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Hybrid Representation and Simulation of Stiff Biochemical

Networks through Generalised Hybrid Petri Nets

Mostafa Herajy, and Monika Heiner
Data Structures and Software Dependability,

Computer Science Department
Brandenburg University of Technology

Cottbus, Germany

Abstract

With the progress of computational modelling and simulation of biochemical networks,
there is a need to manage multi-scale models, which may contain species or reactions
at different scales. A visual language like Petri nets can provide a valuable tool for
representing and simulating such stiff biochemical networks. In this paper we introduce
a new Petri nets class, Generalised Hybrid Petri Nets (GHPNbio) tailored to the specific
needs for modelling and simulation of biochemical networks. It provides rich modelling
and simulation functionalities by combining all features of Continuous Petri Nets and
Generalised Stochastic Petri Nets, including three types of deterministic transitions. In
this paper, we focus on modelling and simulation of stiff biochemical networks, in which
some reactions are represented and simulated stochastically, while others are carried out
deterministically. Two related simulation algorithms are presented, supporting static
(off-line) partitioning and dynamic (on-line) partitioning. We discuss three case stud-
ies, demonstrating the use of GHPNbio and the efficiency of the developed simulation
algorithms.

1 Introduction

Computer simulation is an essential tool for studying biochemical systems. The de-
terministic approach is the traditional way of simulating biochemical pathways [Pah09,
WUKC04]. In this approach, reactions and their influence on the concentrations of
the involved species are represented by a set of ordinary differential equations (ODEs).
While this approach has the advantage of a well established mathematical basis and
strong documentation, it lacks to capture the phenomena which may occur due to the
underlying discreteness and random fluctuation in molecular numbers [LCPG08, Pah09],
especially in situations where the number of molecules is small.

The stochastic approach [Gil76] overcomes the drawbacks of deterministic simula-
tions and provides a very natural way of simulating biochemical pathways, since it can
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R1 :S1
c1−→ S2

R2 :S2
c2−→ S1

R3 :S1 + S2
c3−→ S3

S1

S2

S3

R2 R1 R3

Figure 1: An example of a stiff biochemical network: Reaction set (left) [RPCG03] and
its Petri nets representation (right). Assuming mass-action kinetics with c1 = c2 = 105

and c3 = 0.0005 and the initial state x(0) = (10000, 10000, 100), reaction R3 is much
slower than R1 and R2.

successfully capture the fluctuations of the underlying model. Furthermore it deals cor-
rectly with the problem of extremely low numbers of molecules [ACT+05, MA99]. Nev-
ertheless, a major drawback of the stochastic simulation is that it is computationally
expensive when it comes to simulate larger biological models [ACT+05, LCPG08, Pah09],
especially when there are large numbers of molecules of some chemical species.

The situation becomes even more complicated for stiff models, i.e. models which com-
bine slow and fast reactions and/or species with small and large numbers of molecules.
Figure 1 shows an example for this case [RPCG03].

In this situation, neither stochastic nor deterministic simulation are appropriate to
efficiently analyse it, because stochastic simulations will be very slow and the con-
tinuous ones will fail to capture the fluctuation caused by species with low copies of
molecules. Hybrid simulation of biochemical networks has been previously studied in,
e.g., [ACT+05, GCPS06, HR02, KMS04, SK05]. To overcome the problem of stiffness,
sets of reactions are divided into two subsets: slow and fast. The slow set is simulated
stochastically, while the fast one is simulated deterministically – either using the ODE
system or stochastically using the chemical Langevin equation.

On the other side, the tight analogy between Petri nets and biochemical reactions
makes them a natural choice to model chemical reaction networks [HGD08, RML93].
Being bipartite and inherently concurrent are common properties shared by Petri nets
and biochemical reaction networks. Qualitative Petri net [HGD08] can be used to analyse
the biochemical systems qualitatively, while stochastic and continuous Petri nets are used
to simulate them quantitatively.

Continuous Petri Nets provide a way for modelling systems in which states change
continuously over time. In systems biology, biochemically interpreted continuous Petri
nets (CPNbio) provide a convenient means of describing ODEs in a structure-oriented
manner. Pre-places of the transitions represent reactants and the marking of places
stands for the species’ concentrations. Each transition t is associated with a rate function
v(t) which defines the kinetic rate. The corresponding ODE which represents the change

BTU TR 2/2011 6



M Herajy, M Heiner Generalised Hybrid Petri Nets

of the concentration of the species p is generated by (1), see e.g. [GH06],

dp

dt
=

∑
t∈•p

f(t, p)v(t)−
∑
t∈p•

f(p, t)v(t) (1)

where f(t, p) is the arc weight connecting transition t with place p, likewise f(p, t), and
•p, p• are the pre- and post-transitions of place p, respectively. Note that place names
are here read as real-valued variables.

In contrast to continuous Petri nets, stochastic Petri nets preserve the discrete state
description as it is the standard in Petri nets. Biochemical models are simulated stochas-
tically by associating a probability-distributed firing rate (waiting time) with each tran-
sition. To extend the modelling capabilities of stochastic Petri nets (SPN) for the appro-
priate modelling of biological system and experimental conditions in the wet-lab, two ex-
tensions of SPN have been introduced – biochemically interpreted Generalised Stochastic
Petri Nets (GSPNbio), and Extended Stochastic Petri Nets (XSPNbio) [HLGM09]. The
extensions include inhibitor and read arcs and deterministically time-delayed transitions.

