

BRANDENBURG UNIVERSITY OF TECHNOLOGY AT COTTBUS

Faculty of Mathematics, Natural Sciences and Computer Science

Institute of Computer Science

COMPUTER SCIENCE REPORTS

Report 05/04

November 2004

MODEL CHECKING OF
BOUNDED PETRI NETS USING

INTERVAL DIAGRAMS

ALEXEJ A.
TOVTCHIGRETCHKO

Computer Science Reports
Brandenburg University of Technology at Cottbus
ISSN: 1437-7969

Send requests to: BTU Cottbus
 Institut für Informatik
 Postfach 10 13 44
 D-03013 Cottbus

Computer Science Reports
05/04

November 2004

Brandenburg University of Technology at Cottbus

Faculty of Mathematics, Natural Sciences and Computer Science

Institute of Computer Science

Alexej A. Tovtchigretchko
alextov@informatik.tu-cottbus.de, http://www-dssz.informatik.tu-cottbus.de

Model Checking
of Bounded Petri Nets Using Interval Diagrams

Computer Science Reports
Brandenburg University of Technology at Cottbus
Institute of Computer Science

Head of Institute:
Prof. Dr. Claus Lewerentz cl@informatik.tu-cottbus.de
BTU Cottbus
Institut für Informatik
Postfach 10 13 44
D-03013 Cottbus

Research Groups: Headed by:
Computer Engineering Prof. Dr. H. Th. Vierhaus
Computer Network and Communication Systems Prof. Dr. H. König
Data Structures and Software Dependability Prof. Dr. M. Heiner
Programming Languages and Compiler Construction Prof. Dr. P. Bachmann
Software and Systems Engineering Prof. Dr. C. Lewerentz
Theoretical Computer Science Prof. Dr. B. von Braunmühl
Graphics Systems Prof. Dr. W. Kurth
Systems Prof. Dr. R. Kraemer
Distributed Systems and Operating Systems Prof. Dr. J. Nolte

CR Subject Classification (1998): D.2.2, D.2.4

Printing and Binding: BTU Cottbus

ISSN: 1437-7969

Model Checking of Bounded Petri Nets Using Interval Diagrams

Alexey A. Tovchigrechko

Brandenburg University of Technology at Cottbus,
Chair Data Structures and Software Dependability,

Cottbus, Germany
alextov@informatik.tu-cottbus.de

Abstract. Model checking is a fully automated approach to formal verification. The main problem
of model checking is the state explosion. A number of techniques has been introduced to deal with
the problem. Considering Petri Nets, the most efforts have been done on analysis of safe (1-bounded)
place/transition nets. Many tools successfully implementing different techniques are available, but there
are too few tools supporting efficient analysis of bounded, but not 1-bounded P/T Nets. This paper is
a report on the implementation of a symbolic CTL model checker for bounded P/T nets that is based
on Interval Decision Diagrams. The implementation supports inhibitor arcs as well as state space con-
struction for a set of initial markings.

1 Introduction

Petri Nets [Pet62] are an excellent formalism for modeling of discrete state systems. The main
attraction of Petri Nets is the way in which the basic aspects of concurrent systems are captured
both conceptually and mathematically. The formalism combines an intuitive graphical notation
with a formal definition and a number of advanced analysis methods [Sta90, RR98].

Model checking [BBF+01, CGP01] is an exhaustive, fully automated approach to formal verifi-
cation. The main problem of model checking is the state explosion. The number of global system
states may grow over exponentially with the size of a model. Sources for the explosion are concur-
rency and a combinatorial explosion due to combinations of different data values in data variables.
A number of techniques has been developed to deal with the problem. For a recent overview and
details see [CGP01]. The most successful approaches areimplicit symbolic techniques based on
variations of binary decision diagrams (BDDs) andpartial-order methods.

In this paper we will deal with Petri Nets and implicit symbolic model checking. BDDs have
been applied first for the Petri Nets analysis in [PRCB94].Zero Suppressed Decision Diagrams
(ZBDDs) are perfectly suited for analysis of safe (1-bounded) Petri Nets [Spr01]. To analyze
bounded, but not safe Petri Nets using BDDs, the number of tokens in a place has to be coded
binary. A number of problems arise when using such a binary coding. To avoid them, different
extensions of BDDs have been proposed [LR95, ST98, MC99, CJMS01]. Unfortunately, there are
too few available tools implementing these techniques (see the next section).
For the running projects of our chair [HK04, HKW04] we need a stable CTL model checker for
analysis of bounded Petri Nets, so the implementation described in this paper was done. We have
chosenInterval Decision Diagrams (IDDs) because they promise a compact representation of state
spaces and allow quite natural operations needed for analysis of the nets.

