the type “CS”.

A

Dot

P

CS

A

B

C rr

dot b++

c

 r: A -> B + C

-->

Declarations:

colorset Dot = dot;

colorset CS=enum with b,c;

Figure 15: Petri net representation (on the left hand) and colored Petri net representation
(on the right hand) of a branching reaction with reactant A and products B and C.
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A

Dot

P

CS

A

B

C r

r1

r2

dot x

Declarations:

colorset Dot = dot;

colorset CS=enum with b,c;

variable x : CS;

r1: A -> B

r2: A -> C

-->

Figure 16: Petri net representation (on the left hand) and colored Petri net representation
(on the right hand) of two conflicting reactions with reactant A producing B or C.

2.2.3 Modeling nets with logical nodes

In this section we will discuss how to deal with nets with logical nodes, illustrated in
Figure 17 to Figure 21.

p11

p21 p21

p31

p32p12

p22
p22

t11 t21 t21 t41t31

t32 t42t12 t22t22

Subnet 1

Subnet 2

C1−C2

P1

1

1`all()CS

P2CS P2CS

P3

2

1`all()CS

t1 t2t2 t3

t4

 x

x x

x x

x x

x

x

x

Declarations:

colorset CS = enum with c1,c2;

variable x : CS;

C1-C2

Figure 17: Case 1. In this case, we fold Subnet1 and Subnet2 (on the left hand) to a
colored component (on the right hand). Each logical node has a unique copy in each
subset.

2.3 Automatic colorizing

Now, three ways are supported to automatically colorize selected subnets.
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p11 p31

p32p12

p2

p2
p2

p2

t11 t2 t2

t2t2

t41t31

t32 t42t12

Subnet 1

Subnet 2
P1

2

1`all()CS

P2Dot P2Dot

P3

2

1`all()CS

t1 t2t2 t3 t4

 x

dot dot

c1++

c2

c1++

c2

dot
dot

x

dot

x

Declarations:

colorset Dot = dot;

colorset CS = enum with c1,c2;

variable x : CS;

Figure 18: Case 2. In this case, either the transition t2 or place p2 only have one unique
copy in both subnets.

p11 p31 p32p12

p12_2

p32_2p31_2

p11_2

p2 p2
p2

p2

p2_2p2_2
p2_2

p2_2

t11 t2 t2 t2
t2t41t31 t32 t42t12

t12_2
t42_2t32_2t31_2 t41_2t11_2 t2_2 t2_2t2_2t2_2

Subnet 1

Subnet 2

Figure 19: Case 3. Each logical node has a unique copy in each subset.
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P1

4

1`all()P1

P2P2 P2P2

P3

4

1`all()P1

t1

t2t2 t3 t4

(y,x)

(y,dot) (y,dot)

(y,c1)++

(y,c2)

(y,c1)++

(y,c2)

(y,dot)
(y,dot)

(y,x)

(y,dot)

(y,x)

Declarations:

colorset Dot = dot;

colorset CS = enum with c1,c2;

colorSet CT = enum with T1,T2;

colorSet P1 = product with CT,CS;

colorSet P2 = product with CT,Dot;

variable x : CS;

variable y : CT

Figure 20: Colored Petri net model for Figure 19. Each logical node has a unique copy
in each subset. Each subnet has the same structure and uses the same color set CS.

P3

8

1`all()CU

P2CP2P2CP2

P1
8

1`all()CU

t4t3t2 t2t1

[y=T1](y,x)++

[y=T2](y,z)

(y,dot)

[y=T1](y,x)++

[y=T2](y,z)

(y,dot)(y,dot)

[y=T1]((y,c1)++

(y,c2))++

[y=T2]((y,d1)++

(y,d2))
[y=T1]((y,c1)++

(y,c2))++

[y=T2]((y,d1)++

(y,d2))

(y,dot)(y,dot)

[y=T1](y,x)++

[y=T2](y,z)

Declarations:

colorSet Dot = dot;

colorSet CS1 = enum with c1,c2;

colorSet CS2 = enum with d1,d2;

colorSet CT = enum with T1,T2;

colorSet CP1 = product with CT,CS1;

colorSet CP2 = product with CT,Dot;

colorSet CP3 = product with CT,CS2;

colorSet CU = union with CP1,CP3;

variable x : CS1;

variable y : CT;

variable z : CS2;

Figure 21: Colored Petri net model for Figure 19. Each logical node has a unique copy
in each subset. Each subnet allows a different structure and uses a different color set.
Here Subnet 1 uses the color set CS1, and Subnet 2 uses the color set CS2.
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2.3.1 Colorizing any subset

Go to the menu bar, select Extras/Folding/Colorize and then the user can colorize a
selected subnet. During this process, the user can set a new color set (for places) and
variable name (for edges). After this is done, all places have the same color set and all
edges the same expression.

2.3.2 Colorizing twin nets

Go to the menu bar, select Extras/Folding/Generate twin nets and then the user can
create twin nets for a given net.

2.3.3 Colorizing T-invariants

Go to the menu bar, select Extras/Folding/Generate master nets and then the user
can create a color Petri net model for the given T-invariant file. The user then can
demonstrate T-invariants on this colored net.

2.4 Some other key modeling problems

2.4.1 Specifying initial markings

We provide several ways for specifying initial markings:

• Specifying colors and their corresponding tokens as usual,

• Specifying a set of colors with the same number of tokens,

• Using a predicate to choose a set of colors and then specifying the same number
of tokens,

• Using the all() function to specify for all colors a specified number of tokens.

Table 1 gives some examples for specifying initial marking.

Table 1: Specification of initial markings. Colorset CS = int with 1− 100.

Color/Predicate/Function marking

1 1
4,5,7 2
x > 10 3
all() 4
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2.4.2 Random generation of initial marking (for SPN C)

For SPN C , we support random generation of an initial marking by applying the following
steps (see Figure 22):

Figure 22: Random generation of initial marking.

1. Enter the marking overview dialogue,

2. Select a marking set that will hold the generated initial marking, e.g. the main set
in Figure 22, and then click the “Random Marking” button. The random marking
definition dialogue will appear.

3. In this dialogue, you need to do the following things:

• Choose a color set, e.g. “Copy” in Figure 22, based on which we define
random marking.

• Set the total tokens, e.g. all() is used in Figure Figure 22, based on which we
do the random assignment.

• Set the percentage of each place, which decides how many tokens will be
assigned to each place.
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The rules for the setting of the percentage are as follows:

• If the percentage domain is an integer, then this will be considered as the percent-
age.

• If the percentage domain is set to 0, then the marking for this place is set to 0.

• If the percentage domain keeps empty, then this place will keep the old marking
unchanged.

2.4.3 Specifying rate functions

As there are four kinds of transitions (stochastic, immediate, deterministic and sched-
uled), we have to choose a suitable kind. Then we have to define the rate functions
for the stochastic transitions, the weights for the immediate transition, the delays for
the deterministic transitions, and the periodic values for the scheduled transitions. But
their specifications have a similar procedure.

