
Efficient Symbolic Analysis of
Bounded Petri Nets Using
Interval Decision Diagrams

Von der Fakultät für

Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

Dipl.-Math. Alexey A. Tovchigrechko

geboren am 15. 3. 1978

in Krasnoarmeisk, Moskau Gebiet, Rußland

Gutachter: Prof. Dr.-Ing. Monika Heiner

Gutachter: Prof. Dr. habil. François Fages

Gutachter: Prof. Dr. rer. nat. Kurt Lautenbach

Tag der mündlichen Prüfung: 16.10.2008

Contents

1 Introduction 5

1.1 Background . 5

1.2 Motivation . 7

1.3 Organization of Thesis and Contributions 7

2 Petri Nets 11

2.1 Definition of P/T Nets . 12

2.2 Dynamic Behavior of P/T Nets . 14

2.3 Reachability Graph . 16

2.4 Basic Petri Nets Properties . 18

2.4.1 Boundedness . 18

2.4.2 Reachability Problem . 20

2.4.3 Liveness . 20

2.4.4 Home States and Reversibility . 21

2.5 Structural Techniques . 22

2.6 P/T Nets with Extended Arcs . 24

2.7 Closing Remark . 26

3 Interval Decision Diagrams 29

3.1 Interval Logic Functions . 30

3.2 Reduced Ordered Interval Decision Diagrams 32

3.2.1 Interval Decision Diagrams . 32

3.2.2 Reduced Ordered IDDs . 35

3.2.3 Canonicity of Reduced Ordered IDDs 35

3.2.4 Variable Ordering . 36

3.2.5 Shared ROIDDs . 38

3.3 Operations on ROIDDs . 40

3.3.1 Equivalence Check . 40

3.3.2 Apply Operation . 40

3.3.3 Negation . 43

3.3.4 Cofactors . 44

3.3.5 Construction of ROIDDs . 45

1

Contents

3.4 Efficient Implementation of an ROIDD Package 46

3.4.1 Shared ROIDDs and Garbage Collection 46
3.4.2 Cache Management and Special Operations 47
3.4.3 Complement Arcs and Dynamic Variable Ordering 48

3.4.4 Handling of Partitions and Lists of Children 49

3.5 Closing Remark . 50

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs 51

4.1 Fundamental Isomorphism . 53

4.2 Symbolic Manipulation of Petri Nets using ROIDDs 54
4.2.1 Symbolic Operators . 54
4.2.2 Enabling and Firing . 56

4.2.3 Reachability Analysis . 60

4.3 Improving the Reachability Analysis . 63
4.3.1 Transition Chaining . 63

4.3.2 Saturation Algorithm . 69
4.3.3 Limited Reachability Analysis . 76
4.3.4 Heuristics for Variable Ordering 80

4.4 Symbolic SCC Decomposition . 81
4.4.1 Properties of SCCs . 81

4.4.2 Computation of Terminal SCCs 84
4.4.3 Lockstep Algorithm . 86

4.5 Analysis of Basic Petri Nets Properties 88

4.6 Closing Remark . 89

5 Temporal Logic and Model Checking 91

5.1 Temporal Logics . 93
5.1.1 Computation Tree Logic CTL⋆ 93
5.1.2 CTL and LTL . 95

5.1.3 Fairness . 98

5.2 Model Checking CTL . 99

5.2.1 Explicit Algorithm . 99
5.2.2 Handling Fairness in Explicit Algorithm 101
5.2.3 Symbolic Algorithm . 101

5.2.4 Handling Fairness in Symbolic Algorithm 104

5.3 Model Checking LTL . 106

5.3.1 Büchi automata . 107
5.3.2 Automata Theoretic Approach 109
5.3.3 Translating LTL Formulas into Büchi Automata 112

5.4 Closing Remark . 116

2

Contents

6 Symbolic CTL Model Checking of Bounded Petri Nets 119

6.1 Petri Nets and CTL . 119

6.2 Employing Saturation Strategy . 121

6.3 OWCTY Algorithm . 122

6.4 Model Checking Based on Forward Traversals 123

6.5 Counterexamples and Witnesses . 126

6.6 Closing Remark . 129

7 Symbolic LTL Model Checking of Bounded Petri Nets 131

7.1 LTL and Petri Nets . 131

7.2 Product Net . 132

7.3 Computing Emptiness . 139
7.3.1 SCC-hull Algorithms . 139
7.3.2 Algorithm Based on SCC-enumeration 141
7.3.3 Algorithms for Weak and Terminal Automata 142
7.3.4 On-the-fly Algorithm . 143

7.4 Model Checking Procedure . 148

7.5 Closing Remark . 151

8 Conclusions and Outlook 153

8.1 Conclusions . 153

8.2 Outlook . 154

A Appendix 155

A.1 Notations . 155

A.2 Relations . 155

A.3 Lattices and Boolean Algebra . 155

A.4 Graphs . 157

A.5 Binary Decision Diagrams . 159
A.5.1 Definitions . 159
A.5.2 Variable Ordering . 162
A.5.3 Basic Operations . 163
A.5.4 Construction of ROBDDs . 165

A.6 Models Used in Experiments . 168

Bibliography 169

3

Contents

4

1 Introduction

1.1 Background

Petri nets [Pet62] are an excellent formalism to model a wide class of concurrent and
asynchronous systems. The formalism combines an intuitive graphical notation with a
formal definition and a number of advanced analysis methods. Its applications comprise
the analysis of systems arising in asynchronous circuit design, communication protocols,
distributed software, production systems, flexible manufacturing, and systems biology,
to name some examples.

Historically speaking, the Petri net formalism originating from the dissertation of Carl
Adam Petri [Pet62] was one of the first approaches introduced to deal with concur-
rency and synchronization. Since 1970’s both the theory and applications of Petri nets
have been actively researched. A number of analysis techniques and extensions of the
formalism have been proposed. "Petri nets" has become now a generic name for a
whole class of models. Place/Transition Petri nets (P/T nets, for short) are the most
prominent and best studied class of Petri nets.

Once a system has been modeled as a Petri net, its behavior can be studied with a
variety of analysis methods such as linear algebraic techniques, techniques based on
the enumeration of reachable states, and animation. Enumerative methods permit to
answer any analysis questions for a model with a finite number of states, but have
to deal with the state explosion problem: the number of reachable states even of a
small Petri net can be enormous. Sources for the state explosion are concurrency and a
combinatorial explosion occurring, for example, when a model captures that a system
has data structures which assume many different values. Linear algebraic methods
avoid the state explosion problem and can be applied to models with infinite number
of states, but they can not provide all answers. Many of these methods are restricted
to special subclasses of P/T nets. Animation is always applicable, but it is akin to
testing and is essentially incomplete type of analysis. Being helpful to understand the
system under consideration, it can not be relied upon when attempting, for example,
to discover all undesirable behaviors.

Temporal logics have proven to be useful for specifying properties of concurrent sys-
tems as they can describe the ordering of events in time without introducing the time
explicitely. Originally, temporal logics were developed by philosophers to study the
way that time is used in natural language arguments. They were first suggested for

5

1 Introduction

the specification of properties and verification of concurrent programs in [Pnu77]. The
introduction of temporal-logic model checking algorithms [CE81] allowed this type of
reasoning to be automated.

There are two possible views regarding the nature of time, which induce two types of
temporal logics [Lam80]. In linear temporal logics, time is treated as if each moment
has a unique possible future. Thus, linear temporal logic formulas are interpreted over
linear sequences and can be regarded as formulas describing a behavior of a single
computation of a system. In branching temporal logics, each moment in time may split
into various possible futures. Accordingly, the structures over which branching temporal
logics are interpreted can be viewed as infinite computation trees, each describing the
behavior of the possible computations of the system. Linear Temporal Logic (LTL)
[Pnu80] and branching Computation Tree Logic (CTL) [CE81] are the two most popular
and commonly supported temporal logics. Being relatively easy to use, these logics
allow specification of many properties of interest, as well as efficient implementation of
model checking tools.

Model checking [CGP01] was developed as a technique for the formal verification of
hardware and software systems. It has been proven to be a successful method, fre-
quently used to uncover well-hidden bugs in complex sequential circuit designs and
communication protocols. Model checking provides means to check whether a finite
state model of a system satisfies a given specification. The benefit of this restriction is
that the verification can be performed fully automatically. The procedure uses normally
an exhaustive exploration of all possible states of the model to determine whether it
satisfies a property expressed in a temporal logic. An important feature of a model
checker is that in case of a negative result, the user is often provided with a trace
which can be used as a counterexample for the checked property. Counterexamples can
help to determine whether the negative result was caused by an error in the system
or comes from incorrect modeling or an incorrect specification. Today, applications of
model checking are not limited to the hardware and software verification, it is often
used to study properties of models arising in different, not necessary technical areas.

The main drawback of model checking is the state explosion problem. A number of
techniques have been proposed to combat the problem. Two of the most successful
approaches are partial-order reductions [Val91, God91, Pel94] and symbolic methods.

The advent of symbolic model checking [BCM+90, McM92] has revolutionized the field
of formal verification, transforming it from a purely academic discipline into a industri-
ally applied technique. The key idea underlying symbolic methods is to represent sets
of states using their characteristic functions and to manipulate them as if they were in
bulk. Symbolic methods derive their efficiency from the fact that in many cases of inter-
est large sets of states can be represented concisely by characteristic functions. Typical
operations used in symbolic algorithms are computing the set of all successors or all
predecessors of states in some set and usual set operations like intersection, union, test

6

1.2 Motivation

for emptiness. Traditional symbolic algorithms are based on manipulations of boolean
functions and Reduced ordered binary decision diagrams (ROBDDs) [Bry86].

Binary decision diagrams (BDDs) were studied in [Lee59] and [Ake78] as a data struc-
ture for the representation of boolean functions. Reduced ordered binary decision dia-
grams introduced in [Bry86] are a canonical form representation for boolean functions.
ROBDDs are often substantially more compact than traditional normal forms, more-
over, they can be manipulated very efficiently. Hence, they have become very popular
and are widely used for a variety of applications like computer aided design, verification
of finite-state concurrent systems, etc. The success of ROBDDs has inspired efforts to
improve their efficiency and to expand the range of the applicability. Techniques have
been discovered to make representations more compact and to represent other classes
of functions.

1.2 Motivation

Considering implementation of efficient model checking tools for Petri nets, the most
research efforts have been directed at techniques for 1-bounded P/T nets. Both sym-
bolic [YHTM96, Spr01] and partial-order methods [VHHP95, EH01, Hel02] have been
successfully applied, a number of tools are available. Reports on application of sym-
bolic techniques to k-bounded P/T nets can be met in the literature [PRCB94, LR95,
ST98, MC99], but the only available tool implementing symbolic CTL model checking
is SMART [CJMS01]. Though every bounded net can be unfolded into 1-bounded P/T
net, in practice, the unfolding is usually complicated or results in huge nets, which can
not be analyzed efficiently.

In the latest projects running at our chair Petri nets are used to model and analyze
biochemical systems [HK04, HKW04, KJH05]. k-bounded P/T nets are used for the
qualitative analysis of these systems. Many of the arising models can not be analyzed
by existing model checking tools, new techniques are required.

The research in this thesis will focus on the different techniques which can improve
efficiency of the symbolic analysis of k-bounded P/T nets.

1.3 Organization of Thesis and Contributions

The thesis is organized as follows:

Chapter 2 Basic concepts of the Petri nets theory are presented in this chapter. We
introduce then P/T net with extended arcs. This net class is strictly more pow-
erful than the class of P/T nets and includes extensions quite often needed in
practice: inhibitor, read and reset arcs. In this thesis we shall concentrate on the
analysis of bounded P/T net with extended arcs. Being simple, this net class

7

1 Introduction

provides a possibility to implement a number of analysis techniques efficiently,
however, it still allows to model a wide class of systems.

Chapter 3 Boolean functions naturally encode sets of states of 1-bounded P/T nets,
but a number of problem arise when they must be used to represent sets of states
of k-bounded nets. By contrast, interval logic functions [LR95] allow a natural
encoding of these sets. In this chapter we introduce an extension of BDDs that we
denote as interval decision diagrams. This extension was proposed in [LR95] and
then, probably independently from [LR95], in [ST98]. Reduced ordered interval
decision diagrams (ROIDDs) are a canonical form representation for interval logic
functions. We discuss basic ROIDD algorithms and consider elaborately how to
implement an efficient ROIDD package. This subject was not covered in previous
publications on Interval decision diagrams.

Chapter 4 This chapter represents the kernel of the thesis. We discuss how special
operations used in the symbolic algorithms can be implemented efficiently and
introduce a number of functions for the symbolic manipulation of Petri nets.