The paper is organized as follows. In section 2 extensions of BDDs are sketched, which have been
proposed for Petri Nets analysis. Then, IDDs are defined formally in section 3. Section 4 describes
shortly symbolic analysis of Petri Nets. Algorithms for operations on IDDs are given in section 5.
Section 6 provides several notes on our implementation. In section 7 some experimental results
are given. Finally, section 8 outlines ongoing research and open problems.

2 Extensions of BDDs

When BDDs and binary coding are used, then every bit of an integer value has to be represented
by a BDD variable. The following problems arise then:

• To save memory and computing power, the coding should be selected such that it covers no
more than a necessary integer range - which in general can be not known in advance or can
actually be the goal of the analysis!

• The number of variables in a BDD grows fast. Clever variables ordering techniques become
even more an issue.

• Integer operations needed for analysis of bounded Petri Nets can not be implemented as effi-
cient as binary ones needed for safe nets.

Different extensions of BDDs have been proposed, we mention here several used for Petri Nets
analysis.

Multi-valued Decision Diagrams (MDDs) were introduced in [Kam95], they were used for analy-
sis of (stochastic) Petri Nets [MC99, CJMS01]. MDDs can represent functions of the form

S1 × S2 . . . × Sn → {0, . . . ,m − 1}

whereSi = {0, . . . , Ni − 1}. Non-terminal MDD nodes labeled with variablexi have exactlyNi

outgoing arcs, labeled0 throughNi−1. Terminal MDD nodes are labeled from the set{0, . . . ,m−
1}. The definition for ordered and reduced MDDs are similar to those of BDDs.
In the toolSMART a Petri Net has to be partitioned for analysis, Kronecker operators on sparse
boolean matrices are used to encode the transition relation and a new saturation algorithm for
the calculation of the state space is used. The approach is very promising for nets with a good
partitioning. But it is quite difficult to find a good partitioning for the nets met in our projects. We
also faced some problems with stability ofSMART doing CTL model checking (tool version 1.0
was used).

b

c c

0 1 2

a

b

a

o

1

2

1

2
1

2o 2

o 2
1

1o

o

Fig. 1. Example of a MDD:min(a, b, c)

2

Interval Decision Diagrams (IDDs) were introduced in [ST98, ST99]. IDDs can be understood as
a generalization of MDDs. Arcs are labeled by (possibly) real intervals (instead of numbers), the
number of outgoing arcs of a node can vary, values of IDD variables are not bounded. To analyze
Petri Nets,Boolean IDDs (IDDs with only two terminal nodes:0 and1) over integer intervals
were used.Predicate Actions Diagrams were used to represent transitions relations. They map a
set represented by a Boolean IDD onto a new set also represented by a Boolean IDD by performing
operations like shifting or assigning values to some or all IDDs variables. Some experimental
results are provided in [ST98], but there is no tool available.

Natural Decision Diagrams (NDDs) were proposed earlier in [LR95, Rid97] for Petri Nets analy-
sis. According to the terminology introduced above, they are Boolean IDDs over integer intervals.
In [Rid97], firing of a transition of a Petri Net is a direct operation on NDDs. Unfortunately, there
is no stable tool available.

We have chosen theBoolean IDDs over integer intervals for our implementation as they promise
a compact representation of state spaces of bounded Petri Nets and allow straightforward imple-
mentation of operations needed for analysis of the nets. To improve efficency, firing of transitions
was implemented as a direct operation on IDDs, but with a new algorithm differing from [Rid97].
From now on we will simply refer to Boolean IDDs over integer intervals asIDDs. This name
seems to suit better than the historically first name NDDs. The formal definition of IDDs follows
in the next section.