We start with the specification of predicates of rate functions. When writing predi-
cates, there are some notes you should notice:

• For a same binding, only one predicate is allowed to be evaluated to true in the
situation of more than one predicates. For example, in Table 2, we have two
predicates, x = 1 and x = 2. For each binding, only one of these is evaluated to
true. However, we are not allowed to write the predicates like this, x = 1 and
x ≥ 1, as these two predicates are evaluated to true for the binding x = 1.

• If the predicates of a transition do not cover all the instances of this transition, then
the rate functions of these instances that are not covered are set to 0. For example,
if we only use a predicate x = 1, this predicate will not cover the transition instance
when x equals 2.

There are three ways for the specification of rate functions: at the colored level or
at the instance level (Here we call each unfolded transition corresponding to a colored
transition a transition instance of this colored transition.) or a combination of both of
them. For any way, we should first use predicates to choose a or a set of transition
instances and then specify rate functions.

(1) Specifying rate functions at the colored level

We can specify rate functions by referencing names of colored places, just like speci-
fying rate functions for stochastic Petri nets. For instance, in Figure 23 we can do it at
the colored level like shown in the #1 and #2 of Table 2.

(2) Specifying rate functions at the instance level

We can also specify rate functions at the instance level. To do this, in a rate func-
tion, we reference a colored place, followed by [color/variable], which denotes the place
instance by the specified “color” or “variable”. For instance, in Figure 23 we can do it
at the instance level as shown in the #3 of Table 2.
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Table 2: Specifying rate functions.

# Predicate Rate function

1 true P2 ∗ P3

2 x = 1 P2 ∗ P3
x = 2 5 ∗ P2 ∗ P3

3 true P1[1] ∗ P1[2]

4 true P1[1] ∗ P1[2] ∗ P2 ∗ P3

5 x = 1 P1[1] ∗ P1[2] ∗ P2 ∗ P3
x = 2 5 ∗ P1[1] ∗ P1[2] ∗ P2 ∗ P3

In addition, we can also combine the above ways to specify rate functions, like shown
in the #4 and #5 of Table 2.

P1

CS

P2

CS

P3

CS

t

1++

2

x x

Declarations:

colorset CS=int with 1,2;

variable x:CS;

Figure 23: An example to demonstrate how to specify rate functions. The operator ++
in the arc expression 1++2 is the multiset addition operator.

2.4.4 Extended arc types

We support the following extended arc types, which are popular add-ons enhancing
modeling comfort (see Figure 24 for graphical representation in Snoopy):

• inhibitor arc,

• read arc,

• equal arc,

• reset arc, and

• modifier arc.
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Arc

Read Arc Inhibitor Arc

Reset Arc Equal Arc

Modifier Arc

Figure 24: Special arcs in Snoopy.
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Declarations:

Colorset CS=int with 1,2;

Variable x:CS;

Figure 25: An example for demonstrating the folding involving extended arcs.

BTU CSR 02-12 31



Liu, Heiner, Rohr

Figure 25 gives an example for demonstrating the folding involving extended arcs,
which contains two cases: 1) two special arcs are the same kind, and 2) two arcs are
different kinds.

2.4.5 Definition of auxiliary variables (observers)

We can also define auxiliary variables (observers), which are extra performance measures,
e.g. the sum of some places. This definition follows the following procedure:

Figure 26: Definition of auxiliary variables.

1. Enter the simulation dialogue,

2. Enter the plot editing dialogue,

3. In this dialogue, click the auxiliary variable definition button, and then enter the
auxiliary variable definition dialogue (see Figure 26). In this dialogue, we will do
the following things for defining a new auxiliary variable:

• Define the name for a new auxiliary variable.

• Select a set of colored places.

• Choose an operation. So far, we only support the SUM operation.

• Define a predicate, which is used to select the instances of colored places,
based on which we will compute the values of the auxiliary variable.

Please note that there is a checkbox on the bottom for enabling the computation of
auxiliary variables for each simulation run.
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2.4.6 Consistency checks

In the rate function of a transition, only preplaces of this transition are allowed. However
sometimes we may omit some preplaces in writing rate functions for different reasons.
Therefore, we support to automatically check unused preplaces in rate functions, so that
we can reexamine the rate functions. Consistency check is a part of syntax check. The
principles we consider are as follows:

• If a rate function is constant, then we only check unused preplaces connected by
modifier arcs,

• If a rate function contains places, then we check all unused preplaces.

The following is a consistency check result, which is taken from the Halo model.

• 11:08:35: Warning: The rate function for r3 1 has unused modifier pre-places:
SRI 510

• 11:08:35: Warning: The rate function for r3 2 has unused modifier pre-places:
SRI 510

• 11:08:35: Warning: The rate function for r3 6 has unused pre-places: CheB

• 11:08:35: Warning: The rate function for r3 7 has unused pre-places: CheB
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3 Annotation Language

In this section, we will describe the annotation language developed for Snoopy’s colored
Petri nets.

3.1 Declarations

3.1.1 Color sets

We provide two groups of data types to define color sets of colored Petri nets. The simple
types can be directly used, but the compound ones must be based on defined color sets.
The BNF form for the data type definition is given in Appendix A.2.

• Simple types: dot, int, string, bool, enum, index,

• Compound types: product, union.

Compared with CPN tools [CPN11], we do not support the list and record data types.
The reason for not providing the record type is that the record type can be replaced by
the product type. For the list type, the reason is that we only want to support finite
color sets so as to get an unfolding Petri net from any color Petri net. In the following,
we will describe each data type in detail.

(1) dot

We define a dot data type to declare a color set “Dot” with only one default black
color “dot”.

(2) int

Integers are numerals without a decimal point. Here only non-negative integers are
supported.

• Declaration Syntax:

Integers seperated by “,” or “-”. Here are some legal definitions:

• 1,2,3

• 1-3

• 1,3,5-7

• 1-n

For example, “1,3,5-7” defines the color set that has the following colors: “1,3,5,6,7”.
We can also support a constant in the integer color set definition, for example, in the
“1-n”, n is an integer constant (See Section 3.1.4 for constant declarations.).

• Operations:
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– i1 + i2 addition

– i1 − i2 subtraction

– i1 ∗ i2 multiplication

– i1 / i2 division, quotient

– i1 % i2 modulus, remainder

(3) string

Strings are specified by sequences of printable ASCII characters surrounded with
double quotes.

• Declaration Syntax:

Strings separated by “,” or “-”. We also support very weak regular expressions to
define strings, but they will be separated by “[ ]”. Here are some legal definitions:

• a, b, c

• a-c

• a, c, e-g

• [a][e, f, g]

For example, a, c, e-g defines the color set that has the following colors: a, c, e, f, g.
[a][e, f, g] defines the colors: ae, af, ag.

• Operations:

– s1 + s2 concatenate the strings s1 and s2.

(4) bool

The boolean values are true and false.

• Declaration Syntax:

false, true.

• Operations:

– ! b negation of the boolean value b,

– b1 & b2 boolean conjunction, and,

– b1 | b2 boolean disjunction, inclusive or.
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(5) enum

Enumerated values are explicitly named as identifiers in the declaration.