Though small decision diagrams can encode large sets of states, not every large
set of states can be encoded by a small decision diagram. The breath-first or-
der strategy traditionally applied in symbolic algorithms is not well suited for
asynchronous systems. Often, sizes of decision diagrams encoding working sets of
symbolic algorithms are much larger during the computation than upon termi-
nation. As the efficiency of the operations on decision diagrams depends on their
sizes, the performance decreases as big diagrams start to be generated. Straying
from the breath-first strategy in the exploration of state spaces can improve the
reachability analysis. We study techniques to reduce sizes and a number of inter-
mediate diagrams, and propose then a new saturation approach, which exploits
both the structure of k-bounded P/T nets and the structure of ROIDDs. It man-
ages to keep sizes of intermediate diagrams smaller than other approaches and
can drastically improve efficiency of the reachability analysis.

Decomposing a graph into its strongly connected components (SCCs) is a fun-
damental graph problem and has many applications in the analysis of different
properties. We propose new algorithms for enumeration of SCCs in sets of states
of P/T nets. To implement an algorithm that enumerates terminal SCCs we
adapt and improve an algorithm introduced in [XB98] for the state classification
of finite-state Markov chains. To implement an algorithm that enumerates all
SCCs we adapt an algorithm introduced in [BGS00]. A saturation-based imple-
mentation allows to significantly improve efficiency of these algorithms.

Finally, we discuss how to analyze basic net properties efficiently.

8

1.3 Organization of Thesis and Contributions

Chapter 5 In this chapter we make a short introduction into temporal logics and
model checking. We concentrate on the temporal logics CTL and LTL and discuss
corresponding model checking algorithms.

Chapter 6 Implementation of an efficient symbolic CTL model checker for P/T nets
with extended arcs is subject of this chapter. Conventional symbolic CTL algo-
rithms are based on backward breath-first order exploration of the state space.
We study how the saturation approach can be employed in CTL algorithms to
improve their efficiency. Performance of the symbolic state space exploration de-
pends heavily on the structure of the model. Sometimes, forward state traversals
are quite efficient, whereas intermediate decision diagrams created during the
backward state space exploration become too large and can not be handled effi-
ciently. A CTL model checking algorithm based mainly on forward state traver-
sals was suggested in [INH96]. We show how this algorithm can be adopted and
implemented efficiently.

Chapter 7 In this chapter we discuss how to implement a symbolic LTL model checker
for k-bounded P/T nets with extended arcs. Implementation of a symbolic LTL
model checker for 1-bounded P/T nets was described in [Spr01]. We are not
aware of any previous attempts to implement a symbolic LTL model checker
for k-bounded nets. We describe the employed approach and consider a number
of algorithms that can outperform the Emerson-Lei algorithm [EL86], which is
conventionally used in symbolic LTL model checking. Finally, we discuss how to
adapt and improve the “on-the-fly” algorithm introduced in [Spr01].

Chapter 8 This chapter summarizes the achieved results and provides some ideas for
future research.

9

1 Introduction

10

2 Petri Nets

Petri nets [Pet62] are an excellent formalism to model a wide class of concurrent and
asynchronous systems. The formalism combines an intuitive graphical notation with a
formal definition and a number of advanced analysis methods. Its applications comprise
the analysis of systems arising in asynchronous circuit design, communication protocols,
distributed software, production systems, flexible manufacturing, and systems biology,
to name some examples.

Historically speaking, the Petri net formalism originating from the dissertation of Carl
Adam Petri [Pet62] was one of the first approaches introduced to deal with concurrency
and synchronization. Since 1970’s both the theory and applications of Petri nets have
been actively researched. A number of analysis techniques and extensions of the for-
malism have been proposed. "Petri nets" has become now a generic name for a whole
class of models. The classic monographs on Petri nets are [Pet81], [Rei86], [Sta90],
[DE95], and [Jen95], [Jen96].

Place/Transition Petri nets (P/T nets, for short) are the most prominent and best
studied class of Petri nets. Exactly this class is most often referred as "Petri nets".
A P/T net is a directed bipartite graph with two types of nodes called places and
transitions. The nodes are connected by directed weighted arcs. Connections between
nodes of the same type are not allowed. Places are usually represented by circles and
transitions by rectangles. Places may contain zero or more tokens drawn as black
dots. A distribution of tokens over the places is called a marking of the net. Every
marking corresponds to a state of the modeled system. The initial state of the system
is represented by the initial marking of the net. A place is an input place of some
transition if there exists an arc from this place to this transition. A place is an output
place of some transition if there exists an arc from this transition to this place. A
transition is called enabled if all its input places contain at least a number of tokens
specified by the weights of the corresponding arcs. An enabled transition may fire.
Firing a transition means consuming tokens from the input places and producing tokens
in the output places, a new marking is created. The behavior of the system is defined
by the set of all markings reachable from the initial state. A reachability graph of the
net is a graph representing these reachable markings and transitions between them.

For a Petri net, which models some system, properties such as boundedness, liveness,
reversibility, and deadlock-freedom are often an object of interest. These properties
are decidable for P/T nets. Most of the analysis techniques either make use of the

11

2 Petri Nets

reachability graph or involve linear algebraic techniques. For example, the analysis of
strongly connected components of the reachability graph can be used to decide liveness
and reversibility of bounded P/T nets. Invariants analysis is an example of the lin-
ear algebraic technique. Structural boundedness or non-reachability of some particular
marking can be decided using P-invariants.

In this chapter P/T nets with extended arcs are introduced. Three new arc types
between places and transitions are allowed: inhibitor, read and reset arcs. Inhibitor
arcs were first introduced in [FA73] to solve a synchronization problem beyond the
power of P/T nets. A transition connected with a place by an inhibitor arc can be
enabled only if this place contains less tokens than the weight of this inhibitor arc.
Inhibitor arcs can be used, for example, to model priorities [Hac76] and are needed
especially often in the biochemical models [HKW04]. Read arcs [MR95] allow to model
that some resource is read, but not consumed by a transition. Reset arcs [AK77] allow
a transition to empty a place independently of how many tokens this place contains.

Nets with inhibitor arcs can model Turing machines [Hac76]. This means, every non-
trivial problem like boundedness or reachability is not generally decidable for this class
of the nets. The only available general analysis methods are based on the reachability
graph, provided that the net is bounded.

As the main focus of this thesis is the analysis, we do not consider questions of modeling
using Petri nets and refer the interested reader to the monographs mentioned above.

2.1 Definition of P/T Nets

Definition 1 (Net)

A Net is a tuple N = [P ,T ,F] where:

1. P and T are finite sets, satisfying P ∩T = ∅ and P ∪ T 6= ∅.

2. F is a flow relation: F ⊆ (P × T) ∪ (T × P).

A Net is a finite bipartite directed graph. Elements of P are called places, elements of
T are called transitions. Elements of P ∪T are denoted as nodes, elements of the flow
relation F are denoted as arcs.

Definition 2 (Pre- and Post-set)

Let N = [P ,T ,F] be a Net. For a node x ∈ P ∪ T two sets of nodes are defined

1. •x = { y ∈ P ∪ T | (y, x) ∈ F } is a pre-set of x .

2. x• = { y ∈ P ∪ T | (x, y) ∈ F } is a post-set of x.

12

2.1 Definition of P/T Nets

For a set of nodes X ⊆ P ∪ T we define

•X =
⋃

x∈X

•x and X• =
⋃

x∈X

x• .

Places of a net may contain zero or more tokens. A distribution of tokens over the
places of the net is called a marking or a state of the net.

Definition 3 (Marking)
Let N = [P ,T ,F] be a Net. Any mapping m : P → N0 from the set of places into
the set of natural numbers is denoted as a marking , where m(p) defines a number of
tokens in the place p ∈ P .

Every marking corresponds to some state of the modeled system. If places of the net are
enumerated: P = { p1, p2, . . . , pn }, then any marking of the net can be also represented
as a vector (m(p1),m(p2), . . . ,m(pn)). From now on we shall not differentiate between
these two representations. For vectors we define comparison and addition place-wise

• m1 ≤ m2 if and only if ∀p ∈ P m1(p) ≤ m2(p).

• m1 < m2 if and only if m1 ≤ m2 and ∃p ∈ P : m1(p) < m2(p).

• m = m1 + m2 if and only if ∀p ∈ P m(p) = m1(p) + m2(p).

Definition 4 (Place/Transition Net)
A Place/Transition net (P/T net for short) is a tuple [P ,T ,F ,V ,m0] where:

1. [P ,T ,F] is a Net.

2. V is a weight function, assigning to every arc of the net some positive natural
number V : F → N.

3. m0 is an initial marking .

Note that from now on we shall write V (x, y) meaning actually V ((x, y)).

Example 1
A P/T net shown in Fig.2.1 is defined with

• Places { p1, p2, p3, p4, p5 }, transitions { t1, t2, t3, t4 }.

• A flow relation { (p1, t1), (p1, t3), (t2, p1), (t4, p1), (p2, t1), (t2, p2), (p3, t2),
(t1, p3), (p4, t3), (t4, p3), (p5, t4), (t3, p5) }.

• A weight function
V (p1, t1) = 1, V (p1, t3) = 2, V (t2, p1) = 1, V (t4, p1) = 2,
V (p2, t1) = 1, V (t2, p2) = 1, V (p3, t2) = 1, V (t1, p3) = 1,
V (p4, t3) = 1, V (t4, p3) = 1, V (p5, t4) = 1, V (t3, p5) = 1.

• An initial marking (3, 2, 0, 1, 0).

13

2 Petri Nets

p2

2
t3 p5t1p3

t2

p1

p4

2
t4

Figure 2.1: A Place/Transition net

2.2 Dynamic Behavior of P/T Nets

In the previous section the structure of P/T nets was defined, now we can discuss their
dynamic behavior.

Definition 5 (Enabling and firing vectors)

Let N = [P ,T ,F ,V ,m0] be a P/T net. For every transition t ∈ T we define mappings
t−, t+ and ∆t for every place p ∈ P

t−(p) =

{

V (p, t) if p ∈ •t
0 otherwise

t+(p) =

{

V (t, p) if p ∈ t•
0 otherwise

∆t(p) = t+(p) − t−(p).

For a net N with places P = { p1, p2, . . . , pn } we can also consider the mappings t−,
t+ and ∆t as vectors having n integer elements.

Definition 6 (Enabled transition)

Let N = [P ,T ,F ,V ,m0] be a P/T net and m be a marking of N . A transition t ∈ T

is called enabled in the marking m if m ≥ t−. We define a function enabled(m) which
returns a set of transitions enabled in m:

enabled(m) = { t ∈ T | m ≥ t− }.

Definition 7 (Firing)

Let N = [P ,T ,F ,V ,m0] be a P/T net, m be a marking of N and some transition
t ∈ T is enabled in m. The transition t may fire in the marking m and create a new

marking m′ = m + ∆t. We shall denote this as m
t

−→ m′.

14

2.2 Dynamic Behavior of P/T Nets

The integer vector ∆t describes the effect of the firing of the transition t . When t fires,
tokens are removed from the places belonging to the pre-set of t and put into the places
in the post-set of t . This means that firing of a transition is a local event, affecting only
the neighboring places of t and leaving all others places of the net without changes.

Definition 8 (Concurrent transitions)
Let N = [P ,T ,F ,V ,m0] be a P/T net and U ⊆ T be a set of transitions. The set U
is called concurrent in a marking m if

∑

t∈U t− ≤ m.

If a set U is concurrent in a marking m, then there are enough tokens in m for all
transitions of U to fire "at the same time". We say that transitions t1, . . . , tk are
concurrent in a marking m, if a set U = { t1, . . . , tk } is concurrent in m.

Definition 9 (Conflict)
Let N = [P ,T ,F ,V ,m0] be a P/T net, m be a marking of N . We say that transitions
t1, t2 ∈ T are in conflict in m, if they are enabled in m, but not concurrent in m.

Example 2
Consider the P/T net in Fig.2.1. Transitions t1 and t3 are concurrent in the initial
marking (3, 2, 0, 1, 0), but are in conflict in the marking (2, 1, 1, 1, 0).

Definition 10 (Reachability relation)
Let N = [P ,T ,F ,V ,m0] be a P/T net. We denote as T ∗ the set of all finite sequences
of elements of T . Note that T ∗ also includes the empty sequence ǫ. For two markings

m and m′ of N and a sequence δ ∈ T ∗ we define the relation m
δ

−→ m′ inductively.

1. m
ǫ

−→ m′ if and only if m = m′.

2. m
δt
−→ m′ if and only if ∃m′′ : m

δ
−→ m′′ ∧ m′′ t

−→ m′.