3 Definitions

Definition 1 (Interval Logic Expressions)
Interval Logic Expressions (ILE) are defined recursively:

1. TRUE andFALSE are ILE
2. for variablesx1, . . . , xn, constantc ∈ N0, operation� ∈ {=, >,<,≥,≤, �=} xi � c is an ILE
3. if F andG are ILE, thenF ∧ G , F ∨G , ¬F are ILE

Example 1 (Interval Logic Expressions)
x1 > 5 ∧ x2 > 0 ∨ x3 ≤ 8 is an ILE �	
Please note, it is not allowed to compare variables with each other.

Definition 2 (Cofactor)
f |xi=b is a cofactor of functionf if xi is replaced by a constantb:

f |xi=b(x1, . . . , xn) = f(x1, . . . , xi−1, b, xi+1, . . . xn)

Example 2 (Cofactors)
If f(x1, x2, x3) = x1 > 5 ∧ x2 > 0 ∨ x3 ≤ 8 then

1. f |x1=7(x2, x3) = x2 > 0 ∨ x3 ≤ 8
2. f |x1=2(x2, x3) = x3 ≤ 8

�	
Definition 3 (Independence Interval)
I is called an independence interval off with respect toxi if f |xi=b = f |xi=c ∀b, c ∈ I . We
define thenf |xi∈I = f |xi=b for someb ∈ I .

3

Without loss of generality we will consider later only half-open intervals[a, b) (a is included in
the interval,b is not). So, both intervals including zero and unbounded intervals can be written.

Definition 4 (Independence Interval Partition)
SetP = {I1, . . . , Ik} is an independence interval partition ofN0 if I1, . . . , Ik are independence
intervals,

⋃
1≤j≤k

Ij = N0 and∀j,m Ij ∩ Im = ∅.

Definition 5 (Reduced Interval Partition)
An independence interval partition is called reduced if

1. it contains no neighbored intervals that can be joined into an independence interval
2. higher bounds of all intervals build an increasing sequence with respect to their indices

It is easy to prove that for some function f a reduced interval partition wrt some variable x is
unique.

Definition 6 (Boolean IDD)
Boolean IDD is a directed acyclic graph with two kind of nodesv ∈ V . Non-terminal nodesv are
labeled by some variable and havevk outgoing edges labeled with intervalsIj of an independence
interval partitionP = {I1, . . . , Ivk

} leading tovk children. Let us define the following labeling
functions:

• var(v) returns a variable
• part(v) = {I1, . . . , Ivk

} returns labels of the outgoing edges
• childj(v) ∈ V, 1 ≤ j ≤ vk returns children of a node

Terminal nodes are two special nodes labeled only with0 and1 and without outgoing edges. On
every path from the root to terminal nodes a variable may appear as label of a node only once.

Every decision functionf : N
n
0 → B induced by an ILE can be represented by a Boolean IDD

with help of Bool-Shannon expansion.

f =
∨

1≤j≤k

xi ∈ Ik ∧ f |xi∈Ik

The decomposition is applied recursively until leaves are reached.

xi

f |xi∈I2f |xi∈I1 f |xi∈Ik

f

I1

IkI2

Fig. 2. Bool-Shannon expansion for IDD

4

Example 3 (Bool-Shannon decomposition)
Let us consider a decision functionf(x1, x2) = x1 > 5 ∧ x2 > 0. With the intervals[0, 6) and
[6,∞) it can be decomposed over the variablex1

1. f |x1∈[0,6)(x2) = 0
2. f |x1∈[6,∞)(x2) = x2 > 0

f |x1∈[6,∞) can be further decomposed with intervals[0, 1) and[1,∞) over the variablex2. f |x1∈[0,6)

is already a constant and does not need the further decomposition.

1. f |x1∈[6,∞)|x2∈[0,1)() = 0
2. f |x1∈[6,∞)|x2∈[1,∞)() = 1

The Boolean IDD for this decomposition is shown in the Fig. 3. �	

0

x2

x1

1

[1,oo)

[6,oo)

[0,1)

[0,6)

Fig. 3. IDD for f(x1, x2) = x1 > 5 ∧ x2 > 0

Every Boolean IDD overn variables represents a functionf that can be written as an interval logic
formula overn variables. To find the result of a function, when the values of variables are known
x1 = a1, . . . , xn = an one has to follow a path through the graph from the root to a terminal node.
In a non-terminal nodev an edge labeled withIj must be chosen ifvar(v) = xm andam ∈ Ij.
The result of the function is defined by the label of the terminal node reached.