• Declaration Syntax:

Strings separated by “,” or “-”. We also support very weak regular expressions to
define enumeration values, but they will be separated by “[ ]”. Here are some legal
definitions:

• a, b, c

• a-c

• a, c, e-g

• [a][e, f, g]

For example, a, c, e-g defines the color set that has the following colors: a, c, e, f, g.
[a][e, f, g] defines the colors: ae, af, ag.

The color set definition for enum is like that of string. The difference is that an enum
color should be an identifier.

• Operations:

There are no standard operations.

(6) index

Indexed values are sequences of values composed of an identifier and an index-
specifier.

• Declaration Syntax:

index id with [intexp1 - intexp2] . For example, we can define an index color set as:
colorset Philosopher with index phil[1-5] .

• Operations:

There are no standard operations.

(7) product

A product color set is a tuple of previously declared color sets.

• Declaration Syntax:

Defined color sets separated by “,”. For example, we can define a product color
set as: colorset Philosopher with product H2O × Level , where H2O and Level are two
previously defined color sets.
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• Operations:

There are no standard operations.

(8) union

A union color set is a disjoint union of previously declared color sets.

• Declaration Syntax:

Defined color sets separated by “,”. For example, we can define a union color set as:
colorset Salad with union Fruit, Dish, where Fruit and Dish are two previously defined
color sets.

• Operations:

There are no standard operations.

3.1.2 Subsets of color sets

We can also define subsets for a defined color set in the following two ways:

• Enumerate the colors that will appear in a subset, separated by ’,’.

• Using a logic expression (predicate) to select a group of colors, see Section 3.2.3
for how to define a predicate.

For example, suppose Colorset CS = int with 1 − 10, V ariable x : CS and then
we can define a subset CS sub for the color set CS using the logic expression x <> 10,
which selects the colors, 1-9, for the subset CS sub.

3.1.3 Variables

A variable is an identifier whose value can be changed during the execution of the model.
They have the following characteristics:

• They are declared with a previously declared color set.

• They are bound to the variety of different values from their color set by the simu-
lator as it attempts to determine if a transition is enabled.

• There can be multiple bindings simultaneously active on different transitions.
These bindings can exist simultaneously because they have different scopes.

• They allow arc expressions with the ability to reference different values.

Variables can be used in the following situations (Suppose Colorset CS = int with 1−
10; V ariable x : CS):
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• arc expressions, e.g., x+ 1,

• guard, e.g., x < 5,

• marking predicate definition, e.g., x < 6,

• rate function predicate definition, e.g., x < 7.

3.1.4 Constants

A constant has a value and corresponding data type or color set. For example, we can
define a constant as follows: constant N = int with 5. We can also define a constant of the
integer type based on an existing constant, e.g constant M = int with N+5. Constants
can be used in the arc expressions, guards, predicates and integer color set definition.

Constants can be used in the following cases (Suppose Colorset CS = int with 1−10;
V ariable x : CS; Constant N : CS with 5):

• arc expressions, e.g., x+N ,

• guard, e.g., x < N ,

• integer colorset definition, e.g., x < N ,

• marking predicate definition, e.g., x < N ,

• marking definition, e.g., we can set a color having a number of N ,

• rate function predicate definition, e.g., x < N .

3.1.5 Functions

We can also define functions that are used in the whole net. A user-defined function
contains the following components:

• Function name, which is an identifier,

• Parameter list, separated by “,”,

• Function body, which is an expression, and

• Return type, which is the type of the return value.

When we write a function body, we can use all the defined constants and all the
operators in Table 3. A function body should comply with the BNF forms in Appendix
A.3. However, please be careful when using the operator ++ and make sure that this
will return only one single value or empty as we at present do not support that the
user-defined function returns more than one values (colors).

Specifically speaking, a user-defined function can be used in the following situations:
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• expressions on arcs,

• guards on transitions,

• predicates in rate functions of transitions, and

• predicates in marking definitions of places.

In Figure 1, we use two user-defined functions. For example,

Forks Left(Phils x) { x }.

In this function, Forks is the type of the return value, which is an integer color set.
Left is the function name. Phils x defines the parameter of this function. x is the
function body, which returns the left folk.

Forks Right(Phils x) { (x%N) + 1 }.

This function returns the right fork. % is the modulus operator.

In Figure 37, we also use user-defined functions (See Table 5 for details.). For exam-
ple, the function Fun1 is defined as follows:

P Fun1(HbO2 x, Level y) { [y = L]1̀ (x+ 1, y) + +[y = H]1̀ (x, y) }.

In this function, P is the type of the return value, which is a product color set. Fun1
is the function name. HbO2 x, Level y define two parameters of this function, where x
is of the type HbO2 and y of Level. [y = L]1̀ (x+1, y)++[y = H]1̀ (x, y) is the function
body, which means when y equals L it returns one token with the color (x + 1, y) and
when y equals H it returns one token with the color (x, y). See Section 3.2.2 for more
details about how to read function bodies.

3.2 Expressions

3.2.1 Operators and built-in functions

We support the operators summarized in Table 3 and some built-in functions, which are
illustrated in Table 4.

3.2.2 Arc expressions

Arc expressions can be defined according to the BNF forms illustrated in Appendix A.3.
Arc expressions can use all the constants, variables and user-defined functions and all
the operators in Table 3.

For example, in Figure 35 (see Table 5 for its declarations), we use three different
expressions: dot, e.g. on the arc from transition t1 to place O2, x, e.g. from t1 to HbO2L
and x+ 1, e.g. from HbO2L to t1. Among these, dot is a default constant color, x is a
variable and x+ 1 is an addition expression.
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Table 3: Operators in the annotation language.

Priority Operator Executed operation

10 +
Successor, which returns the successor of the current
color in an ordered finite color set. If the current color
is the last color, then it returns the first color.

−
Predecessor, which returns the predecessor of the current
color in an ordered finite color set. If the current color
is the first color, then it returns the last color.

@ Index extracting, which returns the index of an index color.

: Extracting a component from a product color.

! Logical not.

9 ∗, /,%,ˆ Arithmetic multiplicity, division, modulus, power.

8 + Arithmetic addition, or string concatenation.

− Arithmetic subtraction.

7 <,<= Less than, less than or equal to.

>,>= Greater than, greater than or equal to.

6 =, <> Equal, unequal.

5 & Logical and.

4 | Logical or.

3 , Used in a tuple expression.

2 ` Separating the coefficients and the color.

1 ++ Multiset addition, connecting two multiset expressions.

Table 4: Built-in functions in the annotation language.

Function Executed operation

all() Return all colors of a color set, only used in the arc expressions.

abs() Return the absolute value.
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In Figure 36, we can see more complex expressions. For example, [y = L]dot on the
arc from place O2 to transition t1 means that if y equals L it returns a token with the
color dot, otherwise an empty value. In fact, y = L is a predicate of this expression.

3.2.3 Predicates/guards

Predicates/guards are in fact boolean expressions, which should be evaluated to boolean
values. Guards are used for transitions, which decide which transition instances exist,
while predicates are used in other situations. Predicates/guards can contain user-defined
functions. Specifically speaking, we use the predicates in the following situations:

• Subset definition of color sets, where a predicate is used to select a group of colors
to form a subset.