We define the reachability relation
∗

−→ of N as follows: m
∗

−→ m′ if and only if

∃δ ∈ T ∗ : m
δ

−→ m′. A marking m′ is called reachable from m if and only if m
∗

−→ m′.

Lemma 1 (Monotonicity of Firing)

Let N = [P ,T ,F ,V ,m0] be a P/T net, m and m′ be two markings of N . If m
δ

−→ m′,

then (m + l)
δ

−→ (m′ + l) ∀l ∈ N
|P |.

Proof: By induction over the length of δ. 2

Lemma 1 states an important monotonicity property of P/T nets: transitions firable
from some marking m are also firable from any larger marking. As we shall see later,
some decidability results rely on this property.

15

2 Petri Nets

Definition 11 (Reachability set)

Let N = [P ,T ,F ,V ,m0] be a P/T net. We denote as RN (m) the set of all markings
of N reachable from m:

RN (m) = {m′ | m
∗

−→ m′ }.

RN (m0) defines the reachability set of N , we shall also refer to it as the state space.

2.3 Reachability Graph

A reachability graph corresponds to an interleaving model of the system behavior. In
the interleaving model all events of a single execution are arranged in a linear order
called an interleaving sequence. Concurrently executed events appear arbitrary ordered
with respect to one another.

Definition 12 (Reachability graph)

Let N = [P ,T ,F ,V ,m0] be a P/T net. As a reachability graph of N we denote a
labeled directed graph RGN = [RN (m0), BN] where:

1. RN (m0) is the set of nodes.

2. BN is the set of labeled arcs:

BN = { [m, t,m′] | ∃ m,m′ ∈ RN (m0), ∃ t ∈ T : m
t

−→ m′ }.

A reachability graph of a net N has all reachable markings of N as nodes and its arcs
are labeled with transitions of N .

Example 3
The reachability graph for the net from Fig. 2.1 is shown in Fig. 2.2. An information
about concurrency gets lost, if only the reachability graph is considered. Using the
graph in Fig. 2.2 one can not say if transitions t1 and t3 are concurrent in the initial
marking or can fire in any arbitrary order. The graph is finite, this, in general, must
not be the case for any P/T net.

(3, 2, 0, 1, 0)

(0, 1, 1, 0, 1)

(1, 2, 0, 0, 1)

(1, 0, 2, 1, 0) (2, 1, 1, 1, 0)

t2 t1 t2
t3t2

t3

t4

t4t1

t1

Figure 2.2: A reachability graph

16

2.3 Reachability Graph

Algorithm 1 (Reachability Graph Construction)

1 func DFS (N)
2 RN := {m0}; BN := ∅; New := ∅
3 push(New , m0)
4 while New 6= ∅ do

5 m := pop(New)
6 forall t ∈ enabled(m) do

7 m ′ := m + ∆t

8 BN := BN ∪ {[m, t, m′]}
9 if m ′ 6∈ RN then

10 RN := RN ∪ m ′

11 push(New , m ′)
12 fi

13 od

14 od

15 return (RN ,BN)
16 end

A trivial algorithm to construct the reachability graph maintains a set of already
explored markings RN , a set of unexplored markings New and a set of arcs BN . In
Algorithm 1 the set New is maintained as a stack. In this case the reachability graph
is constructed in the depth-first order. One can replace this stack with a queue and get
a breath-first order construction of the graph.

The complexity of Algorithm 1 is overexponential in the size of a P/T net. The reason
for this is the state explosion problem: even small P/T nets can have finite but huge
reachability graphs. Sources for the state explosion are concurrency (all interleavings
have to be represented in the reachability graph) and a combinatorial explosion due
to different combinations of tokens in places of the net. Example 4 demonstrates the
overexponential state explosion.

Example 4

A P/T net in Fig. 2.3 is bounded in an unobvious but very regular way [Jan83]. The net
is parameterized by the weight k of the arc between t2 and p3 and the initial marking m
of the place p1. Depending on these two parameters the total number of tokens in the
net is bounded to max(m,k) = k · fk(m) + 2, where fk is defined inductively:

fk =

{

k if m = 0

fk(m − 1) · kfk(m−1) otherwise.

17

2 Petri Nets

2

k

t5t6t3

t2

t4

t1

2

2

2

2

2

p1

p2p3

p4

p5

p6

Figure 2.3: A P/T net demonstrating the overexponential growth of RGN

The maximal number of tokens in a single place is k · fk(m). Some example values of
max(m,k) are:

max(1, 2) = 18 max(1, 3) = 245 max(1, 4) = 4098
max(2, 2) = 4098 max(2, 3) = 386 + 2 max(3, 2) = 22060 + 2.

The number of the reachable markings grows accordingly:

|RN |(1, 2) = 427 |RN |(1, 3) = 39, 656
|RN |(1, 4) = 18, 856, 970 |RN |(2, 2) = 735, 951, 403.

2.4 Basic Petri Nets Properties

In this section we define basic P/T net properties and discuss shortly their decidability.
For bounded nets we discuss verification of the properties with help of a reachability
graph. A more complete consideration of the properties with proofs can be found, for
example, in [Sta90]. A good survey on the decidability issues of Petri nets is [EN94].

2.4.1 Boundedness

Definition 13 (Boundedness)
Let N = [P ,T ,F ,V ,m0] be a P/T net, p be a place of N , m be a marking of N and
k be some natural number.

1. p is called k-bounded if m(p) ≤ k in all markings m reachable from m0.

2. p is called bounded if ∃k : p is k-bounded.

3. N is called bounded if all places of N are bounded.

18

2.4 Basic Petri Nets Properties

Corollary 1
A P/T net N = [P ,T ,F ,V ,m0] is bounded if and only if its reachability set RN (m0)
is finite.

The boundedness of a P/T net is a very important property. Obviously the reachability
graph generation procedure (Algorithm 1) does not terminate for unbounded P/T nets.
This limits drastically the number of methods available for the analysis of such nets.
Note that the boundedness is a dynamic property as it treats all reachable states of
a net and depends also on the initial marking. However, as we shall see later, it is
possible to define a sufficient condition for the boundedness using only the structure
of a net.

We need the following proposition for the proof of the sufficient condition for unbound-
edness of a P/T net.

Proposition 1
Let (mi) be an infinite sequence of markings. There exists an infinite subsequence (m′

i)
of (mi) such that j < k ⇒ m′

j ≤ m′
k.

Proof: By construction. 2

Lemma 2 (Boundedness criterion)
Let N = [P ,T ,F ,V ,m0] be a P/T net. N is unbounded if and only if there exist

reachable from m0 markings m,m1 ∈ RN (m) : m
δ

−→ m1 ∧ m1 > m.

Proof: "⇐": We prove by contradiction that N can not be k-bounded. From the
monotonicity property of P/T nets (see Lemma 1) follows:

m
δ

−→ m1
δ

−→ m2
δ

−→ · · ·mk
δ

−→ mk+1
δ

−→ · · ·

From m1 > m follows that there exists some place p : m1(p) > m(p). This means
m1(p) > 1, m2(p) > 2, . . . , mk+1(p) > k, so N can not be k-bounded.

"⇒": Consider an infinite reachability graph RGN . RGN has infinitely many nodes,
but a number of outgoing arcs of every node is bounded by |T |. Consider m0, an infinite
number of paths that do not visit any node twice starts at this node. Infinitely many
such paths go at least through one of the outgoing arcs of m0. We take one of these
paths, let m1 be the last node in it. We repeat for m1 the same considerations as for
m0 and choose a path with a last node m2 in it. Continuing this procedure we get an
infinite sequence of different markings (mi) such that m0

∗
−→ m1

∗
−→ m2

∗
−→ · · · and

mi 6= mj for i 6= j. Because of Proposition 1 there exists a subsequence (m′
j) of (mi)

such that j < k ⇒ m′
j ≤ m′

k. We can select m′
1,m

′
2 from (m′

j) such that m′
1

∗
−→ m′

2,
m′

1 ≤ m′
2 and m′

1 6= m′
2. 2

19

2 Petri Nets

The sequence δ in Lemma 2 can be seen as a token generator . Karp and Miller proved
decidability of boundedness in [KM69]. They showed how to detect token generators by
constructing what was later called the coverability tree. Finkel improved the coverability
tree generation algorithm in [Fin93].

2.4.2 Reachability Problem

Definition 14 (Reachability problem)
Let N = [P ,T ,F ,V ,m0] be a P/T net. The reachability problem consists of deciding
if a marking m is reachable from m0 .

It was observed [Hac75] that many other net problems are recursively equivalent to the
reachability problem, so it became a central issue of the net theory. A quite complicated
proof of the decidability was first given in [May81]. A number of simplifications of the
proof have been done later, as the last reference see [PW03].

Though the reachability problem is decidable, in general case none of the known algo-
rithms is primitive recursive. If a P/T net is bounded, then a variation of Algorithm 1
can be used to check the reachability of a marking m. The procedure can be terminated
as soon as m is discovered. If one is interested not only in the reachability, but also
in the shortest way to m, then the discussed above breath-first order version of the
algorithm can be used.

2.4.3 Liveness

Definition 15
Let N = [P ,T ,F ,V ,m0] be a P/T net.

1. A marking m of N is called dead if enabled(m) = ∅.

2. A transition t of N is called dead in a marking m if

6 ∃m′ : m
∗

−→ m′ ∧ t ∈ enabled(m′).

3. A transition t of N is called live in a marking m if

6 ∃m′ : m
∗

−→ m′ ∧ t is dead in m ′.

4. A transition t of N is called live if it is live in m0.

5. A marking m is called live if all transitions t ∈ T are live in m.

6. A net N is called live if m0 is live.

7. A net N is called deadlock-free if ∀m : m0
∗

−→ m enabled(m) 6= ∅.

20

2.4 Basic Petri Nets Properties

Dead markings represent those states of the modeled system, in which it can not make
any progress. During a verification of a system it is often desirable to detect such states
and eliminate them. The deadlock-freedom problem can be reduced in polynomial time
to the reachability problem, therefore it is decidable.

Corollary 2

A P/T net N = [P ,T ,F ,V ,m0] is deadlock-free if and only if its reachability graph
does not contain nodes without outgoing arcs.

Loosely speaking, a P/T net is live if every transition has always a possibility to fire
again. [Hac75] showed that liveness is recursively equivalent to the reachability problem,
and thus decidable. If a P/T net is bounded, then the following corollary suggests how
its liveness can be checked.

Corollary 3

A transition t of a bounded P/T net N = [P ,T ,F ,V ,m0] is live if and only if in
every terminal strongly connected component1 C of the reachability graph RGN =
[RN (m0), BN] there exist nodes m,m′ ∈ C : [m, t ,m′] ∈ BN .

Corollary 4

If a P/T net N = [P ,T ,F ,V ,m0] is not deadlock-free, then all transitions t ∈ T are
not live.

2.4.4 Home States and Reversibility

Definition 16

Let N = [P ,T ,F ,V ,m0] be a P/T net.

1. A marking m of N is called a home state if ∀m′ ∈ RN (m0) ∃δ ∈ T ∗ : δ 6= ǫ and

m′ δ
−→ m.

2. A net N is called reversible if m0 is a home state.

Loosely speaking, a marking is a home state if it is reachable from every reachable
state. The home state problem was shown to be decidable in [FEJ89].

Corollary 5

A bounded P/T net N = [P ,T ,F ,V ,m0] is reversible if and only if its reachability
graph is strongly connected.

1See definitions of strongly connected components (SCCs) in the Appendix. We shall discuss the
SCC decomposition of graphs in chapter 4.

21

2 Petri Nets

2.5 Structural Techniques

Analysis based on the reachability graph suffers from the state explosion problem, and
it can not be applied to unbounded nets at all. A number of structural techniques that
avoid construction of the reachability graph have been developed for P/T nets. Analysis
based on reduction, deadlock/trap property or decomposition can be highly effective for
the special subclasses of P/T nets like marked graphs, state machines, extended free
choice nets or extended simple nets, see [Sta90] and [DE95]. We consider here only
generic techniques that we shall discuss later as means to improve the analysis based
on the reachability.

Definition 17 (Incidence matrix)
Let N = [P ,T ,F ,V ,m0] be a P/T net. The incidence matrix C : P ×T → Z of N is
defined with C(p, t) = ∆t(p).

Example 5
An incidence matrix for the P/T net from Fig.2.1 is:

t1 t2 t3 t4
p1

p2

p3

p4

p5

-1 1 -2 2
-1 1 0 0
1 -1 0 0
0 0 -1 1
0 0 1 1

Definition 18 (Parikh vector)
Let N = [P ,T ,F ,V ,m0] be a P/T net and δ ∈ T ∗ be some finite transition se-
quence. The Parikh vector Ψ(δ) : T → N0 assigns to every transition t the number of
occurrences of t in δ.