In this paper, we introduce a new class of Petri nets which combines the power of
CPNbio and XSPNbio – Generalised Hybrid Petri Nets (GHPNbio). They are partic-
ularly well suited to represent and simulate stiff biochemical networks. The modelling
power of this class of Petri nets allows the combination of both discrete and continu-
ous network parts in one model, which permits to represent, e.g., a biological switch in
which continuous elements are turned on/off by discrete elements. The models can be
simulated using static partitioning in which the partitioning is done off-line before the
simulation starts, or using dynamic partitioning in which the partitioning is done on-line
during the simulation.

This paper is organized as follows: we start off with recalling some related work,
specifically Petri nets classes which have been recently used in the context of biochemical
modelling. Afterwards the theoretical background for hybrid simulation of stiff biochem-
ical networks is presented. Then, we introduce GHPNbio and show how they can be
simulated using static or dynamic partitioning. Three examples demonstrate how stiff
biochemical networks can be conveniently modelled and efficiently be simulated using
GHPNbio. We conclude with a brief discussion and conclusions.

2 Related Work

Hybrid Petri nets [AD98] incorporate both continuous and discrete capabilities and can
be used to model systems which contain both discrete and continuous elements. Many
variations of hybrid Petri nets have been introduced during the last two decades, with
different modelling goals.

Hybrid Dynamic Nets (HDN) [Dra98] allow any function for defining state-dependent
transition rates, without structural restrictions. In our net class, we restrict the domain
of rate functions to the transitions’ pre-places. This constraint is very useful in the bio-
logical context and crucial for the efficiency of our tools, since the reactions’ propensities
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( i.e the transition’s rates) are calculated in terms of the reactions’ reactants. We provide
a special arc type called modifier to allow any place in the transitions’ rate functions.

Hybrid Functional Petri Nets (HFPN) were introduced in [MTA+03] to allow any
function to be assigned as input/output weight or as transition delay. Hybrid Functional
Petri Nets with extension (HFPNe) [NDMM04] extend HFPN by generic entities and
generic data types. However, dynamic partitioning of transitions into discrete and con-
tinuous ones is not considered. In [YLL09], transitions can be simulated in an adaptive
way, but distinction between discrete and continuous places is not supported. Other
transition types (immediate transitions) are not supported neither.

Contrary, Fluid Stochastic Petri Nets (FSPNs) [TK93] combine both stochastic and
continuous net parts into one net class. However, they suffer from unclear and inconsis-
tent graphical representations [HK99] which make them inappropriate for our purpose
of representing and simulating biochemical networks. More importantly, they do not
support the full range of deterministically delayed transitions as we do.

Hybrid simulation of biochemical networks using a combination of both stochastic
and deterministic reactions was introduced in [HR02], however time-dependent propen-
sities are not considered, and the reactions are partitioned statically. In [ACT+05,
GCPS06], time-dependent propensities are considered when determining the reaction
type and the next time, at which a stochastic reaction will occur. A survey of different
hybrid simulation methods can be found in [Pah09]. In our paper we consider time-
dependent propensities when locating stochastic events as well as other event types like
firing of immediate, deterministic, or scheduled transitions.

In [ACT+05, GCPS06, YLL09], reactions are partitioned dynamically based on two
thresholds: one for transitions and the other one for places. In our approach we are
going to use two additional thresholds to decide the repartitioning time. This will
answer the question of when we need to reconsider repartitioning of the biochemical net-
works. Unlike most of the previous works of studying multi-scale biochemical networks
which concentrated on the simulation aspect only [ACT+05, HR02, GCPS06, WGMH10,
HMMW10], we pay attention to the representation aspect as well.

The specific contribution of our paper is the provision of a new class of Petri nets,
Generalised Hybrid Petri Nets, to support stiff biochemical networks both on represen-
tation and simulation level. The models can be simulated using both static and dynamic
partitioning. Additionally, GHPNbio inherits from Snoopy [RMH10] – a tool to design
and animate or simulate hierarchical graphs, among them qualitative, stochastic, con-
tinuous and hybrid Petri nets – some very useful features which do not exist in any of
the previously mentioned Petri nets classes like logical nodes and hierarchies which are
crucial means for modelling large scale biochemical networks.

3 Theory

Consider a well mixed system of N chemical species S1, . . . , SN , which interact using M
chemical reactions R1, . . . , RM . The state of the system at any time t, can be represented
by an N -vector X(t) = X1(t), . . . ,XN (t), where Xi(t) gives the number of molecules of
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specie Si at time t. The goal is to find an estimated evolution of the vector X over the
time t, starting from an initial state X(t0) [Gil07]. In the following we often refer to a
reaction Ri by just giving its index i, as it is habit in related literature.

If the thermodynamic limit condition holds (i.e. the number of molecules and the
volume of the system approach infinity), then the evolution of the above system can be
represented as a set of ordinary differential equations(ODEs) [HR02, WUKC04] in the
form of (2), where the concentration of species Si is denoted by [Si]. Please note that
equation (1) – which is used to generate the ODEs from Petri nets – has also the same
form as (2), where the function v(t) is a state dependant transition rate.

d[Si]

dt
= fi([S1], . . . , [SN ]) (2)

However if the system contains some species with low numbers of molecules, then
the thermodynamic limit condition will be violated and deterministic simulation will
not reflect the actual model behaviour [Gil76]. In this case, stochastic simulation can be
used to simulate the model at the molecular level which takes into account the inherently
discrete and stochastic nature of chemical reactions [MA99].