• Initial marking specification, where a predicate is used to select a group of colors.

• Rate function specification, where a predicate is used to select a group of transition
instances.

• Arc expression specification, where a predicate is used to decide if the current arc
is used or not.

For example, in Figure 35 (see Table 5 for its declarations), in the expression [y =
L]dot, y = L is a predicate of this expression, where when y = L is evaluated to true,
this expression returns one token dot, otherwise it returns empty. In addition, there is a
guard x <> 4 e.g. on transitions t1, which means when this guard is evaluated to true,
there exists a transition instance of t1.
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4 Animation, Simulation and Analysis

In this section, we will demonstrate how to animate/simulate/analyze QPN C , SPN C ,
CPN C , and GHPN C .

4.1 Animation (for QPN C/SPN C)

When a Petri net model is opened, then the user can click the View—Start Anim-Mode
to prepare animation. Before opening the animation dialogue, the syntax will be checked
automatically for this model. The user can choose automatic animation or a manual one,
in which case the user can select a binding. In the following, we will in detail describe
it. Figure 27 shows the animation interface.

Figure 27: Animation interface.

4.1.1 Automatic animation

When the user clicks the Play forward/Pause button, the automatic animation will
begin/pause. Figure 28 shows one animation snapshot.

Figure 28: One animation snapshot.
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4.1.2 Manual animation

When the user just clicks the transition to fire, then the binding selection dialogue will
appear if this transition is enabled. For example, when we click the transition t1, we
will get Figure 29. Then the user can select manual binding.

Figure 29: Manual animation snapshot.

4.2 Simulation (for SPN C/CPN C/GHPN C)

When the user clicks the View—Start Simulation-Mode, the simulation dialogue will
appear. During this process, an implicit unfolding is done, which unfolds a colored Petri
net to a standard Petri net.

4.2.1 Run simulation

In the simulation dialogue (Figure 30 ), the user can first set simulation parameters, and
then click the Start simulation button to start simulation. The settings include:

• Setting a marking set,

• Setting a rate function/weight/delay/schedule set,

• Setting a parameter set,

• Setting a simulation run interval, output step count, and simulation run number,
and

• Choosing a simulation algorithm.

4.2.2 Show simulation results

The user can choose to show simulation results as a table or plot. Further, in a table
or plot, the user can choose which information to be shown: colored, unfolded or both.
For example, Figure 31 gives the plot of colored places.
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Figure 30: Simulation interface.

Plus, the user can edit the table or plot to change what information to be shown
(Figure 32 ).

Figure 31: Plot for simulation results.

4.2.3 Export simulation results

The user can choose which information to be exported to a file: colored, unfolded or
both.

4.3 Analysis

4.3.1 Analysis using Charlie

We can export a colored Petri net to an uncolored Petri net, and then use Charlie
[Cha11], [Fra09] to analyze its properties, e.g. P-invariants and T-invariants, or generate
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Figure 32: Edit plot.

its reachability graph.

4.3.2 Analysis using Marcie

We can also export a colored stochastic Petri net to a stochastic Petri net, and then use
Marcie [Mar11], [SH09] to model check it.

4.3.3 Analysis using the MC2 tool

The MC2 tool [MC210] is used to analyze simulation traces of a stochastic model, so
we can use MC2 to directly analyze simulation traces of a colored stochastic/continuous
Petri net.

4.3.4 Analysis using CPN tools

We can export a colored Petri net produced by Snoopy to another colored Petri net
readable by the CPN tools [CPN11]. So we can make use of the analysis tool of CPN
tools [CPN11], [ASAP11] to analyze colored Petri nets at the colored level.
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5 Export/Import

5.1 Common export/import

5.1.1 Export to APNN

A colored Petri net can be exported to an APNN file which then can be read by Charlie
or Marcie for further analysis.

5.1.2 Export to CANDL

A colored Petri net can be exported to an CANDL file which then can be read by Marcie
for further analysis. See Appendix B.1 for the CANDL grammar.

5.1.3 Import CANDL

The user can import a CANDL file of a colored Petri net. See Appendix B.1 for the
CANDL grammar.

5.1.4 Export declarations to a CSV file

We can export declarations of a colored Petri net to a csv file, which then can be used
for publication purposes or imported by other nets, i.e., when we create a new colored
net, we can import declarations from a CSV file for this new net.

5.1.5 Import declarations from a CSV file

Before defining a new colored Petri net, we can import declarations from a CSV file to
reuse the declaration information which has been defined before.

5.2 QPN C export/import

5.2.1 Export to colored extended Petri nets

An extended Petri net can be exported to a colored extended Petri net (QPN C) by
defining a color setDot. After this transformation, the new net has the following features:

• All the places are set to the same color set Dot.

• All the arcs are set to the same expression dot.

5.2.2 Export to extended Petri nets

A colored extended Petri net can be unfold to an extended Petri net just by exporting it
to an extended Petri net. During this process, all isolated nodes (places or transitions)
are removed.
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5.2.3 Export to colored stochastic Petri nets

A colored extended Petri net (QPN C) can be transformed into a colored stochastic
Petri net. All information is kept during this process, and all rate functions for the
transformed SPN C are set to MassAction(1).

5.2.4 Export the structure to extended Petri nets

The structure of a colored extended Petri net (QPN C) can be exported to an extended
Petri net. In this specific case, there is no unfolding involved.

5.2.5 Export to CPN tools

A colored extended Petri net (QPN C) can be transformed to a file read by CPN tools
[CPN11]. After this transformation, sometimes we have to modify the arc or guard
expressions to let them comply with the syntax of CPN tools. In summary, the following
points should be noted:

• Modify user-defined functions in the declaration part,

• Change the syntax of predicates to the if-then-else syntax supported by CPN tools,

• Replace the operators of successor, predecessor etc. with user-defined functions,

• Modify arc expressions that belong to the union type.

5.3 SPN C export/import

5.3.1 Export to colored stochastic Petri nets

A stochastic Petri net can be exported to a colored stochastic Petri net by defining a
color set Dot. After this transformation, the new net has the following features:

• All the places are set to the same color set Dot.

• All the arcs are set to the same expression dot.

5.3.2 Export to stochastic Petri nets

A colored stochastic Petri net can be unfolded to a stochastic Petri net just by exporting
it to a stochastic Petri net. During this process, all isolated nodes (places or transitions)
are removed.

5.3.3 Export to colored extended Petri nets

A colored stochastic Petri net can be transformed to a colored extended Petri net. After
this transformation, all information about rate functions is lost.
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5.3.4 Export to colored continuous/hybrid Petri nets

A colored stochastic Petri net can be transformed to a colored continuous/hybrid Petri
net.

5.3.5 Export the structure to stochastic Petri nets

The structure of a colored stochastic Petri net (SPN C) can be exported to a stochastic
Petri net. In this specific case, there is no unfolding involved.