Lemma 3 (State equation)
Let N = [P ,T ,F ,V ,m0] be a P/T net and m,m′ be markings of N . For every finite

transition sequence δ : m
δ

−→ m′ holds the following state equation:

m′ = m + C · Ψ(δ).

Proof: By induction over the length of δ. 2

The state equation can be used to formulate a necessary, but not sufficient condition
for the reachability of a marking.

Corollary 6 (Necessary condition for the reachability of a marking)
Let N = [P ,T ,F ,V ,m0] be a P/T net. If a marking m is reachable from the initial
marking m0, then the equation C · x = m − m0 has a nonnegative integer solution x.

22

2.5 Structural Techniques

In other words, if the equation C · x = m − m0 does not have a nonnegative integer
solution, then m is definitely not reachable.

Definition 19 (P-invariants)
Let N = [P ,T ,F ,V ,m0] be a P/T net and C be the incidence matrix of N .

1. Every nontrivial integer solution of the linear homogeneous equation ~y ·C = ~0 is
called a P-invariant of the net N .

2. A P-invariant ~y is called semipositive if ~y ≥ ~0.

3. If ~y is a semipositive P-invariant, we denote the set 〈~y〉 = { p | ~y(p) > 0 } as a
support of ~y.

4. A semipositive P-invariant ~y is called minimal if there exists no other semipositive
P-invariant ~j such that 〈~j〉 ⊂ 〈~y〉.

Efficient calculation of minimal P-invariants is discussed in [CS89]. From the state
equation follows the following corollary.

Corollary 7 (Invariance)
Let N = [P ,T ,F ,V ,m0] be a P/T net and ~y be a P-Invariant of N . Then the equation
~y · mT = ~y · mT

0 holds for all markings m reachable from the initial marking m0.

This means if P-invariants are considered as weighting vectors, then Corollary 7 states
that a weighted number of tokens remains constant in all reachable markings. P-
invariants can be also used to formulate a necessary condition for the reachability
of a marking and a sufficient condition for the structural boundedness of a P/T net.

Corollary 8 (Necessary condition for the reachability of a marking)
Let N = [P ,T ,F ,V ,m0] be a P/T net, m be a marking of N . If N has a P-invariant ~y
such that ~y · mT 6= ~y · mT

0, then m is not reachable from m0.

Corollary 9 (Structural boundedness)
Let N = [P ,T ,F ,V ,m0] be a P/T net. If for every place p there exists a semipositive
P-invariant ~yp of N such that ~yp(p) > 0, then N is bounded.

A P/T net covered by P-invariants is bounded, unfortunately this is only a sufficient
condition. For example, a net in Fig.2.4 is obviously bounded but does not have any
P-invariants.

p1 t1

Figure 2.4: A bounded P/T without P-invariants

23

2 Petri Nets

Definition 20 (Traps)

Let N = [P ,T ,F ,V ,m0] be a P/T. A non-empty set of places H ⊆ P is called a trap
if H• ⊆ •H.

Corollary 10
Let N = [P ,T ,F ,V ,m0] be a P/T net, H ⊆ P be a trap, and m be a marking of N .

If there exists a place p ∈ H : m(p) > 0, then ∀m′ : m
∗

−→ m′ ∃p′ ∈ H : m′(p′) > 0.

If a trap is marked in some marking m, then it remains marked in all markings reachable
from m.

2.6 P/T Nets with Extended Arcs

We consider a class of Petri nets with extensions quite often needed in practice. Con-
cerning the expressive power, the introduced class is strictly more powerful than the
class of P/T nets.

First, the classical P/T Nets are extended with the ability to handle context : transi-
tions do not only produce and consume tokens, but can also have context conditions,
specifying something that is needed for a transition to fire, but is not affected by the
firing. The new two kinds of arcs are inhibitor and read arcs. Inhibitor arcs were first
introduced in [FA73] to solve a synchronization problem beyond the power of P/T
nets. A transition connected with a place by an inhibitor arc can be enabled only if
this place contains less tokens than the weight of this inhibitor arc. Inhibitor arcs can
be used, for example, to model priorities [Hac76] and are needed especially often in bi-
ological models [HKW04]. Read arcs were introduced in [MR95]. They allow to model
that some resource is read, but not consumed by a transition. Hence the same token
can be used by many transitions at the same time. This allows to specify a higher
degree of concurrency than it is possible in P/T nets. Read arcs were proposed to
model database systems, concurrent constraint programming or frameworks based on
a shared memory. In the interleaving model read arcs can be considered as a "syntactic
sugar" because they can be replaced by two opposite normal arcs with corresponding
weights.

Second, we allow a transition to empty a place independently of how many tokens this
place contains by means of reset arcs [AK77].

Definition 21 (P/T Net with extended arcs)
A P/T Net with extended arcs is a tuple N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] where:

1. [P ,T ,F ,V ,m0] is a P/T net.

2. I ⊆ P × T is the inhibiting relation.

24

2.6 P/T Nets with Extended Arcs

3. R ⊆ P × T is the reading relation.

4. Z ⊆ P × T is the reseting relation.

5. VI : I → N is the weight function of inhibitor arcs.

6. VR : R → N is the weight function of read arcs.

Definition 22 (Extended enabling vectors)
Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs. In addition
to the mapping t− defined above we define now the mappings t−I and t−R

t−I (p) =

{

VI (p, t) if (p, t) ∈ I
∞ otherwise

t−R(p) =

{

VR(p, t) if (p, t) ∈ R
0 otherwise.

Definition 23 (Extended enabling condition)
Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs and m be
a marking of N . A transition t ∈ T is enabled in the marking m if

m ≥ t− and m ≥ t−R and m < t−I .

Definition 24 (Extended firing)
Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs, m be a
marking of N and some transition t ∈ T be enabled in the marking m. The marking m′

created by firing the transition t in m is calculated as follows:

m′(p) =

{

m(p) + ∆t(p) if (p, t) 6∈ Z
t+(p) otherwise.

Example 6
Consider a P/T net in Fig.2.5

1. The transition t0 is connected with p0 by an inhibitor arc. t0 is enabled when p0

has less than two tokens. Firing of t0 does not change the number of tokens in p0.

2. The transition t1 is connected with p0 by a read arc and with p1 by a reset arc. t1
is enabled when p0 has at least two tokens. If t1 fires, then the number of tokens
in p0 will not be changed, but p1 will become empty.

3. The transition t2 is connected with p0 by a read and an inhibitor arc, it is
connected with p1 by a reset and a normal arc. t2 is enabled if p0 contains exactly
two tokens. If t2 fires, then the number of tokens in p0 will not be changed, but
p1 will have five tokens.

25

2 Petri Nets

2

t2

5
t0

t1
p1

p0

2

t3
3

2

2

Figure 2.5: A P/T net with extended arcs

4. The transition t3 is connected with p0 by a normal arc, it is enabled if p0 has at
least two tokens. When t3 fires, it consumes two tokens from p0.

Nets with inhibitor arcs can model Turing machines [Hac76]. This means, every non-
trivial problem like boundedness or reachability is not generally decidable for this class
of the nets. The problem of the construction of a finite coverability tree for nets with
inhibitor arcs is the loss of the monotonicity. It is no longer true that transitions firable
from some marking m are also firable from any larger marking. It is shown in [Bus98]
that finite coverability trees can be constructed for a constrained subclass of nets with
inhibitor arcs. The constraint is defined as follows: it is possible to know a limit for
each inhibiting place, in such a way that, if the number of tokens in the place exceeds
the limit at some stage of computation, then this place can not be tested for absence
of tokens any more.
Obviously, invariant analysis can not take inhibitor arcs into account. A place can be
structurally bounded even if it is not covered by some P-invariant.

2.7 Closing Remark

Petri nets are an excellent formalism to model a wide class of concurrent systems. The
formalism benefits from the mathematical foundation and exhibits a large number of
techniques for analysis of the system properties.

Considering the interleaving semantic, all behaviors of a bounded net are represented
by the reachability graph. Though structural techniques like invariants analysis can be
used to decide some net properties, in general, only techniques based on the reachability
graph can provide all answers about the behavior of a system. Actually, for nets with
inhibitor arcs even just being able to tell if the net is bounded is already an undecidable
problem. Hence, in practice we are limited to hoping that the reachability graph of
a system is not only bounded, but is also small enough to fit in the memory of a

26

2.7 Closing Remark

computer. Unfortunately reachability graphs can be really huge even for small nets.
Therefore many research efforts have been directed at finding efficient algorithms and
data structures to generate, store, and explore reachability graphs. Interval decision
diagrams discussed in the next chapter are an example of such a data structure. In
chapter 4 we shall introduce algorithms for the analysis of reachability graphs using
interval decision diagrams. We shall also discuss how structural properties of nets can
be used to improve efficiency of these algorithms.

27

2 Petri Nets

28

3 Interval Decision Diagrams

A large number of problems in Computer Science can be reduced to the manipula-
tion of boolean functions. Binary decision diagrams (BDDs) were studied in [Lee59]
and [Ake78] as a data structure for the representation of boolean functions. Reduced
ordered binary decision diagrams (ROBDDs) defined in [Bry86] are a canonical form
representation for boolean functions. ROBDDs are often substantially more compact
than traditional normal forms, and they can be manipulated very efficiently. Hence,
they have become very popular and are widely used for a variety of applications like
computer aided design, verification of finite-state concurrent systems, etc. According
to statistics of the scientific literature digital library CiteSeer1, [Bry86] is one of the
most cited articles in Computer Science. A short introduction into boolean functions
and ROBDDs can be found in the Appendix.

The success of ROBDDs has inspired efforts to improve their efficiency and to expand
the range of the applicability. Techniques have been discovered to make representations
more compact and to represent other classes of functions. A number of extensions of
ROBDDs have been proposed, here is a small list of those, applied for analysis of
(timed) Petri nets: Zero suppressed binary decision diagrams [Min93], Multi-valued de-
cision diagrams [Kam95], Natural decision diagrams [LR95], Interval decision diagrams
[ST98], Difference decision diagrams [ML98], Data decision diagrams [CEPA+02].

In this chapter we introduce an extension of BDDs that we denote as Interval decision
diagrams (IDDs). This extension was proposed in [LR95] and then, probably indepen-
dently from [LR95], in [ST98]. IDDs can be viewed as a generalization of BDDs. IDDs
are directed acyclic graphs with two types of nodes. Like BDDs, IDDs have two termi-
nal nodes, labeled with 0 and 1. In contrast to BDDs, nonterminal nodes in IDDs have
a variable number of outgoing arcs labeled with intervals. IDDs can represent interval
logic functions, induced by expressions of the interval logic. This logic was defined in
[LR95] to describe sets of marking of P/T nets. Reduced ordered interval decision dia-
grams (ROIDDs) are a canonical form representation for interval logic functions. For
many interesting functions ROIDDs provide a compact representation. Furthermore,
they allow to define efficient algorithms for manipulation of interval logic functions. We
consider algorithms for ROIDDs and describe how they can be implemented efficiently.

1http://citeseer.ist.psu.edu

29

3 Interval Decision Diagrams

3.1 Interval Logic Functions

From now on we shall consider half-open intervals on N0 which have the form [a, b) =
{x ∈ N0 | x ≥ a ∧ x < b}. We denote a set of such intervals as I. Note that the empty
interval ∅ and intervals of the form [a,∞) are considered to belong to the set I.

Definition 25 (Interval logic expressions)

Interval logic expressions consisting of symbols of variables x1, . . . xn, the symbol ∈,
and elements of I are defined recursively.

1. xi ∈ I is an atomic interval logic expression if xi is one of the symbols of the
variables and I is some interval belonging to the set I.

2. If F and G are interval logic expressions, then (F ∧ G), (F ∨ G), and ¬(F) are
also interval logic expressions.

We introduce elements of B as abbreviations for xi ∈ ∅ and xi ∈ [0,∞). Expressions
of the form xi ⊳ c where c ∈ N0 and ⊳ ∈ {=, 6=, >,<,≥,≤, } are also seen as obvious
abbreviations. For example, an expression xi = c abbreviates xi ∈ [c, c + 1), xi ≤ c
abbreviates xi ∈ [0, c + 1), etc.

Definition 26 (Interval logic functions)

Every interval logic expression G induces an interval logic function fG

fG : N
n
0 → B, (e1, . . . , en) 7→ fG(e1, . . . en)

where fG(e1, . . . en) denotes an element of B got by replacing variables xi with ei

followed by the evaluation of logic operations ∧,∨ and ¬.