Definition 7 (Ordered Boolean IDD)
A Boolean IDD is called ordered with respect to some variable orderingπ if on every path from
the root to terminal nodes all nodes are ordered with respect to their labels. If there is an edge from
nodev to a non-terminal nodev′, thenvar(v) <π var(v ′).

Definition 8 (Reduced Boolean IDD)
A Boolean IDD is called reduced if,

1. the independence interval partitionspart(v) of each non-terminal nodev are reduced,
2. each non-terminal nodev has at least two different children,
3. there exist no different nodesv andv′ such that the subgraphs rooted byv andv′ are isomor-

phic.

If some variable ordering π is defined then for every interval logic function f there is a unique
reduced ordered wrt π Boolean IDD, representing this function f .

The proof of the statement is similar to those for ROBDDs [Bry86]. So like ROBDDs, ROBIDDs
enjoy thecanonicity property. If several functions over the same set of variables are encoded using

5

ROBIDDs with shared nodes to avoid duplicate nodes, two functions are identical if and only if
they have the same root.

From now on we will simply write IDDs meaning reduced ordered Boolean IDDs.

4 Symbolic Analysis of Petri Nets

Given a Petri Net withn places we can store any set of its markings, using a characteristic function
with n variables induced by an ILE. Set operations can be replaced then by logical operations on
characteristic functions. IfM andM′ are two sets of markings, then:

• χM∩M ′ = χM ∧ χM ′

• χM∪M ′ = χM ∨ χM ′

Example 4 (Characteristic functions)
Let us consider the Petri Net in Fig. 4. Its initial marking can be represented by a characteristic
functionχm0 :

χm0 ≡ p0 = 2 ∧ p1 = 5 ∧ p2 = 0

The set of all reachable markings can be represented then byχRS :

χRS ≡ p0 = 2 ∧ p1 = 5 ∧ p2 = 0 ∨ p0 = 1 ∧ p1 = 3 ∧ p2 = 1 ∨ p0 = 0 ∧ p1 = 1 ∧ p2 = 2

�	

p0 p1

2

t0

p2

Fig. 4. P/T Petri Net

The set of all reachable markings of a Petri Net N (S , T , F , V , M0) can be calculated symbolically
using Algorithm 1 [Spr01]. For CTL model checking we use the standard symbolic CTL algorithm.

As characteristic functions are induced from ILE, they can be represented by IDDs. We get then
a compact and efficient representation for sets of markings. Operations on IDDs required for
symbolic analysis are discussed in the next section.

6

Algorithm 1 (Symbolic state space calculation)
1 func ReachableSet (S , T , F , V , M0)
2 func FwdReach (M)
3 New := M
4 repeat
5 Old := New
6 forall t ∈ T do
7 New := New ∪ fire(t, New)
8 od
9 until New = Old

10 return New
11 end
12

13 begin
14 return FwdReach({M0})
15 end

5 Operations on IDDs

To implement a symbolic CTL model checker for Petri Nets, the following main functions have to
be provided.

empty(F) tests, ifF = ∅
equal(F ,G) tests, ifF = G

union(F ,G) returnsF ∪ G

intsec(F ,G) returnsF ∩ G

diff(F ,G) returnsF \ G

fire(M , t) returns set of markingsM′ reached, when transitiont fires in the set
of markingsM

revFire(M , t) returns set of markingsM′ from whichM is reached, when transition
t fires

In this section we will discuss implementations of these functions as direct operations on IDDs.

We useShared IDDs: several functions over the same set of variables are saved in one directed
acyclic graph with multiply roots. This minimizes calculation time and storage space. To access
an IDD, we use an index of its root.

Implementation ofequal(F ,G) is trivial with shared IDDs - we just have to test, if IDDsF andG
have the same root. Implementation ofempty(F) is also trivial.

Before coming to more complex functions, let us first discuss several supplementary functions.
FunctionMakeNode creates a new IDD node. It gets a label for the node, a list of intervals - the
labels for the edges, and a list of children. The function takes care that the IDDs remain reduced
(compare definition of reduced Boolean IDDs in section 3).