5.3.6 Export to CPN tools

A colored stochastic Petri net (SPN C) can be transformed to a file read by CPN tools
[CPN11]. After this transformation, sometimes we have to modify the arc or guard
expressions to let them comply with the syntax of CPN tools.

5.4 CPN C export/import

5.4.1 Export to colored continuous Petri nets

A continuous Petri net can be exported to a colored continuous Petri net by defining a
color set Dot. After this transformation, the new net has the following features:

• All the places are set to the same color set Dot.

• All the arcs are set to the same expression dot.

5.4.2 Export to continuous Petri nets

A colored continuous Petri net can be unfolded to a continuous Petri net just by exporting
it to a continuous Petri net. During this process, all isolated nodes (places or transitions)
are removed.

5.4.3 Export to colored stochastic/hybrid Petri nets

A colored continuous Petri net can be transformed to a colored stochastic/hybrid Petri
net.

5.4.4 Export the structure to continuous Petri nets

The structure of a colored continuous Petri net (CPN C) can be exported to a continuous
Petri net. In this specific case, there is no unfolding involved.
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5.5 GHPN C export/import

5.5.1 Export to colored hybrid Petri nets

A hybrid Petri net can be exported to a colored hybrid Petri net by defining a color set
Dot. After this transformation, the new net has the following features:

• All the places are set to the same color set Dot.

• All the arcs are set to the same expression dot.

5.5.2 Export to hybrid Petri nets

A colored hybrid Petri net can be unfolded to a hybrid Petri net just by exporting it to
a continuous Petri net. During this process, all isolated nodes (places or transitions) are
removed.

5.5.3 Export to colored stochastic/continuous Petri nets

A colored hybrid Petri net can be transformed to a colored stochastic/continuous Petri
net.

5.5.4 Export the structure to hybrid Petri nets

The structure of a colored hybrid Petri net (GHPN C) can be exported to a hybrid Petri
net. In this specific case, there is no unfolding involved.
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6 Examples

6.1 Cooperative ligand binding

We consider an example of the binding of oxygen to the four subunits of a hemoglobin
heterotetramer. The hemoglobin heterotetramer in the high and low affinity state binds
to none, one, two, three or four oxygen molecules. Each of the ten states is repre-
sented by a place and oxygen feeds into the transitions that sequentially connect the
respective places. The qualitative Petri net model is illustrated in Figure 33 (taken from
[MWW10]).

HbO2L_4 HbO2H_4

HbO2H_0HbO2L_0

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

O2

4

HbO2H_1HbO2L_1

HbO2H_2HbO2L_2

HbO2L_3
HbO2H_3

Figure 33: Cooperative binding of oxygen to hemoglobin represented as a Petri net
model [MWW10]. For clarity, oxygen is represented in the form of multiple copies
(logical places) of one place.

Now we begin to construct a colored Petri net model for Figure 33. For this, we first
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partition Figure 33 into five subnets, each of which is embraced by a rectangle and is
defined as a color. So we can use five integers, 0-5, to represent these five subnets. We
then group similar places, which are marked with an identical color. The places in each
group (with a specific color) are considered as a colored place. The net after partitioning
and grouping is shown in Figure 34.
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HbO2H_1HbO2L_1

HbO2H_2HbO2L_2

HbO2L_3
HbO2H_3

Figure 34: Cooperative binding of oxygen to hemoglobin represented as a Petri net
model, which has been partitioned into subnets.

Now we obtain for Figure 33 a QPN C model, illustrated in Figure 35, and further
a more compact QPN C model (Figure 36) by continuing folding the left and right
parts. From Figure 35, we can see that the colored Petri net model reduces the size
of the corresponding standard Petri net model. Moreover, comparing Figure 35 with
Figure 36, we can also see that we can build colored Petri net model with different
level of structural details, which is especially helpful for modeling complex biological
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systems. After automatic unfolding, these two colored models yield exactly the same
Petri net model as given in Figure 33, i.e., the colored models and the uncolored model
are equivalent. The declarations for these two QPN C models of the cooperative ligand
binding are given in Table 5.

O2

4

4‘dot
Dot

HbO2L1‘0

HbO2

HbO2H

HbO2

t1 [x<>4] t2 [x<>4] t3 [x<>4] t4 [x<>4]

t5

t6

dot dot dot dot

x+1 x x x+1

x x

xx

x+1 x x x+1

Figure 35: QPN C model for the cooperative binding of oxygen to hemoglobin, given as
a standard Petri net in Figure 33. For declarations of color sets and variables, see 5.

Table 5: Declarations for the QPN C models of the cooperative ligand binding.

Declarations

colorset Dot = dot;

colorset HbO2 = int with 0-4;

colorset Level = enum with H,L;

colorset P = product with HbO2 × Level;

variable x: HbO2;

variable y: Level;

Function P Fun1(HbO2 x, Level y) {[y=L]1`(x+1,y)++[y=H]1`(x,y)};

Function P Fun2(HbO2 x, Level y) {[y=H]1`(x+1,y)++[y=L]1`(x,y)};

Besides, we give another colored model (see Figure 37), which uses user-defined
functions and is equivalent to Figure 36. In this model, we define two functions Fun1 and
Fun2 to replace lengthy expressions. See Table 5 for details about these two functions.

From these colored nets, we can also see that the folding operation does reduce the
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O2

4

4‘dot Dot

HbO2
11‘(0,L) P

t1 [x<>4] t2 [x<>4]

t3t4

[y=L]dot

[y=H]dot

[y=L]dot

[y=H]dot

[y=L]1‘(x+1,y)++

[y=H]1‘(x,y)

[y=H]1‘(x+1,y)++

[y=L]1‘(x,y)

[y=H]1‘(x+1,y)++

[y=L]1‘(x,y)

[y=L]1‘(x+1,y)++

[y=H]1‘(x,y)

[y=H]1‘(x,L)

[y=H]1‘(x,y)

[y=L]1‘(x,y)

[y=L]1‘(x,H)

Figure 36: QPN C model for the cooperative binding of oxygen to hemoglobin, given as
a standard Petri net in Figure 33. For declarations of color sets and variables, see Table
5.

O2

4

4‘dot Dot

HbO2
11‘(0,L) P

t1 [x<>4] t2 [x<>4]

t3t4

[y=L]dot

[y=H]dot

[y=L]dot

[y=H]dot

Fun1(x,y)

Fun2(x,y)

Fun2(x,y)
Fun1(x,y)

[y=H]1‘(x,L)

[y=H]1‘(x,y)

[y=L]1‘(x,y)

[y=L]1‘(x,H)

Figure 37: Another QPN C model for the cooperative binding of oxygen to hemoglobin,
which uses user-defined functions and is equivalent to Figure 36. For declarations of
color sets and variables, see Table 5.
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size of the net description for the prize of more complicated inscriptions. The graphic
complexity is reduced, but the annotations of nodes and edges creates a new challenge.
This is not unexpected since a more concise write-up must rely on more complex com-
ponents. Therefore, it is necessary to build a colored Petri net model at a suitable level
of structural details.