Operations on interval logic functions are defined as follows:

1. (f ∨ g)(x1, . . . , xn) = f(x1, . . . , xn) ∨ g(x1, . . . , xn).

2. (f ∧ g)(x1, . . . , xn) = f(x1, . . . , xn) ∧ g(x1, . . . , xn).

3. (¬f)(x1, . . . , xn) = ¬f(x1, . . . , xn).

Definition 27 (Cofactor)

Let f = f(x1, . . . , xn) be an interval logic function. We denote a function f |xi=b =
f |xi=b(x1, . . . , xi−1, xi+1, . . . , xn) as a cofactor of the function f with respect to a vari-
able xi and some natural number b ∈ N0 if

f |xi=b = f(x1, . . . , xi−1, b, xi+1, . . . xn).

30

3.1 Interval Logic Functions

Definition 28 (Independence interval)
Let f = f(x1, . . . , xn) be an interval logic function and I ∈ I be some interval. I is
called an independence interval of f with respect to a variable xi if for all possible
values of xi in I the function f does not depend on xi

f |xi=b = f |xi=c ∀b, c ∈ I .

We define then f |xi∈I = f |xi=b for some b ∈ I .

Definition 29 (Independence interval partition)
Let P = { I1, . . . , Ik } be a set of intervals, Ij ∈ I for all j, let f = f(x1, . . . , xn) be
an interval logic function, and xi be a variable. The set P is called an independence
interval partition of N0 if

1. All I1, . . . , Ik are independence intervals of f with respect to xi.

2. Elements of P are pairwise disjoint : ∀j,m Ij ∩ Im = ∅.

3. P is a complete cover of N0:
⋃

1≤j≤k

Ij = N0.

Based on independence interval partitions most of the interval logic functions of interest
can be decomposed with respect to a variable xi in several partial functions describable
by cofactors. Each cofactor contributes to the function only in an independence interval
with respect to xi. From now on we consider only those interval logic functions that are
decomposable over an interval partition with a finite number of independence intervals.
Their partial functions can be composed using the Bool-Shannon expansion:

f =
∨

1≤j≤k

xi ∈ Ij ∧ f |xi∈Ij

where the intervals I1, . . . , Ik form an independence interval partition of N0 with re-
spect to the variable xi. As we shall discuss partitions of N0 only, from now on we
shall simply write (independence) interval partition meaning (independence) interval
partition of N0.

Definition 30 (Reduced interval partition)
Let P = { I1, . . . , Ik } be an independence interval partition for an interval logic func-
tion f = f(x1, . . . , xn) and some variable xi. P is called reduced if

1. It contains no neighbored intervals that can be joined into an independence in-
terval: 6 ∃j : Ij ∪ Ij+1 is an independence interval of f with respect to xi.

2. Higher bounds of all intervals build an increasing sequence with respect to indices
of the intervals: ∀j,m, Ij = [aj , bj), Im = [am, bm) from j < m follows bj < bm.

31

3 Interval Decision Diagrams

Lemma 4 (Uniqueness of reduced independence interval partitions)
Let P = { I1, . . . , Ik } be a reduced independence interval partition for an interval logic
function f = f(x1, . . . , xn) and some variable xi. P is unique.

Proof: By contradiction. 2

Example 7
1. a) x1 ≥ 6 ∧ x2 > 0 ∨ x3 ≤ 8 is an interval logic expression.

b) x1 > x2 + 5 is not an interval logic expression.

2. f(x1, x2, x3) = x1 ≥ 6 ∧ x2 > 0 ∨ x3 ≤ 8 is an interval logic function

a) f |x1=7(x2, x3) = x2 > 0 ∨ x3 ≤ 8 is a cofactor of f with respect to the
variable x1 and the natural number 7.

b) f |x1=2(x2, x3) = x3 ≤ 8 is a cofactor of f with respect to x1 and 2.

c) [2, 5), [0, 3), [0, 6) and [6,∞) are independence intervals of f with respect
to x1.

d) [2, 10) and [5,∞) are not independence intervals of f with respect to x1.

e) P = { [3, 5), [0, 3), [5, 6), [6,∞) } is an independence interval partition with
respect to the variable x1. P is not reduced.

f) P = { [0, 6), [6,∞) } is a reduced independence interval partition with re-
spect to the variable x1.

3.2 Reduced Ordered Interval Decision Diagrams

3.2.1 Interval Decision Diagrams

Definition 31 (Interval decision diagram)
An interval decision diagram (IDD) for variables X = {x1, . . . , xn } is a tuple [V,E, v0]
where:

1. V is a finite set of nodes.

2. E ⊆ V × I × V is finite set of arcs labeled with intervals on N0.

3. [V,E] forms a DAG.

4. v0 ∈ V is a root of the IDD.

The following conditions must also hold:

1. V contains two terminal nodes which have no outgoing arcs. We define for these
nodes a labeling function value : V → B, which labels one node with 0, another
with 1.

32

3.2 Reduced Ordered Interval Decision Diagrams

2. All other nodes v ∈ V are denoted as nonterminal nodes, we define for them a
labeling function var : V → X. Every nonterminal node v

a) is labeled with a variable var(v),

b) has vk > 0 outgoing arcs labeled with intervals Ij ∈ I. The set {I1, . . . , Ivk
}

is an independence interval partition with respect to the variable var(v).

3. On every path from the root to terminal nodes a variable may appear as label of
a node only once.

Assuming that outgoing arcs of a node are ordered, we define also the following func-
tions:

1. part(v) = { I1, . . . , Ivk
} returns all labels of the outgoing arcs of the node v.

2. partj(v) ∈ I, 1 ≤ j ≤ vk returns the label of the j-th outgoing arc of v.

3. childj(v) ∈ V, 1 ≤ j ≤ vk returns the node connected by the j-th outgoing arc
of v.

An example of an IDD is shown in Fig. 3.1. Every IDD with a root v determines an
interval logic function fv in the following manner:

1. If v is a terminal node, then fv = value(v).

2. If v is a nonterminal node with var(v) = xi, then fv is the function

f =
∨

1≤j≤vk

xi ∈ partj(v) ∧ fchildj(v).

fchildj(v) is either a constant if childj(v) is a terminal node, or an interval logic function
determined by the IDD with a root childj(v).

0

x1

1

x2 x2

[0, 6)

[1, ∞)

[8, ∞)

[0, 1)

[1, ∞)

[0, 1)

[7, 8)[6, 7)

Figure 3.1: An IDD representing f = (x1 ≥ 8) ∨ (x1 ∈ [6, 8) ∧ x2 > 0)

33

3 Interval Decision Diagrams

Every2 interval logic function f : N
n
0 → B can be represented by an IDD with help

of the Bool-Shannon expansion. The decomposition must be applied recursively until
leaves are reached. The Bool-Shannon decomposition for an interval logic function is
demonstrated in Example 8.

Example 8 (Bool-Shannon decomposition)

Consider an interval logic function f = (x1 ≥ 8) ∨ (x1 ∈ [6, 8) ∧ x2 > 0). First, we
decompose f over the variable x1.

1. f |x1∈[0,6)(x2) = 0,

2. f |x1∈[6,8)(x2) = x2 > 0,

3. f |x1∈[8,∞)(x2) = 1.

This means, the root of the IDD is labeled with x1 and has three outgoing arcs labeled
with intervals [0, 6), [6, 8) and [8,∞). The arcs labeled with [0, 6) and [8,∞) lead to
the terminal nodes 0 and 1 respectively. The arc labeled with [6, 8) leads to an IDD
representing the function f |x1∈[6,8)(x2) = x2 > 0. We decompose now the function
f |x1∈[6,8) over x2.

1. f |x1∈[6,8)|x2∈[0,1)() = 0

2. f |x1∈[6,8)|x2∈[1,∞)() = 1

The root of the IDD representing the function f |x1∈[6,8) is labeled with x2 and has two
outgoing arcs labeled with intervals [0, 1) and [1,∞) leading to the terminal nodes 0
and 1 respectively.

An IDD created during the decomposition of f is shown in Fig.3.2, right. Note that
this IDD and the IDD in Fig.3.1 represent the same function.

0

x2

x1

1f |xi∈I2
f |xi∈Ik

I1
Ik

f |xi∈I1

I2

f

xi

[1,∞)

[0, 6)

[0, 1)

[8,∞)

[6, 8)

Figure 3.2: Bool-Shannon decomposition for IDDs

2Recall the assumption on page 31.

34

3.2 Reduced Ordered Interval Decision Diagrams

3.2.2 Reduced Ordered IDDs

Definition 32 (Ordered IDDs)
Let B = [V,E, v0] be an IDD. B is called ordered with respect to some variable ordering
π if on every path from the root v0 to terminal nodes all nodes are ordered with respect
to their labels: for all non-terminal nodes v , v ′ if (v,_, v′) ∈ E then var(v) <π var(v ′).

Definition 33 (Isomorphic IDDs)
Let B = [VB , EB , v0B

] and F = [VF , EF , v0F
] be two IDDs. B and F are called iso-

morphic if there exists a bijective function σ : VB → VF , such that if σ(v) = v ′ then

1. either v and v ′ are both terminal nodes and value(v) = value(v′),

2. or var(v) = var(v ′) and ∀j partj(v) = partj(v
′) and σ(childj(v)) = childj(v

′).

Definition 34 (Reduced IDD)
Let B = [V,E, v0] be an IDD. B is called reduced if

1. The independence interval partition part(v) of each non-terminal node v ∈ V is
reduced.

2. Each non-terminal node v ∈ V has at least two different children.

3. There exist no different nodes v , v ′ ∈ V such that the subgraphs rooted by v and
v ′ are isomorphic.

An example of a reduced ordered IDD (ROIDD) is shown in Fig. 3.2, right.

3.2.3 Canonicity of Reduced Ordered IDDs

Theorem 1 (Canonicity of reduced ordered IDDs)
If some variable ordering π is defined, then for every3 interval logic function f(x1, . . . , xn)
there exists a unique reduced ordered with respect to π IDD, representing this function f .

Proof: The proof resembles the ones in [Bry86, ST98] and is done by induction on the
size of the dependence set Df . The dependence set of f is the set of arguments that f
depends upon:

Df = {xi | ∃b, c ∈ N0 : f |xi=b 6= f |xi=c }.

The following statements are assumed without explanations:

1. The path from the root of an ROIDD to a terminal node is unique for given
variable values.

3Recall the assumption on page 31.

35

3 Interval Decision Diagrams

2. Each node in an ROIDD is reachable from the root of the ROIDD.

3. If ROIDD G is reduced, then any subgraph of G is also reduced.

If |Df | = 0, then f must be one of the two constant functions f = 0 or f = 1.
Let G be the ROIDD representing f = 0. This ROIDD can not contain terminal
nodes labeled with 1, otherwise there would be some variables for which the function
evaluates to 1, since all nodes in an ROIDD are reachable from the root. Suppose now
that G contains at least one nonterminal node v. This node v must have then only one
outgoing arc labeled with N0, as f does not depend on the variable var(v). Therefore,
v would have just one child, which contradicts to that G is reduced. Hence, the only
ROIDD representing the function f = 0 consists of a single terminal node labeled
with 0. Similarly, the only ROIDD representing the function f = 1 consists of a single
terminal node labeled with 1.

Suppose, the statement of the theorem holds for any function g having |Dg| < k, we
prove now that the statement of the theorem holds for a function f with |Df | = k.
Let G be an ROIDD representing f , and let xi ∈ Df be the smallest with respect to π
variable in Df . The root v of G must be labeled with xi. If the root v had var(v) <π xi,
then it would have exactly one outgoing arc labeled with N0, as xi is chosen so that
f does not depend on any variables xj : xj <π xi. Therefore, v would have just one
child, which contradicts to that G is reduced. If the node v had var(v) >π xi, then xi

would not be the element of Df .

All functions g represented by ROIDDs rooted by nodes w with var(w) >π xi satisfy
|Dg| < k and are different, otherwise the subgraphs of two equal functions would be
isomorphic due to the assumption of the induction. In particular, all children of the
root v of G represent different functions and are not isomorphic. Consider now the
Bool-Shannon expansion of f with respect to xi. The independence interval partition
of the node v is unique. Consequently, the number of outgoing arcs and their labels are
unique. Moreover, the arc with the label Ij leads to the node childj(v) which is unique,
otherwise there would exist two identical functions represented by ROIDDs rooted by
nodes with var(v) >π xi. 2

3.2.4 Variable Ordering

Interval decision diagrams can be viewed as a generalization of binary decision dia-
grams, hence the same variable ordering issues hold for ROIDDs.