Gillespie [Gil76, Gil77] derived two Monte Carlo based simulation algorithms to sim-
ulate Markov systems. The direct and first reaction methods are two variations to
simulate a set of coupled reactions.

According to the direct method [Gil76, Gil77], the next time τ a reaction will occur
is specified by

τ = − 1

a0(x)
ln r1 , (3)

and the reaction, Rµ to occur is determined by

µ−1∑
i=1

ai(x) < r2a0(x) ≤
µ∑
i=1

ai(x) , (4)

where r1 and r2 are two random numbers which are generated from a uniform
distribution (0, 1), ai(x) is the propensity of reaction Ri at a state X(t) = x, and

a0(x) =

M∑
i=1

ai(x) is the total (cumulative) propensity [Pah09].

However, neither stochastic nor deterministic approaches are appropriate to simulate
stiff models due to the aforesaid reasons. One choice in such a situation is hybrid
simulation. In hybrid simulation, reactions are divided into two groups: fast and slow.
In the former case the macroscopic conditions are fulfilled and they can be simulated
using an ODE system, while in the latter case the set of slow reactions are simulated
using stochastic methods [HR02, SK05, Gou05, GCPS06]. Figure 2 summarizes the
relationship between stochastic, deterministic and hybrid simulation.

Due to the combination of both deterministic and stochastic reactions in the hybrid
simulation approach, the propensities of the stochastic reactions depend on the state
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M Herajy, M Heiner Generalised Hybrid Petri Nets

M
ore F

ast

M
or

e 
A

cc
ur

at
e

Stochastic

Hybrid

Deterministic

Figure 2: The relationship between hybrid simulation and other methods of simulating
biochemical networks.

change of deterministically simulated reactions [HR02, SK05, Pah09]. Gillespie [Gil91]
derived the correct reaction probability density function for this case as

P (τ, µ|X(t), t) = aµ(X(t+ τ)) exp (−
∫ t+τ

t
a0(X(t))dt) , (5)

In [HR02], fast reactions are represented by a continuous Markov process being cou-
pled to Markov jump process for slow reactions where the CTMC is approximated by
ODEs. However, they do not consider time varying propensities for slow reactions;
instead a probability is introduced that no reaction occurs to decrease the approxima-
tion error [Pah09]. Other hybrid methods, for example in [ACT+05, GCPS06], consider
time-varying propensities of slow reactions using (6).

g(x) =

∫ t+τ

t
as0(x)dt− ξ = 0 , (6)

where ξ is a random number exponentially distributed with a unit mean, and as0(x) is
the cumulative propensity of slow reactions.

Using (6), the hybrid simulation algorithm can switch between deterministic and
stochastic simulation by integrating the set of ODEs representing fast reactions along
with the cumulative propensity, as0(x), till (6) is satisfied, which means that a stochastic
event has occurred. Then, a stochastic reaction Rµ is selected such that

µ−1∑
i=1

asi (x) < r2a
s
0(x) ≤

µ∑
i=1

asi (x) , (7)

BTU TR 2/2011 10
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where asi (x) is the propensity of the ith slow reaction, and r2 is a random number
uniformly distributed in (0,1).

In simulating GHPNbio’s models, we not only have to detect stochastic events, but
also other event types such as immediate and deterministic events. Immediate events
represent a firing of an immediate transition while deterministic events represent a firing
of a deterministically delayed time transition. The detailed algorithm is presented in
4.3.

4 Generalised Hybrid Petri Nets

In this part, we discuss in more detail the different aspects of the Generalised Hybrid
Petri Nets class. We start by its modelling capabilities for biological systems, specifi-
cally in simulating stiff biochemical networks, and explain how GHPNbio models can be
simulated.

4.1 Modelling

To model stiff biochemical networks, Generalised Hybrid Petri Nets (GHPNbio) combine
both stochastic and continuous elements in one and the same model. Indeed, continuous
and stochastic Petri nets complement each other. The fluctuation and discreteness can
be powerfully modelled using stochastic simulation and at the same time, the computa-
tionally expensive parts can be simulated deterministically using ODE solvers. Modelling
and simulation of stiff biochemical networks is one of the outstanding functionalities that
GHPNs can provide in the area of systems biology.

Generally speaking, biochemical systems can involve reactions from more than one
type of biological networks, for example regulatory, metabolic or transduction pathways.
Incorporating reactions which belong to distinct (biological) networks, tends to result
into stiff systems. This follows from the fact that regulatory networks’ species may
contain a few number of molecules, while metabolic networks’ species may contain a
large number of molecules [KMS04].

In the rest of this section, we will discuss in more details the newly introduced net
class in terms of the graphical representation of its elements as well as the firing rules
and connectivity between the continuous and stochastic net parts.

4.1.1 Graphical Representation

GHPNbio contains two types of places: discrete and continuous. Discrete places (sin-
gle line circle) contain non-negative integer numbers which represent the number of
molecules in a given specie. On the other hand, continuous places - which are repre-
sented by shaded line circle - contain non-negative real numbers which represent the
concentration of a certain species. Furthermore GHPNbio contains five transition types:
continuous, stochastic, deterministic, immediate, and scheduled transitions [HGD08].
Continuous transitions (shaded line square) fire continuously in the same way like in

BTU TR 2/2011 11
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continuous Petri nets. Their semantics are governed by ordinary differential equations.
Their ODEs define the changes in the transitions’ pre- and post-places.