7

Algorithm 2 (MakeNode)
1 func MakeNode (v , P = {I1, . . . , Ik}, C = {c1, . . . , ck})
2 begin
3 while ∃ cj , cj+1 ∈ C such thatcj = cj+1 do
4 C := C \ cj+1 /* Unite neighbored intervals */
5 Ij := Ij ∪ Ij+1 /* if neighbored children */
6 P := P \ Ij+1 /* are equal */
7 od
8 if |C| = 1 then /* Only one child, return it */
9 return c1

10 fi
11 res := lookup(UniqueTable, v ,P ,C)
12 if res �= ∅ then return res fi
13 return insert(UniqueTable, v ,P ,C)
14 end

FunctionMixIntervals gets as arguments two partitions ofN0: P1 andP2. Higher bounds of all
intervals inP1 andP2 build an increasing sequence with respect to their indices.MixIntervals
returns a new partition mixed from the intervals of the partitions saving this property. Obviously,
the maximal number of elements in the new partition is|P1| + |P2|.
Example 5 (MixIntervals)
if P1 = {[0, 5), [5, 8), [8,∞)}, P2 = {[0, 7), [7,∞)} then

MixIntervals(P1 ,P2) = {[0, 5), [5, 7), [7, 8), [8,∞)}

�	
Usually, operations on IDDs are implemented like the ones on BDDs with help ofMemory func-
tions.Memory function means, a function saves calculated results in aCache and if called again
with previously used arguments, it uses these stored results instead of calculating them again. Each
memory function uses its ownCache, we will refer to them asResultTable later.

union(F ,G), intsec(F ,G) anddiff(F ,G) are variations of the traditionalapply(F ,G) function
[Bry86]. Let us discuss in more details implementation ofintsec(F ,G). The function uses a re-
cursive sub-functionintsecR(r1 ,r2) that gets roots of two IDDs as arguments and builds in a
bottom-up way a result IDD.MakeNode is used to keep the IDDs reduced. Recursion end is
reached, ifr1 or r2 are terminal nodes orr1 = r2. If the recursion end is not yet reached, then
there are two cases possible:

1. If var(r1) = var(r2), then the problem is decomposed into maximum|part(r1)|+|part(r2)|
sub-problems that are solved then recursively.

2. If var(r1) �= var(r2), then|part(r1)| or |part(r2)| sub-problems must be again solved re-
cursively.

8

Algorithm 3 (Binary Operation on IDDs)
1 func intsec (F , G)
2

3 func intsecR (r1 , r2)
4 if r1 = 0∨ r2 = 0 then return 0 fi
5 if r1 = 1 then return r2 fi
6 if r2 = 1 then return r1 fi
7 if r1 = r2 then return r1 fi
8

9 if r2 < r1 then swap(r1 ,r2) fi /* intsec is commutative */
10 if ResultTable [r1 , r2] �= ∅ then return ResultTable [r1 , r2] fi
11

12 if var(r1) = var(r2) then
13 NewPart := MixIntervals(part(r1),part(r2))
14 forall Ij ∈ NewPart , Ik ∈ part(r1), Il ∈ part(r2) do
15 if Ij ∩ Ik ∩ Il �= ∅ then
16 NewChildj := intsecR(childk(r1), childl(r2))
17 fi
18 od
19 res := MakeNode(var(r1), NewPart , NewChild)
20 elseif var(r1) < var(r2) then
21 NewPart := part(r1)
22 forall Ij ∈ NewPart do
23 NewChildj := intsecR(childj(r1), r2)
24 od
25 res := MakeNode(var(r1), NewPart , NewChild)
26 else
27 NewPart := part(r2)
28 forall Ij ∈ NewPart do
29 NewChildj := intsecR(childj(r2), r1)
30 od
31 res := MakeNode(var(r2), NewPart , NewChild)
32 fi
33 ResultTable [r1 , r2] = res
34 return res
35 end
36

37 begin
38 B .root := intsecR(F .root , G .root)
39 return B
40 end

9

Example 6 (Application of intsec)
Fig. 5 shows result ofintsec(f , g) for f = x1 > 5 ∧ x2 > 0 andg = x1 < 7 ∨ x3 ≤ 8.
Sub-functionintsecR is called first with arguments (3,5) - roots of IDDs for f and g . Further
recursive calls ofintsecR are represented as a tree. It is supposed that shared IDDs are used, that
is why the resulting IDD reuses nodes2 and4. �	

x1

0

x2

1

[1,oo)