1. Variable ordering can have a great impact on the size of an ROIDD.

2. In general, finding an optimal ordering is infeasible, even checking if a particular
ordering is optimal is NP-complete.

36

3.2 Reduced Ordered Interval Decision Diagrams

3. There exist interval logic functions that have ROIDD representations of expo-
nential size for any variable ordering.

4. The heuristic stating that related variables should be close together in the order-
ing brings often good results.

Example 9
Let f = f(a1, . . . , an, b1, . . . , bn) be interval logic function defined as

f =
∧

1≤i≤n

((ai = 0 ∧ bi = 0) ∨ (ai > 0 ∧ bi > 0)).

The number of nodes in the ROIDD representing f will be

• 3n + 2 if we use the variable ordering π1 defined as

a1 <π1 b1 <π1 a2 <π1 b2 <π1 . . . <π1 an <π1 bn.

• 3 · 2n − 1 if we use the variable ordering π2 defined as

a1 <π2 a2 <π2 . . . <π2 an <π2 b1 <π2 b2 <π2 . . . <π2 bn.

Consider the case when n = 2. Two ROIDDs representing f are shown in Fig. 3.3. The
variable ordering π1 is used for the left ROIDD, π2 for the right.

1 0

b1 b1 b1b1

1 0

a2

a1

a2

[1,∞)

b2b2
[0, 1)

[0, 1)

[0, 1)

[0, 1)
[1,∞)

[1,∞)
[1,∞)

[0, 1)

[1,∞)

b1

a1

b1

[1,∞)

a2 [1,∞)

[1,∞)

[0, 1)

b2
[1,∞)

[0, 1)

[0, 1)

[0, 1)

[1,∞)

b2

[0, 1)

[0, 1)

[1,∞)

[1,∞)

[0, 1)

[0, 1)
[1,∞)

[0, 1)

[1,∞)[1,∞)

[0, 1)

Figure 3.3: ROIDDs with different variable orderings

37

3 Interval Decision Diagrams

3.2.5 Shared ROIDDs

Before considering operations on ROIDDs we introduce first the following extension of
ROIDDs: a single multirooted DAG is used to represent a collection of interval logic
functions. All functions in the collection must be defined over the same set of variables.
Additionally, the same variable ordering must be used for these functions.

Definition 35 (Shared ROIDD)

A Shared ROIDD is a tuple [V,E,X, π] where:

1. V is a finite set of nodes.

2. E ⊆ V × I × V is finite set of arcs labeled with intervals on N0.

3. [V,E] forms a DAG.

4. X is a set of variables.

5. π is a variable ordering.

6. Every node v ∈ V is a root of some reduced ordered with respect to π IDD.

7. There exist no different nodes v , v ′ ∈ V such that the ROIDDs rooted by v and
v ′ are isomorphic.

Because of the canonicity of ROIDDs two functions in the collection are identical if
and only if ROIDDs representing these functions have the same root in the Shared
ROIDD. The idea of the similar extension for boolean functions and ROBDDs was
first introduced in [BRB90].

Example 10

An example of a Shared ROIDD is shown in Fig.3.4. The following interval logic func-
tions are encoded in this Shared ROIDD:

• f0 = 0,

• f1 = 1,

• f2 = x2 > 0,

• f3 = (x1 ∈ [6, 8) ∧ x2 > 0) ∨ (x1 ≥ 8),

• f4 = (x1 = 0 ∧ x2 > 0) ∨ x1 ≥ 1.

38

3.2 Reduced Ordered Interval Decision Diagrams

0

x2

x1

1

x1

[1,∞)[0, 1)

[1,∞)

2

4
[0, 1)

[8,∞)
[0, 6)

[6, 8) 3

Figure 3.4: A Shared ROIDD

We shall use the Shared ROIDDs in all algorithms for operations on ROIDDs. Notice
that all nodes of the Shared ROIDD in Fig. 3.4 are enumerated (the numbers under
nonterminal nodes). The terminal nodes get respectively the numbers 0 and 1. We shall
use these numbers to address nodes. For simplification of the algorithms we assume that
the function var labels terminal nodes with a special variable x such that x >π var(v)
for all nonterminal nodes v ∈ V .

A supplementary function MakeNode is used to insert a new node into the Shared
ROIDD R. It takes care that the inserted IDDs are reduced and that no isomorphic
nodes are added to R, compare Definitions 34 and 35. The function gets as parameters
a variable x, an independence interval partition P = { I1, . . . , Ik }, and a list of children
C = (c1, . . . , ck).

1. First, MakeNode reduces the independence interval partition P , uniting neigh-
boring intervals if the neighboring children are equal. If the reduced interval par-
tition consists of one interval, then no new node should be created, as it would
be redundant. The function simply returns the only child left in C.

2. Second, MakeNode uses the hash table UniqueTable to check if a node represented
by a tuple (x, P,C) already exists in the Shared ROIDD. UniqueTable[x, P,C] is
negative if the node does not exist, otherwise it contains the number of the node.
If the node is found in the hash table, it is returned, otherwise a new ROIDD
node is added to R. The variable nodesInShIDD counts the number of nodes in
the Shared ROIDD. Notice that nodesInShIDD is initialized with 2, as the values
0 and 1 are reserved for the terminal nodes.

39

3 Interval Decision Diagrams

Algorithm 2 (MakeNode)

1 nodesInShIDD := 2
2 func MakeNode (x , P = {I1, . . . , Ik}, C = (c1, . . . , ck))
3 while ∃ cj , cj+1 ∈ C such that cj = cj+1 do

4 C := C \ cj+1

5 Ij := Ij ∪ Ij+1

6 P := P \ Ij+1

7 od

8 if |P | = 1 then return c1 fi

9 res := UniqueTable [x , P , C]
10 if res ≥ 0 then return res fi

11 nodesInShIDD := nodesInShIDD + 1
12 UniqueTable[x , P , C] := nodesInShIDD

13 return nodesInShIDD

14 end

3.3 Operations on ROIDDs

Algorithms for ROIDDs, being of course a bit more complicated, resemble closely the
algorithms for ROBDDs discussed in section A.5 of the Appendix.

3.3.1 Equivalence Check

Let f and g be two interval logic functions over the same set of variables, and let F
and G be ROIDD representations of f and g. The equivalence check of these functions
becomes a trivial operation if F and G are saved in one Shared ROIDD. It is enough
then to check if F and G have the same root. Obviously, this operation can be done in
a constant time.

3.3.2 Apply Operation

Consider Algorithm 3 which is a uniform algorithm for computing all binary logical
operations on interval logic functions. The algorithm resembles the Apply [Bry86] al-
gorithm for ROBDDs discussed on page 163.

Let ⋆ be an arbitrary two-argument logical operation, f and g be two interval logic
functions over the same set of variables, F and G be ROIDDs representing f and g.
We assume that F and G are saved in a Shared ROIDD R. The algorithm calculating
f ⋆ g is implemented with help of a recursive function AuxApply which gets roots
r1, r2 of two ROIDDs as parameters. We denote with f1 and f2 interval logic functions
represented by ROIDDs rooted by r1 and r2. AuxApply(r1, r2) returns a root of an

40

3.3 Operations on ROIDDs

ROIDD representing f1 ⋆ f2. Several cases depending on the relationship between r1

and r2 are possible.

1. If r1 and r2 are both terminal nodes, then f1 ⋆ f2 = value(r1) ⋆ value(r2).

2. If var(r1) = var(r2), then the Bool-Shannon expansion is used to break the
problem into subproblems that can be solved then recursively. The function
IntersectPartitions gets two reduced independence interval partitions part(r1)
and part(r2) as parameters and returns a new independence interval partition
NewPart got by intersecting the intervals of part(r1) and part(r2). Obviously,
NewPart is an independence interval partition of both f1 and f2, the number
of intervals |NewPart | is maximally |part(r1)| + |part(r2)|. We can apply the
Bool-Shannon expansion and get |NewPart | subproblems:

f1 ⋆ f2 =
∨

1≤j≤|NewPart |

xi ∈ NewPart j ∧ (f1|xi∈NewPartj
⋆ f2|xi∈NewPartj

).

The root of the resulting IDD will be a node w with var(w) = var(r1), outgo-
ing arcs labeled with intervals Ij of NewPart leading to ROIDDs representing
functions f1|xi∈Ij

⋆ f2|xi∈Ij
. The function MakeNode is used to insert the IDD

into R.

3. If var(r1) < var(r2), then f2 does not depend on x. In this case the Bool-Shannon
expansion simplifies to

f1 ⋆ f2 =
∨

1≤j≤|part(r1)|

xi ∈ partj(r1) ∧ (f1|xi∈partj(r1) ⋆ f2)

and the IDD for f1 ⋆ f2 is computed recursively as in the second case.

4. If var(r1) > var(r2), then the computation is similar to the previous case.

Each problem of AuxApply can generate |part(r1)| + |part(r2)| subproblems, so care
must be taken to prevent the algorithm from being exponential. Each subproblem
corresponds to a pair of ROIDDs that are subgraphs of the F and G. The number of
subgraphs in an ROIDD is limited by its size, hence, the number of subproblems is
limited by the product of the size of F and G. A hash table ResultTable is used to store
the results of previously computed subproblems, the function AuxApply is a so-called
memory function. Before any recursive calls are made, the ResultTable is used to check
if the subproblem has been already solved. ResultTable [r1, r2] is negative if the result
of the operation ⋆ for the subgraphs rooted by r1 and r2 is not known yet, nonnegative
otherwise. Usage of the memory function allows to keep the algorithm polynomial.

41

3 Interval Decision Diagrams

Algorithm 3 (Binary Operation on IDDs)

1 func Apply (⋆, F , G)
2 func AuxApply (r1 , r2)
3 if r1 ∈ {0, 1} ∧ r2 ∈ {0, 1} then return r1 ⋆ r2 fi

4 if ResultTable[r1 , r2] ≥ 0 then return ResultTable[r1 , r2] fi

5 if var(r1) = var(r2) then

6 NewPart := IntersectPartitions(part(r1), part(r2))
7 forall Ij ∈ NewPart , Ik ∈ part(r1), Il ∈ part(r2) do

8 if Ij ∩ Ik ∩ Il 6= ∅ then

9 NewChildj := AuxApply(childk(r1), childl(r2))
10 fi

11 od

12 res := MakeNode(var(r1), NewPart , NewChild)
13 elseif var(r1) < var(r2) then

14 NewPart := part(r1)
15 forall Ij ∈ NewPart do

16 NewChildj := AuxApply(childj(r1), r2)
17 od

18 res := MakeNode(var(r1), NewPart , NewChild)
19 else /* var(r1) > var(r2) */
20 NewPart := part(r2)
21 forall Ij ∈ NewPart do

22 NewChildj := AuxApply(childj(r2), r1)
23 od

24 res := MakeNode(var(r2), NewPart , NewChild)
25 fi

26 ResultTable[r1 , r2] := res

27 return res

28 end

29

30 begin

31 B .root := AuxApply(F .root , G.root)
32 return B

33 end

42

3.3 Operations on ROIDDs

x1

1 0

x3

x1

x2 x2

x3

0 1

x1

0

x2

1

3

[9,∞)

[7,∞)

[1, ∞)

[9, ∞)

2

5

4 2

7

4

6

[7,∞) (3,5)

(0,1)
[1,∞)

[6,∞)[0, 6)

[0, 1)

[0, 7)

[0, 9)

[6, 7)

[0, 1)

[0, 9)

[0, 6)

[1, ∞)

[0, 1)

0

2

7

(2,1)

(1,1)(0,1)

0

0

(2,4)
4

6

(arguments and return values)
Call tree of apply

(0,4)

(0,1)(1,0)

(1,4)

(1,0)(1,1)

0 1

1

00

Figure 3.5: Calculation of f1 ∧ f2 using Apply

Example 11 (Apply)
Fig.3.5 demonstrates the calculation of f1 ∧ f2 using Apply for f1 = x1 ≥ 6 ∧ x2 > 0
and f2 = x1 < 7 ∨ x3 < 9. ROIDDs for f1, f2, and f1 ∧ f2 are shown on the left, the
call tree of the function AuxApply is on the right. Notice that we use Shared ROIDDs
to store all the ROIDDs and that the resulting ROIDD reuses nodes 2 and 4.

3.3.3 Negation

Let g be an interval logic function, G be an ROIDD representing g, and let G be
saved in a Shared ROIDD. Algorithm 4 calculating ¬g is implemented with help of a
recursive function AuxNeg which gets a root r of an ROIDD as a parameter. Let f be
an interval logic function represented by the ROIDD rooted by r. AuxNeg(r) returns
a root of an ROIDD representing the function ¬f . Two cases are possible.