6.2 Repressilator

In this section, we will demonstrate the SPN C using an example of a synthetic circuit
- the repressilator, which is an engineered synthetic system encoded on a plasmid, and
designed to exhibit oscillations [EL00]. The repressilator system is a regulatory cycle
of three genes, for example, denoted by g a, g b and g c, where each gene represses its
successor, namely, g a inhibits g b, g b inhibits g c, and g c inhibits g a. This negative
regulation is realized by the repressors, p a, p b and p c, generated by the genes g a,
g b and g c respectively [LB07].

As our purpose is to demonstrate the SPN C , we only consider a relatively simple
model of the repressilator, which was built as a stochastic π-machine in [BCP08]. Based
on that model, we build a stochastic Petri net model (Figure 38), and further a SPN C
model for the repressilator (shown on the left hand of Figure 39). This colored model
when unfolded yields the same uncolored Petri net model in Figure 38.

blocked_a

proteine_a

gene_a

blocked_b

proteine_b

gene_b

blocked_c

proteine_c

gene_c

block_a

block_a

degrade

unblock
generate

degrade

unblock
generate

degrade

unblock
generateblock_b

block_b

block_c

block_c

Figure 38: Stochastic Petri net model for the repressilator. The highlighted transitions
are logical transitions.

For the SPN C model in Figure 39, there are three colors, a, b, and c to distinguish
three similar components in Figure 38. The predecessor operator “-” in the arc expression
−x returns the predecessor of x in an ordered finite color set. If x is the first color, then
it returns the last color.

As described above, the SPN C will be automatically unfolded to a stochastic Petri
net, and can be simulated with different simulation algorithms. On the right hand of
Figure 39 a snapshot of a simulation run result is given. The rate functions are given in
Table 6 (coming from [PC07]). The SPN C model exhibits the same behavior compared
with that in [PC07].
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Declarations:

colorset Gene=enum with a,b,c;

variable x:Gene;

-0.0e+000 2.0e+004 4.0e+004 6.0e+004 8.0e+004 1.0e+005-020
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Figure 39: SPN C model of the standard Petri net given in Figure 38, and one simulation
run plot for the repressilator. For rate functions, see Table 6.

Table 6: Rate functions for the SPN C model of the repressilator.

Transition Rate function

generate 0.1 ∗ gene

block 1.0 ∗ proteine

unblock 0.0001 ∗ blocked

degrade 0.001 ∗ proteine

From Figure 39, we can see that the SPN C model reduces the size of the original
stochastic Petri net model to one third. More importantly, when other similar subnets
have to be added, the model structure does not need to be modified and what has to be
done is only to add extra colors.

For example, we consider the generalized repressilator with an arbitrary number n
of genes in the loop that is presented in [MHE+06]. To build its SPN C model, we just
need to modify the color set as n colors, and do not need to modify anything else. For
example, Figure 40 gives the conceptual graph of the generalized repressilator with n = 9
(on the left hand), and one simulation plot (on the right hand), whose rate functions are
the same as in Table 6. Please note, the SPN C model for the generalized repressilator
is the same as the one for the three-gene repressilator, and the only difference is that we
define the color set as n colors rather than 3 colors. This demonstrates a big advantage
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of color Petri nets, that is, to increase the colors means to increase the size of the net.
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Figure 40: Conceptual graph and one simulation run plot for the repressilator with 9
genes.

6.3 Where to find more examples

In [GLG+11], [GLT+11], colored (both stochastic and continuous) Petri nets have been
used to describe the phenomenon of Planar Cell Polarity (PCP) signaling in Drosophila
wing. Two colored models (abstract and refined) has been developed, which model a
group of cells on a two-dimensional grid, corresponding to a fragment of the wing tissue.
Moreover each cell is partitioned into seven virtual compartments, so these two models
has a two-level hierarchy. In addition, these models involve product color sets, subsets
of color sets, user-defined functions and etc.

More case studies can be found in [GH11], [Liu12], e.g.

• Gradient,

• Dictyostelium colony formation,

• Phase variation in bacterial colony growth,

• C. Elegans vulval development,

• Coupled Ca2+ channels,

• Membrane systems.
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A Annotation Language

A.1 Introduction to BNF

A Backus-Naur Form (BNF) specification is a set of derivation rules [BNF11], written
as

〈symbol〉 ::= expression

| “terminal”

where:

1. 〈symbol〉 is a nonterminal; expression consists of one or more sequences of symbols;
more sequences are separated by the vertical bar, | , indicating a choice, the whole
being a possible substitution for the symbol on the left.

2. Symbols that never appear on a left side are terminals, which are notated by using
the double quotation marks “ ”.

3. Symbols that appear on a left side are non-terminals.

4. ::= means “is defined as”.

5. ⊥ means “empty” or “null”.
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A.2 BNF for the data type definition

〈Type〉 ::= 〈SimpleType〉 | 〈CompoundType〉
〈SimpleType〉 ::= 〈TypeIdentifier〉 | 〈StructuredType〉

〈TypeIdentifier〉 ::= 〈UnsignedInteger〉 | 〈Boolean〉 | 〈String〉
〈UnsignedInteger〉 ::= “int”

〈Boolean〉 ::= “bool”

〈String〉 ::= “string”

〈StructuredType〉 ::= 〈Enumeration〉 | 〈Index〉
〈Enumeration〉 ::= 〈IdentifierList〉
〈IdentifierList〉 ::= 〈Identifier〉 | 〈IdentifierList〉“,”〈Identifier〉

〈Index〉 ::= 〈Identifier〉“[”〈IndexSpecifier〉“]”

〈IndexSpecifier〉 ::= “int”

〈CompoundType〉 ::= 〈Product〉 | 〈Union〉
〈Product〉 ::= 〈Type〉“×”〈Type〉 | 〈Product〉“×”〈Type〉
〈Union〉 ::= 〈Type〉 | 〈Union〉“,”〈Type〉
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A.3 BNF for the annotation language

〈ColorExpr〉 ::= 〈MultiSetExpr〉
〈MultiSetExpr〉 ::= 〈Predicate〉 | 〈MultiSetExpr〉〈MSAdditionOp〉〈Predicate〉
〈MSAdditionOp〉 ::= “++”

〈Predicate〉 ::= 〈SeparatorExpr〉 | “[”〈OrExpr〉“]”〈SeparatorExpr〉
〈SeparatorExpr〉 ::= 〈TupleExpr〉 | 〈SeparatorExpr〉〈SeparatorOp〉〈TupleExpr〉
〈SeparatorOp〉 ::= “`”

〈TupleExpr〉 ::= 〈OrExpr〉 | “(”〈CommaExpr〉“)”

〈CommaExpr〉 ::= 〈TupleExpr〉 | 〈CommaExpr〉〈CommaOp〉〈TupleExpr〉
〈CommaOp〉 ::= “,”

〈OrExpr〉 ::= 〈AndExpr〉 | 〈OrExpr〉〈OrOp〉〈AndExpr〉
〈OrOp〉 ::= “|”

〈AndExpr〉 ::= 〈EqualExpr〉 | 〈AndExpr〉〈AndOp〉〈EqualExpr〉
〈AndOp〉 ::= “&”