Stochastic transitions which are drawn in Snoopy as a square, fire randomly with
an exponentially distributed random delay. The user can specify a set of firing rate
functions, which determine the random firing delay. The transition’s pre-places can be
used to define the firing rate functions of the stochastic transitions. Deterministic transi-
tions (represented as black squares) fire after a specified constant time delay, immediate
transitions (black bar) fire with zero delay, and have always higher priority in the case
of conflicts with other transitions. They may carry weights which specify the relative
firing frequency in the case of conflicts between more than one immediate transition.
Scheduled transitions (grey squares) fire at user-specified absolute time points. More
details about the biochemical interpretation of deterministic, scheduled, and immediate
transitions can be found in [HLGM09].

The connection between those two types of nodes (places and transitions) takes place
using a set of different arcs. GHPNbio contains six types of arcs: standard, inhibitor,
read, equal, reset and modifier arcs. Standard arcs connect transitions with places or vice
versa. They can be continuous, i.e carry non-negative real-valued weights (stoichiometry
in the biochemical context), or discrete i.e carry non-negative integer-valued weights.
Special arcs like inhibitor, read, equal and reset arcs can only be used to connect places
to transitions, but not vice versa. Further arc types – like modifier and equal arcs –
simplify the modelling task. For example, a modifier arc permits to include any place in
the transitions’ rate functions and simultaneously preserves the net structure restriction.
The connection rules and their underlying semantics are discussed in more details below.
Figure 3 provides a graphical illustration of those elements. Although this graphical
notation is the default one, they can be easily customised using our Petri nets editing
tool, Snoopy.

As a simple example for the above discussion, consider again the stiff biochemical
network in Figure 1. Using GHPNbio, the slow reaction R3 can be modelled using a
stochastic transition while the other two fast reactions, R1 and R2, can be represented
using continuous transitions. Places are partitioned into discrete and continuous based
on the connection rules which will be discussed next.

4.1.2 Connection Rules

A critical question arises when considering the combination of discrete and continuous
elements: how are these two different parts connected with each other? Figure 4, pro-
vides a graphical illustration of how the connection between different elements of the
introduced GHPNbio takes place. We denote here by discrete transitions: stochastic,
immediate, deterministic or scheduled transitions.

Firstly, we will consider the connection between continuous transitions and the other
elements of GHPNbio. Continuous transitions can be connected with continuous places
in both directions using continuous arcs (i.e arc with real-valued weight). This means
that continuous places can be pre- or post-places of continuous transitions. These con-
nections typically represent deterministic biological interactions.

BTU TR 2/2011 12
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Discrete

Standard

Continuous

Stochastic

Inhibitor Equal Reset ModifierRead

Continuous Immediate Deterministic

<1>

Scheduled

[_SimStart,1,_SimEnd]

Places

Transitions

Edges

Figure 3: Graphical representation of the GHPNbio’s elements. Places are classified as
continuous and discrete, transitions as continuous, stochastic, immediate, deterministic,
and scheduled, and arcs as standard, inhibitor, read, equal, and modifier.

or

or

or
or

or

or

or

or

Continuous TransitionDiscrete  Transition

Figure 4: Possible connections between GHPNbio’s elements: Discrete places can not
be connected with continuous transitions using standard arcs.
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Continuous transition can also be connected with discrete places, but only by one
of the extended arcs (inhibitor, read, equal, and modifier). Read arcs allow to specify
positive side conditions, while inhibitor arcs allow to specify negative side conditions.
It is worth being mentioned that the markings of the transition’s pre-places connected
by these special arcs do not change when the transition fires. This type of connection
allows a connection between discrete and continuous parts of the biochemical model.

Discrete places are not allowed to be connected with continuous transitions using
standard arcs, because the firing of continuous transitions is governed by ODEs which
require real values in the pre- and post-places. Hence, this can not take place in the
discrete world. Discrete transitions (stochastic, deterministic, immediate and scheduled
ones) can be connected with discrete or continuous places in both directions using stan-
dard arcs. However, the arc’s weight should be considered, i.e the connection between
discrete transitions and discrete places takes place using arcs with non-negative inte-
ger numbers, while the connection between continuous places and discrete transitions is
weighted by non-negative real numbers. The general rule to determine the weight type
of arcs is the type of the transition’s pre/post-places.

Connecting continuous places and discrete transitions will result in a model like
in [TK93], in which changes in continuous places are governed by firing of stochastic
transitions. Discrete transitions can also have discrete or continuous pre-places using
special arcs.

4.2 Formal Definition

In a more formal way, Generalised Hybrid Petri Nets are a 5-Tuple, GHPNbio =
[P, T,A, V,m0] where: P , T are finite, non-empty and disjoint sets. P is the set of
places, and T is the set of transitions with:

• P = Pcont ∪ Pdisc whereby Pcont is the set of continuous places to which non-
negative real values are assigned, and Pdisc is the set of discrete places to which
non-negative integer values are assigned.