[6,oo)

[0,1)

[0,6)
x1

1 0

x3

x1

x2 x2

x3

0 1

[0,7)3

[0,9) [9,oo) [0,1)

[0,6)
[6,7)

[7,oo)

[0,1) [1,oo)

[0,9) [9,oo)

[1,oo)
2

5

4 2

7

4

6

[7,oo) (3,5)

(0,1) (2,1) (2,4)

(1,4)(0,4)

Call tree (arguments) of intsecR

Fig. 5. Example for intersection of two IDDs

We finish this section by providing the algorithm for the functionfire. Implementation ofrevFire
is similar to this one. To improve efficency,fire is implemented as a direct IDD operation. The
function is again implemented by a help of a recursive memory function. The implementation
supports inhibitor arcs. If an unbounded place is met, the function returns an error.

The following supplementary functions are used:

getFirstPlace(t) returns the first place connected with transitiont . Places are
ordered with respect to the variables ordering used.

getNextPlace(t ,p) returns the next place connected with transitiont . Places are
ordered with respect to the variables ordering used.
If placep is the last place, then∅ is returned.

weightPre(t ,p) returns the weight of the arc from placep to transitiont .
If there is no such an arc, then0 is returned.

weightPost(t ,p) returns the weight of the arc from transitiont to placep.
If there is no such an arc, then0 is returned.

arcType(t ,p) returns type of the arc between placep and transitiont . Two
values are possible: INH for inhibitor arcs andNORM
for normal arcs.

shift({I1, . . . , Ik},val) shifts intervals onval that can be negative. If negative bounds
arise, they are replaced with0, so empty intervals can appear.

10

Algorithm 4 (fire as an IDD operation)
1 func fire (M , t)
2

3 func fireR (r , place)
4 if place = ∅ ∨ r = 0 then return r fi
5 if ResultTable [r , t] �= ∅ then return ResultTable [r , t] fi
6 if var(r) < place then
7 NewPart := part(r)
8 forall Ij ∈ NewPart do
9 NewChildj := fireR(childj(r), place))

10 od
11 res := MakeNode(var(r), NewPart , NewChild)
12 elseif var(r) = place then
13 if arctype(t , place) = INH then /* It is an inhibitor arc from place to t */
14 NewPart := {[0, 1), [1,∞)}
15 NewChild1 := fireR(child1(r), getNextPlace(t ,place))
16 NewChild2 := 0
17 res := MakeNode(var(r), NewPart , NewChild)
18 else
19 start := 1
20 while partstart(r) ⊆[0,weightPre(t ,place)) do
21 start := start + 1 /* skip it, t can not fire in this interval */
22 od
23 for start ≤ j ≤ |part(r)| do
24 NewChild j−start+1 := fireR(childj(r), getNextPlace(t ,place))
25 od
26 if start > 1 then append0 at head ofNewChild fi
27

28 NewPart := part(r)
29 shift(NewPart , - weightPre(t ,place)) /* shift left */
30 forall Ij ∈ NewPart ∧ Ij = ∅ do /* delete empty intervals */
31 NewPart := NewPart \ Ij

32 od
33 shift(NewPart , weightPost(t ,place)) /* shift right */
34 if 0 /∈ NewPart1 then
35 appendN0 \ NewPart at head ofNewPart
36 append0 at head ofNewChild
37 fi
38 res := MakeNode(var(r), NewPart , NewChild)
39 else
40 error (“unbounded place met”)
41 fi
42 fi
43 ResultTable [r , t] := res
44 return res
45 end
46

47 begin
48 B .root := fireR(M .root , getFirstPlace(t))
49 return B
50 end

11

6 Notes on Implementation

The IDD library and CTL model checker have been implemented in C++ using results of Jochen
Spranger and Andread Noack [Noa99, Spr01]. The IDD library was not implemented from the
scratch, the library [Noa99] was rewritten to support IDDs instead of ZBDDs. The implementation
was tested under Linux and SUN Solaris.

To define a partition ofN0, it is enough to provide a growing sequence of positive integers. This
fact was used to store the reduced interval partitions. Partitions and children of an IDD node were
stored as linked lists of integers.