〈EqualExpr〉 ::= 〈RelationExpr〉 | 〈EqualExpr〉〈EqualOp〉〈RelationExpr〉
〈EqualOp〉 ::= “=” | “<>”

〈RelationExpr〉 ::= 〈AddExpr〉 | 〈RelationExpr〉〈RelationOp〉〈AddExpr〉
〈RelationOp〉 ::= “<” | “<=” | “>=” | “>”

〈AddExpr〉 ::= 〈MultiplicityExpr〉 | 〈AddExpr〉〈AddOp〉〈MultiplicityExpr〉
〈AddOp〉 ::= “+” | “-”

〈MultiplicityExpr〉 ::= 〈UnaryExpr〉 | 〈MultiplicityExpr〉〈MultiplicityOp〉〈UnaryExpr〉
〈MultiplicityOp〉 ::= “*” | “/” | “%” | “ˆ”

〈UnaryExpr〉 ::= 〈PostfixExpr〉 | 〈UnaryOp〉〈PostfixExpr〉
〈UnaryOp〉 ::= “+” | “-” | “@” | “!”

〈PostfixExpr〉 ::= 〈AtomExpr〉 | 〈PostfixExpr〉“[”〈AtomExpr〉“]”

| 〈PostfixExpr〉“:”〈AtomExpr〉
〈AtomExpr〉 ::= 〈Constant〉 | 〈Variable〉 | 〈Function〉 | “(”〈ColorExpr〉“)”

〈Constant〉 ::= 〈Integer〉 | 〈String〉
〈Variable〉 ::= 〈Identifier〉
〈Function〉 ::= 〈Identifier〉“(”〈ArgumentList〉“)”“{”〈FunctionBody〉“}”

〈ArgumentList〉 ::= 〈OrExpr〉 | 〈ArgumentList〉〈CommaOp〉〈OrExpr〉
〈FunctionBody〉 ::= 〈MultiSetExpr〉

〈Integer〉 ::= 〈Digit〉 | 〈Integer〉〈Digit〉
〈String〉 ::= 〈LetterOrDigit〉 | 〈String〉〈LetterOrDigit〉

〈Identifier〉 ::= 〈Letter〉 | 〈Identifier〉〈LetterOrDigit〉
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〈LetterOrDigit〉 ::= 〈Letter〉 | 〈Digit〉
〈Digit〉 ::= “0–9”

〈Letter〉 ::= “a–zA–Z ”
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B Colored Abstract Net Definition Language (CANDL)

B.1 BNF

〈Start〉 ::= 〈NetType〉“[”〈Identifier〉“]”“{”〈Net〉“}”
〈NetType〉 ::= “colpn” | “colxpn” | “colcpn” | “colhpn”

| “colspn” | “colgspn” | “colxspn”

〈Net〉 ::= 〈Constants〉
〈SimpleColorsets〉
〈CompoundColorsets〉
〈Variables〉
〈Functions〉
〈Places〉
〈Observers〉
〈Transitions〉

〈Constants〉 ::= “constants:”〈ConstList〉
〈ConstList〉 ::= ⊥ | 〈ConstDef〉 | 〈ConstDef〉〈ConstList〉
〈ConstDef〉 ::= 〈ConstType〉〈Identifier〉〈ConstInit〉“;”

〈ConstType〉 ::= “int” | “double” | “bool” | “string”

〈ConstInit〉 ::= ⊥ | “=”〈ConstExpr〉

〈SimpleColorsets〉 ::= “simplecolorsets:”〈SimpleCsList〉
〈SimpleCsList〉 ::= 〈SimpleCsDef〉 | 〈SimpleCsDef〉〈SimpleCsList〉
〈SimpleCsDef〉 ::= 〈SimpleCsType〉〈Identifier〉〈SimpleCsInit〉“;”

〈SimpleCsType〉 ::= “dot” | “int” | “bool” | “string” | “enum” | “index”

| 〈SimpleColorset〉
〈SimpleCsInit〉 ::= 〈DotCsInit〉 | 〈IntCsInit〉 | 〈BoolCsInit〉 | 〈StringCsInit〉

| 〈EnumCsInit〉 | 〈IndexCsInit〉 | 〈Predicate〉
〈DotCsInit〉 ::= “dot”

〈IntCsInit〉 ::= 〈IntCsDef〉 | 〈IntCsDef〉〈IntCsDelim〉〈IntCsInit〉
〈IntCsDef〉 ::= 〈Integer〉 | 〈Constant〉

〈IntCsDelim〉 ::= “,” | “-”

〈BoolCsInit〉 ::= “true”“,”“false”

〈StringCsInit〉 ::= 〈String〉 | 〈String〉“,”〈StringCsInit〉
〈EnumCsInit〉 ::= 〈Identifier〉 | 〈Identifier〉“,”〈EnumCsInit〉
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〈IndexCsInit〉 ::= 〈Identifier〉“[”〈Integer〉“,”〈Integer〉“]”

〈CompoundColorsets〉 ::= “compoundcolorsets:”〈CompoundCsList〉
〈CompoundCsList〉 ::= ⊥ | 〈CompoundCsDef〉 | 〈CompoundCsDef〉〈CompoundCsList〉
〈CompoundCsDef〉 ::= 〈CompoundCsType〉〈Identifier〉〈CompoundCsInit〉“;”

〈CompoundCsType〉 ::= “product” | “union” | 〈CompoundColorset〉
〈CompoundCsInit〉 ::= 〈CsComponents〉 | 〈Predicate〉
〈CsComponents〉 ::= 〈Colorset〉 | 〈Colorset〉“,”〈CsComponents〉

〈Variables〉 ::= “variables:”〈VariableList〉
〈VariableList〉 ::= ⊥ | 〈VariableDef〉 | 〈VariableDef〉〈VariableList〉
〈VariableDef〉 ::= 〈Colorset〉〈Identifier〉“;”

〈Functions〉 ::= “functions:”〈FunctionList〉
〈FunctionList〉 ::= ⊥ | 〈FunctionDef〉 | 〈FunctionDef〉〈FunctionsList〉
〈FunctionDef〉 ::= 〈FunctionType〉〈Identifier〉“(”〈FunctionParams〉“)”〈FunctionBody〉“;”

〈FunctionType〉 ::= 〈SimpleCsType〉 | 〈CompoundCsType〉
〈FunctionParams〉 ::= ⊥ | 〈FunctionParam〉 | 〈FunctionParam〉“,”〈FunctionParams〉
〈FunctionParam〉 ::= 〈FunctionType〉〈Identifier〉
〈FunctionBody〉 ::= “{”〈ColorExpr〉“}”

〈Places〉 ::= “places:”〈PlaceList〉
〈PlaceList〉 ::= 〈PlaceDef〉 | 〈PlaceDef〉〈PlaceList〉
〈PlaceDef〉 ::= 〈PlaceType〉〈Colorset〉〈Identifier〉〈PlaceInit〉“;”

〈PlaceType〉 ::= ⊥ | “discrete:” | “continuous:”