• T = Tcont ∪ Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled with:

1. Tcont is the set of continuous transitions, which fire continuously over time.

2. Tstoch is the set of stochastic transitions, which fire stochastically with expo-
nentially distributed waiting time.

3. Ttimed is the set of deterministic transitions, which fire with a deterministic
time delay.

4. Tscheduled is the set of scheduled transitions, which fire at predefined firing
time points.

5. Tim is the set of immediate transitions, which fire with waiting time zero;
they have higher priority compared with other transitions.

BTU TR 2/2011 14
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• A = Acont ∪Adisc ∪Ainhibit ∪Aread ∪Aequal ∪Areset
∪Amodifier is the set of directed edges, whereby:

1. Acont : ((Pcont×T )∪(T ×Pcont))→ R+
0 defines the set of continuous, directed

arcs, weighted by non-negative real values.

2. Adisc : ((P × T ) ∪ (T × P )) → N0 defines the set of discrete, directed arcs,
weighted by non-negative integer values.

3. Aread : (P × T )→ R+
0 if P ∈ Pcont, or

Aread : (P × T )→ N0 if P ∈ Pdisc
defines the set of read arcs.

4. Aequal : (Pdisc × T )→ N+
0 , defines the set of equal arcs.

5. Ainhibit : (P × T )→ R+
0 if P ∈ Pcont, or

Ainhibit : (P × T )→ N0 if P ∈ Pdisc
defines the set of inhibits arcs.

6. Areset : (P × Tdiscrete)→ {0, 1} defines the set of reset arcs, where Tdiscrete =
Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled is the set of discrete transitions.

7. Amodifier : (P × T )→ {0, 1} defines the set of modifier arcs.

• V is a set of functions V = {f, g, d, w} where :

1. f : Tcont → Hc is a function which assigns a rate function hc to each contin-

uous transition t ∈ Tcont, such that Hc = {hct |hct : R|
•t|
0 → R+

0 , t ∈ Tcont} is
the set of all rates functions and f(t) = hct , ∀t ∈ Tcont.

2. g : Tstoch → Hs is a function which assigns a stochastic hazard function hst
to each transition t ∈ Tstoch, whereby Hs = {hst |hst : R|

•t|
0 → R+

0 , t ∈ Tstoch}
is the set of all stochastic hazard functions, and g(t) = hst∀t ∈ Tstoch .

3. d : Ttimed ∪ Tscheduled → R+
0 , is a function which assigns a constant time to

each deterministic and scheduled transition representing the waiting time.

4. w : Tim → Hw is a function which assigns a weight function hw to each

immediate transition t ∈ Tim, such that Hw = {hwt |hwt : R|
•t|
0 → R+

0 , t ∈ Tim}
is the set of all weight functions, and w(t) = hwt , ∀t ∈ Tim

• m0 = mcont ∪ mdisc is the initial marking for both the continuous and discrete

places, whereby mcont ∈ R+|Pcont|
0 , mdisc ∈ N|Pdisc|

0 .

Here, N0 denotes the set of non-negative integer numbers, R+
0 denotes the set of

non-negative real numbers, and •t denotes the pre-places of a transition t.
The formal definition above covers the syntactical aspects of Generalised Hybrid

Petri Nets. Their operational semantics will be formally defined in the next section,
when we discuss their simulation.
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4.3 Simulation of GHPN

After the modelling aspects of GHPNbio have been presented in the previous section,
we discuss here the approach which is used to simulate GHPNbio. The key idea behind
simulation of Generalised Hybrid Petri Nets is to numerically solve the set of ordinary dif-
ferential equations generated by the continuous transitions until a discrete event occurs.
The event type is dispatched, and afterwards the continuous simulation is resumed. We
start by discussing the simulation of statically partitioned GHPNbio, then the dynamic
partitioning of GHPNbio is presented, which substantially simplifies the modelling of
biochemical networks using GHPNbio.

4.3.1 Simulation of Statically Partitioned GHPNbio

In the following we illustrate how GHPNbio can be simulated using an extended version
of the algorithms which are discussed in [ACT+05, GCPS06, HR02]. Algorithm (1) sum-
marizes the steps which are needed to simulate Generalised Hybrid Petri Nets. Starting
from an initial marking which corresponds to the initial state of a biochemical system,
the algorithm computes state changes over time t, which is represented by the current
marking m(CurrentT ime). Initially the current marking is set to the initial marking,
and the individual propensities a(t) as well as the cumulative propensity are calculated
for both stochastic and continuous transitions (lines 3-5). Deterministically time de-
layed transitions do not have propensities, since they fire after a pre-defined time delay,
likewise for scheduled transitions. Note that in the algorithm we consider scheduled
transitions as deterministically time delayed transitions since they can be considered as
a special case of them. Note that immediate transitions also do not have propensities
associated with them (see Section 4.1.1).

If there is a non-stochastic transition in the underlying model, then the algorithm
determines the next stochastic transition to fire by integrating the set of ODEs as well
as the cumulative propensities until equation (6) is satisfied.

The numerical integrator stops when an event Ei occurs. The event may be an
enabling of an immediate or deterministically time delayed transition, a deterministically
time delayed transition has finished its delay, a stochastic event occurred, or the end of
simulation time has been reached. Then, the appropriate action will be taken.

Line 11 updates all of the transitions’ propensities that share a pre-place with a
continuous transition. The function IsEnabled(t) checks for enabling of a transition t,
while Fire(t) fires an enabled transition. The details of these functions are easy to be
implemented, therefore they are not further considered here.