1. If r is a terminal node, then ¬f = ¬ value(r).

2. If r is a nonterminal node, then the Bool-Shannon expansion

¬f =
∨

1≤j≤|part(r)|

var(r) ∈ part(r)j ∧ (¬f |var(r)∈part(r)j
)

is used to break the problem into |part(r)| subproblems that are solved then
recursively. The root of the resulting ROIDD will be a node w with var(w) =
var(r), outgoing arcs labeled with intervals Ij of part(r) leading to ROIDDs
representing functions ¬f |var(r)∈Ij

.

Though each problem of the function AuxNeg can generate |part(r)| subproblems, the
total number of subproblems is limited by the size of G. AuxNeg is implemented like

43

3 Interval Decision Diagrams

Algorithm 4 (Negation)

1 func Neg (G)
2 func AuxNeg (r)
3 if r ∈ { 0, 1 } then return ¬r fi

4 if ResultTable[r] ≥ 0 then return ResultTable[r] fi

5 NewPart := part(r)
6 forall Ij ∈ NewPart do

7 NewChildj := AuxNeg(childj(r))
8 od

9 res := MakeNode(var(r), NewPart , NewChild)
10 ResultTable[r] := res

11 return res

12 end

13 begin

14 G ′.root := AuxNeg(G.root)
15 return G ′

16 end

AuxApply as a memory function, this allows to keep the algorithm linear in the size
of G. Actually, a call to Neg(G) returns an ROIDD G′ which differs from G only by
interchanged terminal nodes.

3.3.4 Cofactors

Let g be an interval logic function, x ∈ X be a variable, c ∈ N0 be some natural
number, and G be an ROIDD representing g. We assume that G is saved in a Shared
ROIDD. Algorithm 5 calculating g|x=c is implemented with help of a recursive function
AuxCofactor which gets a root r of an ROIDD as a parameter. Let f be an interval logic
functions represented by the ROIDD rooted by r. AuxCofactor(r) returns a root of
an ROIDD representing the function f |x=c. Three cases depending on the relationship
between var(r) and x are possible.

1. If var(r) < x, then the Bool-Shannon expansion

f |x=c =
∨

1≤j≤|part(r)|

var(r) ∈ part(r)j ∧ (f |var(r)∈part(r)j
|x=c)

is used to break the problem into |part(r)| subproblems that are solved then
recursively. The root of the resulting IDD will be a node w with var(w) = var(r),
outgoing arcs labeled with intervals Ij of part(r) leading to ROIDDs representing
function f |var(r)∈Ij

|x=c.

44

3.3 Operations on ROIDDs

Algorithm 5 (Cofactors)

1 func Cofactor (G, x , val)
2 func AuxCofactor (r)
3 if var(r) < x then

4 if ResultTable[r] ≥ 0 then return ResultTable[r] fi

5 NewPart := part(r)
6 forall Ij ∈ NewPart do

7 NewChildj := AuxCofactor(childj(r), x , val)
8 od

9 res := MakeNode(var(r), NewPart , NewChild)
10 ResultTable[r] := res

11 return res

12 elseif var(r) = x then

13 forall Ij ∈ part(r) do

14 if val ∈ Ij then return childj(r) fi

15 od

16 else /* var(r) > x */
17 return r

18 fi

19 end

20 begin

21 G ′.root := AuxCofactor(G.root)
22 return G ′

23 end

2. If var(r) = x, then f |x=c = f |var(r)∈part(r)j
if c ∈ part(r)j .

3. If var(r) > x, then f does not depend on x and f |x=c = f . Note that this case
includes also the terminal nodes.

Though each problem of the function AuxCofactor can generate |part(r)| subproblems,
the total number of subproblems is limited by the size of G. Again, implementation
of AuxCofactor as a memory function allows to keep the algorithm linear in the size
of G.

3.3.5 Construction of ROIDDs

Consider a function Construct that takes an interval logic function f as an argument
and returns an ROIDD that represents f . We define this function inductively.

1. If f is induced by an atomic interval logic expression, then Construct(f) returns
one of the elementary ROIDDs shown in Fig. 3.6.

45

3 Interval Decision Diagrams

0

1 xi

0 1

[n,∞)[0, n)

xi

0 1

[0, n)

[n, m)[m,∞)

f = xi ∈ [n,∞)f = xi ∈ [n, m)

f = xi ∈ [0,∞)

f = xi ∈ ∅

xi

1

[n,∞)[0, n)

0

f = xi ∈ [0, n)

Figure 3.6: Elementary ROIDDs

2. If f = f1 ⋆ f2 where ⋆ ∈ {∧,∨}, then

Construct(f) = Apply(⋆,Construct(f1),Construct(f2)).

3. If f = ¬f1, then Construct(f) = Neg(Construct(f1)).

3.4 Efficient Implementation of an ROIDD Package

We have implemented the ROIDD package in C++. The implementation has been
tested on Linux, SUN and lately on Windows (with Cygwin). We have applied the ap-
proved techniques [BRB90, YBO+98, Noa99] used in the implementations of ROBDD
packages and considered also the ROIDD specific problems. In this section we discuss
the techniques briefly.

3.4.1 Shared ROIDDs and Garbage Collection

Recall that a global hash table UniqueTable used in the function MakeNode allows a
node to be found in a Shared ROIDD. We merge data structures of the hash table and
ROIDDs forming a Shared ROIDD.

1 struct SharedROIDD

2 nodes : array of Node

3 uniqueTable : array of unsigned

4 extRefs: list of RefCount

5 firstFree: unsigned

6 end

1 struct Node

2 var : unsigned

3 children : list of unsigned

4 arcs : list of unsigned

5 nextFree : unsigned

6 nextInUTable : unsigned

7 mark : bool

8 end

All ROIDD nodes are saved in the array nodes . For every ROIDD node v we store an
index of a variable var(v), a list of children, and a list of labels of outgoing arcs. We
shall discuss problems of storing these lists later in this section.

46

3.4 Efficient Implementation of an ROIDD Package

firstFree is an index of the first free ROIDD node, free nodes are linked using the mem-
ber nextFree . A hash function is used to compute a key k for the tuple [x, P,C] when
a node represented by this tuple must be found in the Shared ROIDD. uniqueTable[k]
contains an index of the first ROIDD node with the hash value k, all ROIDD nodes
with the same hash key are linked using the member nextInUTable.

We denote ROIDDs representing functions of a user of the package as externally ref-
erenced. The member extRefs keeps count of references on the roots of externally ref-
erenced ROIDDs. The garbage collection is triggered automatically if all free nodes
are exhausted during an ROIDD operation. First, garbage collection marks all nodes
reachable from the roots of externally referenced ROIDDs using a simple recursive
function and the member mark . Second, all not marked nodes are linked in the free
list and the ROIDD operation is repeated.

3.4.2 Cache Management and Special Operations

Recall that hash tables ResultTable storing the results of already calculated subprob-
lems were used to prevent the algorithms on ROIDDs from being exponential. Because
of the usage of Shared ROIDDs the results saved in the hash tables remain valid even
across top-level calls to ROIDD operations. Hence, the hash tables can be initialized
only once at the initialization of the package and after garbage collections, but not at
each call to an ROIDD operation.

It was proposed in [BRB90] to implement ResultTable as a hash-based cache. In hash-
based caches a newer entry overwrites the old one when a collision occurs. Obviously,
a hash-based cache requires less memory and is faster, as no collision management
is needed. Each hash-based cache entry stores a key and a result of the operation.
For example, in the function AuxApply indices of roots r1 , r2 and an index of the
operation ⋆ form a key and an index of res is the result. The usage of hash-based
caches introduces the possibility of recalculating previous results and can lead in the
worst case to the exponential complexity of ROIDD operations. A gain both in terms
of average memory usage and time when appropriate hash functions and sizes of caches
are used allows to warrant such a risk.

To improve efficiency we do not use the function Apply for the most often used logic
operations like disjunction, conjunction, etc. Instead, they are implemented as dedi-
cated ROIDDs operations. Consider, for example, the disjunction, we use the following
facts in the implementation of the function Disjunction

1. f1 ∨ f2 = f2 ∨ f1.

2. f ∨ 1 = 1, f ∨ 0 = f , f ∨ f = f .

3. If f = f1 ∨ f2, then f ∨ f1 = f and f ∨ f2 = f .

47

3 Interval Decision Diagrams

Hence, the line 3 of Algorithm 3 is replaced in the Disjunction with

· if r1 > r2 then swap(r1 , r2) fi

· if r1 = 0 then return r2 fi

· if r1 = 1 then return 1 fi

· if r1 = r2 then return r1 fi

and the line 26 is replaced with

· ResultTable[r1 , r2] := res

· if res < r1 then ResultTable[res, r1] := res else ResultTable[r1 , res] := res fi

· if res < r2 then ResultTable[res, r2] := res else ResultTable[r2 , res] := res fi

3.4.3 Complement Arcs and Dynamic Variable Ordering

Complement arcs and dynamic variable ordering are two features not implemented in
our ROIDD package.

Recall that ROIDDs F and F ′ representing interval logic functions f and ¬f differ
only by interchanged terminal nodes. This fact could be exploited by using complement
arcs. A complement arc is an ordinary arc with an extra bit (complement bit), set to
indicate that the connected node is to be interpreted as the complement of the ordinary
node. Hence, ¬f can be represented by only a compliment arc to F , avoiding creation
of all nodes of F ′. Nevertheless, the cost of the implementation and management of
complement arcs is not justified when the package aims to symbolic analysis of bounded
Petri nets. The negation ¬f is used quite seldom there. It is usually replaced with a
calculation of g ∧ ¬f , which corresponds to a set difference operation, as we shall see
in the next chapter. Instead of complement arcs, we implement this operation as an
effective dedicated ROIDD operation, like the Disjunction, discussed above.

Recall that the size of ROIDDs can depend critically on the variable ordering. Dynamic
variable ordering algorithms [Rud93] try to adjust the ordering at running time. As
we have mentioned, there exist no efficient algorithms to check if a variable ordering
is optimal, so dynamic variable ordering techniques are implemented using quite ex-
pensive brute-force algorithms. During the garbage collection the package attempts to
reduce the storage requirement and reorders the variables by performing a series of
swaps between adjacent variables. As noticed in [YBO+98], if a good variable ordering
is defined using heuristics, then dynamic variable ordering can not improve the analy-
sis times. As we shall see, the structure of Petri nets can be used to define quite good
variable orderings. Furthermore, usage of dynamic variable ordering would complicate
the algorithms exploiting the locality of Petri nets discussed in the next chapter, so we
forbear from the implementation of dynamic ordering in our package.

48

3.4 Efficient Implementation of an ROIDD Package

3.4.4 Handling of Partitions and Lists of Children

Most of the techniques described above were successfully applied in implementations
of ROBDD packages [BRB90, Noa99], handling of intervals and lists of children is an
ROIDD specific issue.

Obviously, every partition P = { [0, a1), [a1, a2), . . . , [an,∞) } of N0 can be uniquely
represented by the sequence of natural numbers a1, a2, . . . , an. Hence, we can store a
list of children of an ROIDD node and labels of its outgoing arcs using lists of unsigned
integers. The list implementation must be, of course, memory efficient, as well as allow
fast operations needed by ROIDD algorithms. The most often used operations are:

• creation and deletion of lists,

• copying and comparison of lists,

• appending and removing list elements,

• functions like IntersectPartitions.

All ROIDD algorithms can be written without loss of efficiency in such a way that
they access elements of lists sequentially. We can exploit this fact and use singly linked
lists. The data structure we use is sketched in the listing.

1 struct ListNode

2 data: unsigned

3 next : reference to ListNode

4 end

1 struct UList

2 first : reference to ListNode

3 last : reference to ListNode

4 end

Lists storing labels of outgoing arcs of a node are always sorted. Hence, the function
IntersectPartitions can be implemented as a simple merge operation of two sorted lists.

References to the first and last element of a list are stored in the next field of nodes
referenced by members first and last . This allows fast appending of elements at the
beginning and at the end of the list. Moreover, last .data is used to store the length
of the list, the first .data is used for the reference counting. We implement a lazy copy
and shared list nodes. If a copy operation is used to create a list, then elements of the
old list are not copied to the new one, instead, the new list shares all its nodes with
the old list.

The operation comparing list l1 and l2 is implemented as follows:

1. It checks first if lists share the same elements: l1.first = l2.first .

2. If the lists do not share the same elements, then their lengths are compared:
l1.last .data = l2.last .data .

49

3 Interval Decision Diagrams

3. If the lengths as well as all elements of the lists are equal, then a list with with
a smaller reference count is modified. Suppose it is the list l1.

a) If l1 does not share elements with other lists (l1.first .data = 1), then all its
elements are freed. Otherwise, its reference count is decremented.

b) The references first and last of l1 are adjusted to make l1 and l2 share nodes
and the reference count is incremented.