To minimize the number of intermediate IDDs and to speed up calculation of the state space, a
functionfireUnion(F ,t ,G) was implemented as a direct IDD operation. It calculates markings got
by firing of t in F and unites them withG in one step. Lines6-8 in the Algorithm 1 should be
replaced then by:

6 forall t ∈ T do
7 New := fireUnion(New , t , New)
8 od

Variables ordering is always an issue for decision diagrams techniques. Static ordering is applied
in our implementation. The following heuristic is used: the number of nodes in lower layers of
IDD is potentially higher than in upper layers, variables that strongly depend on each other should
lay possibly close in the ordering.
A simple greedy algorithm is used to calculate the ordering. It builds the ordering bottom-up like,
starting at terminal nodes and going up to the root. To select a new placep to be added into the
ordering, the following weight is used:

weight(p) :=

∑
t∈Fp

|Ft∩Sa|
|Ft| +

∑
t∈pF

|tF∩Sa|
|tF |

|Fp ∪ pF |
Variable for a place with the highest weight is selected. HereSa is the set of already selected
places. At the beginning of calculation when only few places are selected,|tF ∩Sa| and|Ft∩Sa|
can evaluate to0. If this is the case, the constant0.1 is used instead.

An initial marking of a Petri Net can be specified by an ILE. This was used to support the verifi-
cation of a net for a set of initial markings.

Furthermore Petri Nets with inhibitor arcs are supported by the implementation.

12

7 Experimental Results

Before doing CTL model checking, the state space of a Petri Net must be calculated. So it was
of main interest, how compact it can be represented and how fast it can be calculated when using
IDDs.
Results1 for three Petri Nets models are provided in Table 1. As it can be seen, IDDs allow quite
efficient representation for bounded nets. The nets used as case studies are:

RW a model for the readers and writers protocol, see Fig. 6, left. In the table, numbers in the name
mean the number of tokens in placesidle readers andidle writers in the initial marking. RW
≤500 in the table means, the net was analyzed for a set of initial markings: placesidle readers
andidle writers could carry from 0 to 500 tokens.

FMS a model for the flexible manufacturing system [CT93], see Fig. 6, right. Numbers in the
name mean the number of tokens in places labeled withN .

MUL a Petri Net that weakly computesx ∗ y [PW03], see Fig. 7. On the right, a subnetadd is
shown. Numbers in the name mean the number of tokens in placesx andy .

Example Time (sec) States in RG IDD Nodes IDD Edges Iterations
RW 100 0.2 6 ∗ 102 1,853 4,820 102
RW 500 2 3 ∗ 103 6,533 18,574 502
RW 1000 10 6 ∗ 103 18,053 47,120 1002
RW≤500 13 3 ∗ 108 6,533 17,074 502
FMS 20 1 6 ∗ 1012 1,739 8,407 25
FMS 50 18 4 ∗ 1017 8,819 59,462 55

FMS≤50 50 5 ∗ 1020 8,819 80,187 55
MUL 6,6 3 3 ∗ 106 2,418 12,022 63
MUL 6,7 5 6 ∗ 106 3,087 16,154 69
MUL 6,10 30 3 ∗ 107 5,562 33,046 87

Table 1. State space generation

8 Future Research

Here are some points of current and future research:

1. We are working on application of interval diagram techniques to the analysis of bounded
Timed P/T nets and Timed CTL model checking [RK97]

2. It is interesting to study other heuristics and algorithms for ordering of IDDs variables for
bounded Petri Nets.

3. A symbolic LTL model checker for bounded Petri Nets can be implemented using the IDD
library. For this purpose algorithms from [Spr01] must be uplifted from safe to bounded nets.

4. At the moment, generation of counter examples and witnesses is still missing in the CTL
model checker.

1 The benchmark was done on a PC with Intel Pentium 4, 2.8GHz, 512MB RAM, running SUSE Linux 9.0

13

2

writing

mutexR

NOwriter

readersA

reading
mutexR

NOwriter

readersA

mutexR

100

idle_writers

100
idle_readers

50

N

50
N

50
N

Fig. 6. Nets for Readers and Writers and Flexible Manufacturing System

start

out

halt

10

y

x

in1

in2

halt_p

out_p

start_p

1. add
in1

in2

halt_p

out_p

start_p

Fig. 7. PN for the weak calculation ofx ∗ y

14

References

[BBF+01] Béatrice Bérard, Michel Bidoit, Alain Finkel, Franc¸ois Laroussinie, Antoine Petit, Laure Petrucci,
and Philippe Schnoebelen.Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.IEEE Transactions on
Computers, C-35(8):677–691, 1986.