CheckImmediateTransitions() checks if there is any immediate transition enabled.
If such a transition is found, it will be fired. If there are several immediate transitions
enabled then the first one to fire is selected based on their weights. More precisely,
if an immediate transition k is enabled in the current marking m, then it fires with
probability:
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Algorithm 1 Simulating Static Partitioned GHPNbio

1: CurrentT ime← 0;
2: ξ ← exp(1){Generate a random number exponentially distributed with a unit mean}
3: m(CurrentT ime)← m(0); {current marking=initial marking}
4: ∀t ∈ {Tcont ∪ Tstoch} calculate a(t);
5: a0 ←

∑
a(t), ∀t ∈ Tstoch;

6: while CurrentTime < EndTime do
7: if There are non-stochastic transitions then
8: Initialize the ODE solver by m(CurrentT ime);
9: Simultaneously integrate the system of ODEs generated using (1) and

g(m(CurrentT ime)) until an event E occurs;
10: CurrentT ime = the current integrator time;
11: Update(a(ti), a0), ∀ti :•ti ∩ {•tj ∪ t•j} 6= φ,∀tj ∈ Tcont;
12: if E is: ∃t ∈ Tim and IsEnabled(t) then
13: CheckImmediateTransitions();
14: else if E is: ∃t ∈ Tdeter and IsEnabled(t) then
15: CheckDeterministicTransitions();
16: else if E is: ∃t ∈ Tdeter and FireTime(t)= CurrentT ime then
17: CheckDeterministicTransitions();
18: else if E is: g(m(CurrentT ime)) ≥ 0 then
19: g(m(CurrentT ime))← 0;
20: ξ ← exp(1);
21: tchosen ← a transition index i satisfying (7);
22: Fire(tchosen);
23: Update(a(ti)), ∀ti : •ti ∩{t•chosen∪ •tchosen}6= φ
24: else if E is: CurrentT ime ≥ EndTime then
25: break;
26: end if
27: else
28: CurrentT ime = CurrentT ime+exp(a0) {See (3).}
29: if CurrentT ime < EndTime AND a0 > 0 then
30: tchosen ← a transition index i satisfying (4);
31: Fire(tchosen);
32: Update(a(ti)), ∀ti : •ti ∩{t•chosen∪ •tchosen}6= φ
33: end if
34: end if
35: end while

w(k,m)∑
i∈Tim∧isEnabled(i)

w(i,m)
, (8)
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where w(k,m) is the weight assigned to an immediate transition k in the current
marking m. It is worth mentioning here that immediate transitions have priority over all
other transitions in the case of conflict. The purpose of CheckDeterministicTransitions()
is twofold. Firstly, it checks if there are any enabled deterministic transitions; it puts
them in the delay list along with their proposed time to fire. If there are transitions in
the delay list which have finished their delay, then it fires them.

Lines 19-23 and lines 30-32 perform the same task, but for different conditions. In
the former case, a stochastic transition is selected to be fired when the ODE integrator
determines that a stochastic event has occurred. The stochastic transition is selected
based on equation (7). While in the latter case, the model contains only stochastic
transitions. Thus the next reaction time is computed based on equation (3), and the
next transition to fire is selected based on (4).

When a transition fires, the propensity of this transition as well as of any other
transitions that are affected by this firing are computed and the cumulative propensity is
updated. The simulation ends when the current simulation time exceeds the simulation’s
end time which is specified by the user.

While this algorithm can simulate any GHPNbio, it requires the user to specify the
partitioning in advance. Sometimes it is not easy for naive users to do the partition-
ing off-line. It is also possible that a good partitioning changes dynamically over time.
Therefore, we present in the next section an algorithm which supports on-line partition-
ing. In some cases, the cost of this dynamic partitioning is more computational overhead
[Pah09].

4.3.2 Transition Partitioning

Static partitioning of Petri nets into stochastic and continuous net parts is not always
appropriate. During simulation the transitions’ rates can drastically vary between low
and high. Furthermore off-line partitioning is not user friendly, since it is not easy for
naive users to determine which transitions should be considered stochastically and which
one continuously [Pah09]. The latter problem could be overcome by running stochas-
tic simulation for only one trajectory in order to determine partitioning automatically
[ACT+05]. Another solution is to use stochastic analysis techniques.

The partitioning of the reactions into slow and fast can be done through the use of
two thresholds: one for the transitions’ rates and the other one for the places’ marking
[ACT+05, GCPS06].

However one important question remains: when do we need to consider repartition-
ing? One solution to this problem is to reconsider repartitioning after a specific time
period (for example every one or two seconds). However this will not correctly solve
the problem since during this period there may be changes in some species’ populations.
Moreover it results in computational overhead when there is no need to repartition.
In our partitioning approach we solve this problem by specifying two other thresholds:
a0max , a0min .

Consider equation (3), which determines the next time point a stochastic event will
occur. Larger values of a0 will result in smaller time steps in stochastic simulation. On
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the other hand, smaller values of a0 will keep the time step small. In fact this also
affects equation (6) which determines when we switch from deterministic to stochastic
simulation. The same arguments holds for (6). The main idea here is that we can control
the speed and accuracy of the hybrid simulation by specifying a lower and upper bound
of a0. Then the algorithm will realize that it needs to repartition the net when a0 drops
below a0min or exceeds a0max .