〈PlaceInit〉 ::= “=”“{”〈Assignments〉“}”
〈Assignments〉 ::= 〈Assignment〉 | 〈Assignment〉“,”〈Assignments〉
〈Assignment〉 ::= “{”〈ConstExpr〉“`”〈ColorExpr〉“}”

〈Observers〉 ::= “observers:”〈ObserverList〉
〈ObserverList〉 ::= ⊥ | 〈ObserverDef〉 | 〈ObserverDef〉〈ObserverList〉
〈ObserverDef〉 ::= 〈Identifier〉“=”〈ObserverInit〉“;”

〈ObserverInit〉 ::= “{”〈Predicate〉“,”〈ObserverFunc〉“}”
〈ObserverFunc〉 ::= 〈ObserverOp〉“(”〈CsComponents〉“)”

〈ObserverOp〉 ::= “+”
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〈Transitions〉 ::= “transitions:”〈TransList〉
〈TransList〉 ::= 〈TransDef〉 | 〈TransDef〉〈TransList〉
〈TransDef〉 ::= 〈TransType〉〈Identifier〉〈Guard〉

“:”〈ConditionList〉
“:”〈UpdateList〉
〈RateFunctionList〉“;”

〈TransType〉 ::= “stochastic:” | “immediate:” | “deterministic:”

| “scheduled:” | “continuous:”

〈Guard〉 ::= ⊥ | “[”〈Predicate〉“]”

〈ConditionList〉 ::= ⊥ | 〈ConditionDef〉 | 〈ConditionDef〉“&”〈ConditionList〉
〈ConditionDef〉 ::= “[”“{”〈ColorExpr〉“}”“<=”〈Place〉“<”“{”〈ColorExpr〉“}”“]”

| “[”“{”〈ColorExpr〉“}”“<=”〈Place〉“]”

| “[”“{”〈ColorExpr〉“}”“=”〈Place〉“]”

| “[”“{”〈ColorExpr〉“}”“>”〈Place〉“]”

| “[”〈Place〉“<”“{”〈ColorExpr〉“}”“]”

| “[”〈Place〉“=”“{”〈ColorExpr〉“}”“]”

| “[”〈Place〉“>=”“{”〈ColorExpr〉“}”“]”

| “[”〈Place〉“]”

〈UpdateList〉 ::= ⊥ | 〈UpdateDef〉 | 〈UpdateDef〉“&”〈UpdateList〉
〈UpdateDef〉 ::= “[”〈Place〉〈UpdateOp〉“{”〈ColorExpr〉“}”“]”

〈UpdateOp〉 ::= “+” | “-” | “=”

〈RateFunctionList〉 ::= ⊥ | “:”“{”〈RateFunctions〉“}”
〈RateFunctions〉 ::= 〈RateFunction〉 | 〈RateFunction〉“,”〈RateFunctions〉
〈RateFunction〉 ::= “{”〈Predicate〉“:”〈RateFunctionDef〉“}”

〈RateFunctionDef〉 ::= 〈ColorPattern〉 | 〈Pattern〉 | 〈ArithmeticFunction〉
〈ColorPattern〉 ::= “[”〈ColorExpr〉“]” | “#”“(”〈Identifier〉“)”

〈Pattern〉 ::= 〈Func1Param〉“(”〈ArithmeticFunction〉“)”

| 〈Func2Param〉“(”〈ArithmeticFunction〉“,”〈ArithmeticFunction〉“)”

| 〈Func2Param〉“(”〈ArithmeticFunction〉“,”〈ArithmeticFunction〉“)”

| 〈ArithmeticFunction〉“,”〈ArithmeticFunction〉“,”〈ArithmeticFunction〉
〈Func1Param〉 ::= “MassAction”

〈Func2Param〉 ::= “LevelInterpretation”

| “MichaelisMenten”

| “Inhibit”
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| “Read”

| “Equal”

〈ArithmeticFunction〉 ::= 〈Term〉 | 〈Term〉〈AddOp〉〈ArithmeticFunction〉
〈AddOp〉 ::= “+” | “-”

〈Term〉 ::= 〈Factor〉 | 〈Factor〉〈MultOp〉〈Term〉
〈MultOp〉 ::= “*” | “/” | “ˆ”

〈Factor〉 ::= 〈Atom〉 | “-”〈Factor〉
〈Atom〉 ::= 〈Integer〉

| 〈Float〉
| 〈Constant〉
| 〈Place〉
| “(”〈ArithmeticFunction〉“)”

| 〈UnOp〉“(”〈ArithmeticFunction〉“)”

| 〈BinOp〉“(”〈ArithmeticFunction〉“,”〈ArithmeticFunction〉“)”

〈UnOp〉 ::= “abs” | “exp” | “sqr” | “sqrt” | “floor”

| “ceil” | “sin” | “asin” | “cos” | “acos”

| “tan” | “atan” | “log10” | “log”

〈BinOp〉 ::= “pow” | “min” | “max”

〈Constant〉 ::= 〈Identifier〉 //name of a defined constant

〈SimpleColorset〉 ::= 〈Identifier〉 //name of a defined simple color set

〈CompoundColorset〉 ::= 〈Identifier〉 //name of a defined compound color set

〈Colorset〉 ::= 〈SimpleColorset〉 | 〈CompoundColorset〉
〈Variable〉 ::= 〈Identifier〉 //name of a defined variable

〈Place〉 ::= 〈Identifier〉 //name of a defined place
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B.2 Example

For illustration we give the introductory dinning philosophers example, see Figure 1, in
CANDL notation which has been generated by Snoopy’s export feature.

co lpn [ p h i l ]
{
cons tant s :

int N = 5 ;

s i m p l e c o l o r s e t s :
dot Dot = dot ;
int Ph i l s = 1−N;
int Forks = 1−N;

compoundcolorsets :

v a r i a b l e s :
Ph i l s x ;

f u n c t i o n s :
Forks l e f t ( Ph i l s x )

{ x } ;
Forks r i g h t ( Ph i l s x )

{ ( x%N)+1 } ;

p l a c e s :
Ph i l s th ink ing = { {1` a l l ( ) } } ;
Ph i l s wa i t ing = { {0` a l l ( ) } } ;
Ph i l s ea t ing = { {0` a l l ( ) } } ;
Ph i l s r e l e a s i n g = { {0` a l l ( ) } } ;
Forks f o r k s = { {1` a l l ( ) } } ;

ob s e rve r s :
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t r a n s i t i o n s :
t a k e l e f t

:
: [ wa i t ing + {x } ] & [ th ink ing − {x } ] & [ f o r k s − { l e f t ( x

) } ] ;
t a k e r i g h t

:
: [ e a t ing + {x } ] & [ wa i t ing − {x } ] & [ f o r k s − { r i g h t ( x )
} ] ;

p u t r i g h t
:
: [ r e l e a s i n g + {x } ] & [ f o r k s + { r i g h t ( x ) } ] & [ ea t ing −
{x } ] ;

p u t l e f t
:
: [ th ink ing + {x } ] & [ f o r k s + { l e f t ( x ) } ] & [ r e l e a s i n g −

{x } ] ;

}
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