[CGP01] Edmund Clarke, Orna Grumberg, and Doron Peled.Model Checking. MIT Press, 2001.
[CJMS01] Gianfranco Ciardo, Rob L. Jones, Andrew S. Miner, and Radu I. Siminiceanu. SMART: Stochastic

Model Analyzer for Reliability and Timing. InTools of Aachen 2001, International Multiconference on
Measurement, Modelling and Evaluation of Computer-Communication Systems, pages 29–34, 2001.

[CT93] Gianfranco Ciardo and Kishor S. Trivedi. A Decomposition Approach for Stochastic Reward Net Models.
Performance Evaluation, 18(1):37–59, 1993.

[HK04] Monika Heiner and Ina Koch. Petri Net Based System Validation in Systems Biology. InProceedings of
the 25th International Conference on Application and Theory of Petri Nets, LNCS 3099, pages 216–237,
2004.

[HKW04] Monika Heiner, Ina Koch, and J¨urgen Will. Validation of Biological Pathways Using Petri Nets - Demon-
strated for Apoptosis.BioSystems, 75/1-3:15–28, 2004.

[Kam95] Timothy Kam. State Minimization of Finite State Machines Using Implicit Techniques. PhD thesis,
University of California at Berkeley, 1995.

[LR95] Kurt Lautenbach and Hanno Ridder. A Completion of the S-invariance Technique by Means of Fixed
Point Algorithms. Fachberichte Informatik 10–95, Universit¨at Koblenz-Landau, 1995.

[MC99] Andrew S. Miner and Gianfranco Ciardo. Efficient Reachability Set Generation and Storage Using
Decision Diagrams. InProceedings of the 20th International Conference on Application and Theory of
Petri Nets, LNCS 1639, pages 6–25. Springer, 1999.

[Noa99] Andreas Noack. A ZBDD Package for Efficient Model Checking of Petri Nets (in German). Forschungs-
bericht, Branderburgische Technische Uinversit¨at Cottbus, 1999.

[Pet62] Carl A. Petri.Kommunikation mit Automaten. PhD thesis, Schriften des IIM Nr. 3, Bonn, 1962.
[PRCB94] Enric Pastor, Oriol Roig, Jordi Cortadella, and Rosa M. Badia. Petri Net Analysis Using Boolean Ma-

nipulation. InProceedings of the 15th International Conference on Application and Theory of Petri Nets,
LNCS 815, pages 416–435. Springer, 1994.

[PW03] Lutz Priese and Harro Wimmel.Petri Netze. Theoretische Informatik. Springer, 2003.
[Rid97] Hanno Ridder.Analyse von Petri-Netz Modellen mit Entscheidungsdiagrammen. PhD thesis, Universit¨at

Koblenz-Landau, 1997.
[RK97] Jürgen Ruf and Thomas Kropf. Symbolic Model Checking for a Discrete Clocked Temporal Logic with

Intervals. InProceedings of the IFIP WG 10.5 International Conference on Correct Hardware Design
and Verification Methods, pages 146–163. Chapman & Hall, Ltd., 1997.

[RR98] Wolfgang Reisig and Grzegorz Rozenberg, editors.Lectures on Petri Nets II: Applications, Advances in
Petri Nets. Springer, 1998.

[Spr01] Jochen Spranger.Symbolic LTL Verification of Petri Nets (in German). PhD thesis, Branderburgische
Technische Uinversit¨at Cottbus, 2001.

[ST98] Karsten Strehl and Lothar Thiele. Symbolic Model Checking Using Interval Diagram Techniques. Tech-
nical report, Computer Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, 1998.

[ST99] Karsten Strehl and Lothar Thiele. Interval Diagram Techniques for Symbolic Model Checking of Petri
Nets. InProceedings of the Design, Automation and Test in Europe Conference, pages 756–757, Munich,
Germany, 1999.

[Sta90] Peter H. Starke.Analyse von Petri-Netz-Modellen. Stuttgart, Teubner, 1990.

15