Algorithm (2) summarizes the steps which are needed to carry out on-line partitioning
of the network. It considers repartitioning if equation (9), (10) or both are violated.

a0min ≤ a0 ≤ a0max (9)

#p ≥ Λ, ∀p ∈ {•t ∪ t•}∀t ∈ Tcont (10)

where Λ is a threshold for the number of tokens in a place p.
An inappropriate choice of the thresholds can result in unsuitable partitioning which

may turn out to be more computational expensive than static partitioning.
The algorithm takes as inputs the stochastic and continuous transitions, amin, amax

– the upper and lower bounds of the cumulative propensity, respectively, the transitions’
rate threshold λ, and the places’ marking threshold Λ. Note that the other transition
types are not repartitioned. At the end of the partitioning the algorithm returns T

′
stoch

and T
′
cont as the new partitioning.

The idea of repartitioning is then very easy. If one of the transitions violates the
partitioning criterion, it will be added to the stochastic transitions, otherwise it will be
added to the continuous one.

This algorithmic idea, together with the one which is presented in Section 4.3.1,
provide a dynamic simulation of the Petri nets’ elements which have been introduced in
this paper.
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Algorithm 2 Dynamic Partitioning of GHPNbio

Input: amin, amax, λ, Λ, Tstoch, Tcont
Output: T

′
stoch, T

′
cont

1: if a0 < amin OR a0 > amax OR #p < Λ ∀p ∈ •Tcont ∪ T •cont then
2: for all t ∈ Tstoch ∪ Tcont do
3: if at > λ AND ∀p ∈ {•t ∪ t•},#p > Λ then
4: if t ∈ Tstoch then
5: a0 ← a0 − a(t)
6: T

′
cont ← T

′
cont ∪ {t}

7: Tstoch ← Tstoch − {t}
8: end if
9: else

10: if t ∈ Tcont then
11: a0 ← a0 + a(t)
12: Tcont ← Tcont − {t}
13: T

′
stoch ← T

′
stoch ∪ {t}

14: end if
15: end if
16: end for
17: return T

′
stoch, T

′
cont

18: else
19: return Tstoch, Tcont {No partitioning is needed}
20: end if

4.4 Implementation

The presented Petri nets class and its simulation are implemented in Snoopy [RMH10].
Snoopy is available free of charge for non-commercial use. It is platform independent and
runs under Mac OS X, Windows and Linux (selected distributions). We implemented
Gillespie’s direct method [Gil76] to simulate stochastic transitions, while SUNDIALS
CVODE [HBG+05] is used to integrate the resulting ODEs due to continuous transitions.

Snoopy supports also a dedicated net class to simulate Petri nets which contain
only continuous elements and provides 14 different ODEs integrators. The addition of
further stochastic simulators is easy due to the generic design of Snoopy (see future
work). Snoopy supports also many other useful modelling features like hierarchy and
logical nodes which are very useful tools when considering modelling and simulation of
large scale biochemical networks. Furthermore, a model developed with Snoopy can be
exported to a variety of analysis tools. Additionally, using GHPNbio the same model
can be simulated continuously or stochastically independently of its original modelling
method, thanks to dynamic partitioning.
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5 Case Studies

In this section, we present three case studies to illustrate hybrid modelling and simula-
tion of GHPNbio: Goutsias model, Circadian oscillation model, and T7 Phage model.
Using the first example we aim to demonstrate the speed up of the computation while
preserving accuracy. In the second and third examples we use models where stochas-
ticity plays a role when there are a few number of molecules. Stochasticity can also be
preserved when GHPN is used.

5.1 Goutsias Model

This model has been used by Goutsias in [Gou05] as an example for systems that can be
effectively partitioned into two distinct subsystems, one that comprises slow reactions
and one that comprises fast reactions. It has been studied in [WGMH10] and [HMMW10]
as example for hybrid numerical solutions of the chemical master equation. We use the
same reactions which have been originally proposed by [Gou05], and the more challenging
parameters which have been used in [HMMW10].

Figure 5 is a hybrid Petri net representation of Goutsias’ model. The partitioning
of transitions and places into discrete and continuous ones is based on running one
trajectory of a fully stochastic simulation. R1, R3, R9, and R10 are reactions with
high rates compared to the other reactions. Thus this set of reactions is represented
by continuous transitions which in turn are simulated by ODEs integrator. Note that
places are partitioned into continuous and discrete ones according to the type of pre-
and post-transitions. Places are considered as discrete ones if the adjacent arcs do not
preclude this interpretation. Figure 6 is a time course result of the places DNA, DNA.D,
and DNA.2D. The hybrid simulation result coincides with the stochastic one for the
three species.

5.2 Circadian Oscillation

In some organisms, there is a control mechanism which is responsible for ensuring a
periodic oscillation of certain molecular species [HL07]. This phenomenon is known as
circadian rhythm and it can be found in many organisms (e.g Drosophila).

In this case study, we consider a simple model which demonstrates this phenomenon.
The model consists of two genes which are represented in Figure 7 by two places G1 and
G2. The model includes also one activator and one repressor which are represented by
the places A and R, respectively. The activator and repressor control the two genes and
their mRNAs, mRNA G1 and mRNA G2. A and R can be activated to form a complex
A R which takes place through reaction R12.

The Petri net in Figure 7 contains 9 places and 12 transitions. Note that places
with the same name are logical places. This feature is used to simplify the graphical
representation of the Petri net. The complete list of reactions as well as the parameter list
can be found in [HL07]. Figure 8 gives a time course simulation result of the GHPNbio in
Figure 7. Using the parameter values given in Figure 8, continuous simulation produces
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Figure 5: A GHPNbio representation of the Goutsias model. Numbers in ovals represent
reaction rate constants.
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Figure 6: Continuous, stochastic and hybrid simulation result of the Goutsias model:
hybrid simulation result is closer to stochastic than to continuous simulation result.

oscillations. However, if the rate constant of reaction R17, i.e. (k17), is changed from
0.2 to 0.08, the continuous simulation fails to produce the desired oscillation [HL07,
JHNS02].

It is shown in [JHNS02] that stochastic simulation can still produce the expected
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Figure 7: A GHPNbio representation of the circadian oscillation model. Places given
in grey colour are logical places. The parameter k17, highlighted in yellow, is a key
parameter in this model.
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oscillation even if there are reactions with low rates.
Hybrid simulation can also produce such an oscillation of this model when species

with low numbers of molecules or reactions of low rates are simulated stochastically,
while the others are simulated continuously. However, static partitioning of the Petri net
into continuous and stochastic parts will slow down the simulation, since the propensity
values are changing during the simulation due to the oscillation.

Thus we opted to dynamically partition the model into fast and slow parts during
the simulation. Figure 8 shows the simulation result when the Petri net in Figure 7 is
simulated using continuous, stochastic, and hybrid methods with different values of k17
(0.2 and 0.08). The parameters in the partitioning algorithm are set to get a trade off
between accuracy and speed.

5.3 T7 Phage Model

As a final example, we present the modelling of T7 phage viral kinetics [SYSY02] using
Generalised hybrid Petri nets. Two different time scales can be distinguished in this
model. One represents fast reactions and contains R5 and R6, and the other one com-
prises the slow reactions R1, R2, R3 and R4. Figure 9 gives a GHPNbio model of the
six reactions which were published in [SYSY02]. The fast reactions are represented by
continuous transitions, while slow reactions are modelled using stochastic transitions.
Figure 10 shows a time course simulation result of the temp’s population comparing
between stochastic, continuous, and hybrid results. As a conclusion, hybrid simulation
is closer to stochastic simulation rather than to the continuous one which means that
stochasticity plays a role in this model because of low molecular species. Finally, static
partitioning is chosen over dynamic one for simulating this model, because we can easily
separate the reactions off-line into two subsets. In the next section we will discuss the
issue of selecting between static and dynamic partitioning in more details.

Table 1: Comparison of continuous, stochastic and hybrid simulation run time (in sec-
onds) for some GHPNbio models.

Continuous Stochastic hybrid hybrid
(static) (dynamic)

Goutsias 0.01 0.972 0.014 0.138
Oscillator 0.258 5.995 4.21 1.991
T7 Phage 0.007 12.36 0.210 0.107

5.4 Discussion

Biological models vary in size and scales which explains the need for different tools to
deal with such diversities. To illustrate this point consider for example Table 1 which
compares continuous, stochastic, and hybrid simulation in terms of runtime needed for
the three different models considered in our paper. The time is computed based on a
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Figure 8: Simulation results of repressor (R) and activator(A) proteins of the circadian
oscillation model for continuous, stochastic and hybrid methods with two different val-
ues of k17 (0.2 and 0.08). Continuous simulation produces sustained oscillation when
k17=0.2 (a), but it fails when k17=0.08 (b). Contrary, stochastic simulation still pro-
duces oscillation in case of small parameter values (k17=0.08) (c), however it is compu-
tationally more expensive. Hybrid simulation is also able to produce oscillation when
k17=0.08 (d), but with substantial improvement in speed.

single run for continuous simulation and as an average time for a single run for stochastic
and hybrid simulation. For the stochastic and hybrid settings, 104 runs were used.

From this table we can conclude that there is no single optimal method (in terms of
accuracy and speed) which always performs best for all models. Dynamic partitioning
is more computational expensive for Goustias model than static partitioning, however
dynamic partitioning is faster than static partitioning for T7 phage and circadian oscil-
lator.

Stochastic simulation is always slower, but it is very accurate compared to continuous
and hybrid simulation. This motivates us to provide with GHPNbio a unified framework
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to simulate one and the same model using different simulation methods which gives
biologists a tool to easily try different methods and to choose the most suitable one.

6 Conclusions

In this paper, we have presented a new class of Petri nets which combines both Gener-
alised stochastic Petri nets and continuous Petri nets into one net class, the Generalised
Hybrid Petri Nets. The introduced net class has several functionalities which help biol-
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ogists to model and simulate their biochemical networks through an easy to use visual
language. GHPNbio models can be simulated statically through off-line partitioning or
dynamically by on-line partitioning.

Deciding the partitioning off-line will save the dynamic partitioning overhead for
certain biological applications. Providing an automatic way to achieve this goal could
be important from the user’s point of view. For this purpose, future investigation of
analysis techniques of stochastic Petri nets might be of help. Another intended further
extension is to support more than one stochastic simulator within Snoopy. This can be
easily achieved due to the generic implementation of the simulator.

The cases studies which we have used in this paper have been chosen to illustrate
different aspects of the hybrid approach. We are currently challenging Snoopy with
other, more complex case studies than discussed in this paper.
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