Frequent allocations and deletions of small objects like list nodes lead to high memory
fragmentation, its inefficient usage and, in the long run, to very high memory require-
ments. To avoid the problem, we use a pool of list nodes. The pool allocates large
chunks of memory and undertakes the management of (free) nodes. When a list oper-
ation needs a new node, it requests it from the pool. Not needed nodes are returned
back into the pool.

Usage of shared lists and the pool of nodes allowed to decrease the memory require-
ments of the package up to the order of magnitude on some examples. We leave a
search for even more compact and efficient data structures for the storage of partitions
and lists of children as a possible topic for future research.

3.5 Closing Remark

We have considered Interval decision diagrams (IDDs), a generalization of Binary de-
cision diagrams. IDDs can represent functions induced by expressions of the interval
logic, which was actually introduced to describe sets of markings of Petri nets. With
the definition of reduced ordered interval decision diagrams (ROIDDs) we have got a
canonical representation of interval logic functions, which is also compact for many
interesting functions. We have discussed how effective algorithms for ROIDDs can be
defined and implemented. In the next chapter we consider how ROIDDs can be used
for compact representation and manipulations of large sets of markings of bounded
Petri nets.

50

4 Symbolic Analysis of Bounded Petri

Nets Using ROIDDs

The advent of symbolic model checking [BCM+90, McM92] has revolutionized the field
of formal verification, transforming it from a purely academic discipline into a industri-
ally applied technique. The key idea underlying symbolic methods is to represent sets
of states using their characteristic functions and to manipulate them as if they were
in bulk. Such an approach becomes less dependent on the number of states in a set
and can be even applied to infinite systems. Symbolic methods derive their efficiency
from the fact that in many cases of interest large sets of states can be represented
concisely by characteristic functions. Typical operations used in symbolic algorithms
are computing the set of all successors or all predecessors of states in some set and
usual set operations like intersection, union, test for emptiness. Traditional symbolic
algorithms are based on manipulations of boolean functions and ROBDDs [Bry86].

ROBDDs have been applied first to the analysis of Petri nets in [PRCB94]. Boolean
functions encode naturally sets of markings of 1-bounded nets. Zero suppressed decision
diagrams [Min93] are perfectly suited for the symbolic analysis of such nets. When
boolean functions must be used to represent sets of markings of k-bounded nets, a
set of boolean variables must be assigned to every place of the net using either one-
hot, binary [PRCB94] or dense encoding [PCP99]. This leads often to a number of
problems: to save memory and computing power, the coding should be selected so,
that it covers no more than a necessary integer range, which, in general, can be not
known in advance or can actually be the goal of the analysis. The number of ROBDD
variables, which is a critical parameter in efficiency of ROBDD algorithms, can grow
very fast. Typical symbolic operations like computation of successors states become
unnatural and expensive. To avoid these problems a number of alternative approaches
have been suggested.

Multi-valued decision diagrams (MDDs) [Kam95] are used for the analysis of Petri
nets in the tool SMART [CJMS01]. The approach can be coarsely explained as follows. A
net has to be partitioned into a number of subnets. Local state spaces are enumerated
using explicit techniques. Every local marking is assigned to a natural number, a global
marking corresponds to a tuple of natural numbers. MDDs are used then to encode
sets of global markings, Kronecker operators are used to encode transitions. An efficient
saturation algorithm [CLS01, CMS03] that exploits the locality of Petri nets is used for
the computation of the global state space, computations of local states spaces can be

51

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

done “on-the-fly”. The approach aims primary at the analysis of large-sized nets that
exhibit a highly asynchronous behavior and can be easily partitioned into a number
of loosely coupled subnets having small local state spaces. Most of the nets we face,
especially those, modeling biochemical systems [HK04, KJH05], are relatively small-
sized k-bounded nets which usually do not allow such a partitioning.

Arithmetic constraints have been proposed as a symbolic representation in [BGP97,
BF99, Bul00]. The approaches aim primary at the analysis of infinite systems. The pre-
sented experimental results do not look very promising for the general analysis of Petri
nets. The complexity of the underlying algorithms is very high, presence of variables
with finite domains results often in the very inefficient constraint-based representation.

Interval logic functions [LR95] introduced in the previous chapter allow a natural encod-
ing of sets of markings of k-bounded nets. ROIDDs provide a compact representation
of interval logic functions, moreover, they allow a natural and efficient implementation
of the special operations needed in symbolic algorithms.

Though small decision diagrams can encode large sets of states, not every large set
of states can be encoded by a small decision diagram. The breath-first order strategy
traditionally applied in symbolic algorithms is not well suited for asynchronous systems.
Often, sizes of decision diagrams encoding working sets of symbolic algorithms are
much larger during the computation than upon termination. As the efficiency of the
operations on decision diagrams depends on their sizes, the performance decreases
as big diagrams start to be generated. Straying from the breath-first strategy in the
exploration of state spaces can improve the reachability analysis. In this chapter we
study techniques to reduce sizes and the number of intermediate diagrams. We propose
then a new saturation algorithm which exploits both the structure of k-bounded Petri
nets and the structure of ROIDDs. Sizes of decision diagrams depend heavily on the
used variable ordering. We discuss heuristics to get a good variable ordering using the
structural information of a Petri net.

Decomposing a graph into its strongly connected components (SCCs) has many appli-
cations in the analysis of different properties. The first symbolic algorithms for SCC
decomposition were based on the computation of the transitive closure (TC) of the
transition relation [MMB93]. This operation is often very expensive and algorithms
based on the reachability analysis [XB98, XB99, BGS00] were shown to be superior
over the TC-algorithms. They are based on the observation that an SCC containing
some state can be computed as an intersection of a set of states that can reach this state
with a set of states that are reachable from it. An algorithm introduced in [XB98] for
the state classification of finite-state Markov chains can be adapted to the enumeration
of terminal SCCs in sets of markings of Petri nets. Moreover, it benefits immediately
from the new saturation strategy.

An efficient implementation of the reachability analysis allows an efficient check of the
basic Petri net properties.

52

4.1 Fundamental Isomorphism

4.1 Fundamental Isomorphism

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs, and let n be
the number of places of N . With MN we denote a set containing all possible markings
of N . Recall that the interval logic was introduced to describe sets of markings. Let
f = f(x1, . . . , xn) be some interval logic function. A set of markings M described by
the function f is defined as follows:

M = {m ∈ MN | f(m(p1), . . . ,m(pn)) = 1 }.

We denote with Fn the set of all interval logic functions with n arguments and with M
the set of all sets of markings described by functions of the set Fn. The least element
of M is the empty set, described by the function f = 0. The greatest element is the
set MN , described by the function f = 1.

Proposition 2
It can be shown that boolean algebra [Fn,∨,∧,¬, 0, 1] and [M,∪,∩, ,̄ ∅,MN] are iso-
morphic1.

The Proposition 2 states that reasoning in terms of sets of markings and set operations
is isomorphic to reasoning in terms of interval logic functions and logic operations on
them. We shall denote an interval logic function describing a set of markings M as
a characteristic function of M and write it as χM . Let M1,M2 ∈ M be two sets of
markings then

• χM1∪M2 = χM1 ∨ χM2 ,

• χM1∩M2 = χM1 ∧ χM2 ,

• χM1
= ¬χM1 .

Example 12
Consider a P/T net shown in Fig. 2.1 (page 14). We can treat pi as a place of the net,
as well as a variable of a characteristic function χ = χ(p1, . . . , p5).

1. The initial marking (3, 2, 0, 1, 0) is described by the function

χm0 = p1 = 3 ∧ p2 = 2 ∧ p3 = 0 ∧ p4 = 1 ∧ p5 = 0.

2. A characteristic function of the reachability set RN (m0) is

χRN (m0) = (p1 = 3 ∧ p2 = 2 ∧ p3 = 0 ∧ p4 = 1 ∧ p5 = 0) ∨
(p1 = 2 ∧ p2 = 1 ∧ p3 = 1 ∧ p4 = 1 ∧ p5 = 0) ∨
(p1 = 1 ∧ p2 = 0 ∧ p3 = 2 ∧ p4 = 1 ∧ p5 = 0) ∨
(p1 = 0 ∧ p2 = 1 ∧ p3 = 1 ∧ p4 = 0 ∧ p5 = 1) ∨
(p1 = 0 ∧ p2 = 2 ∧ p3 = 0 ∧ p4 = 0 ∧ p5 = 1).

1Boolean algebra are introduced in the Appendix.

53

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

3. A function χp4=1 = p4 = 1 describes a set of all possible markings where the
place p4 has one token. Obviously, this set is infinite. A function χp4=1∧χRN (m0)

describes a (clearly finite) set of markings reachable from m0 where p4 has one
token.

Characteristic functions can be also used to represent binary relations between sets.
Given sets M ,M ′ ∈ M, to represent a binary relation R ⊆ M × M ′ it is necessary
to use two different sets of variables to identify the elements of each set. Taking the
set {x1, . . . , xn } for M and {x′

1, . . . , x
′
n } for M ′, the characteristic function of R is

defined as

χR(x1, . . . , xn, x′
1, . . . , x

′
n) = 1 ⇔

∃(m,m′) ∈ R : χm(x1, . . . , xn) = 1 ∧ χm′(x′
1, . . . , x

′
n) = 1.

Like in the previous chapter, we limit the set Fn to those interval logic functions
that are decomposable over interval partitions with a finite number of independence
intervals. The limited set of functions still contains most of the functions of interest.
For example, it obviously contains functions describing any sets of reachable markings
of a bounded P/T net. As we know, ROIDDs provide a canonical form representation
for interval logic functions, so they can be used as an efficient data structure for storage
and fast manipulations on sets of markings.

4.2 Symbolic Manipulation of Petri Nets using ROIDDs

4.2.1 Symbolic Operators

As reasoning in terms of sets of markings is isomorphic to reasoning in terms of interval
logic functions, for convenience, we shall usually write and discuss algorithms using the
set notation. Symbolic algorithms for Petri nets operate on sets of markings applying
the operators shown in Table 4.1. As mentioned at the end of the previous chapter,
logic operations on interval functions are implemented as efficient dedicated ROIDD
operations, hence, the application of basic operators is usually a cheap operation.

Let N be a P/T net with extended arcs, and let n be the number of places of N .
Pick(M) returns some marking m belonging to the set of markings M ∈ M. We
implement the function as a special ROIDD operation, consider Algorithm 6. Actually,
we just have to find c1, . . . , cn ∈ N0 such that χM |x1=c1| . . . |xn=cn = 1 and construct
then an ROIDD for the function χm =

∧

1≤i≤n(xi = ci). The function iPick gets an

ROIDD GM encoding the set M2 and returns an ROIDD Gm encoding m. As usual,
we assume that GM and Gm are saved in the same Shared ROIDD. The algorithm is

2For the sake of brevity, we shall write “an ROIDD GM encoding a set M ” instead of “an ROIDD
GM representing a characteristic function χM which describes a set of markings M ”.

54

4.2 Symbolic Manipulation of Petri Nets using ROIDDs

Basic operators:

∩ : M×M → M
∪ : M×M → M
\ : M×M → M
· : M → M
= : M×M → B

Special operators:

Pick : M → MN

Fire : M× T → M
RevFire : M× T → M
Img : M → M
PreImg : M → M

Table 4.1: Symbolic operators

implemented using a recursive function AuxPick that gets a root r of an ROIDD and
an index i of an ROIDD variable as arguments.

When discussing algorithms on ROIDDs in this chapter, we shall assume that the
ordering π is defined as x1 <π x2 <π . . . <π xn and that a function Pl(xi) : X → P
returns a place assigned to the variable xi.

In AuxPick several cases depending on the relationship between r and i are possible.

1. The case r = 0 occurs only if M is an empty set, then Gm also contains only the
terminal node 0.

2. The end of recursion is reached if i = n + 1, in this case AuxPick always returns
the terminal node 1.

3. If var(r) > xi , then M is an infinite set in which a place Pl(xi) may contain any
number of tokens. Hence, we can randomly select some ci ∈ N0. The root of the
resulting IDD has three outgoing arcs, an arc labeled with the interval [c, c + 1)
leads to an ROIDD constructed by the recursive call to AuxPick, the two other
arcs lead to 0.

4. If var(r) = xi , we choose one of the outgoing arcs of r which do not lead to 0.
ci is randomly selected from the interval labeling this arc. The resulting IDD is
constructed as described in the previous case.

Implementation of the following functions is discussed in the next section. Usually, Img
and PreImg are the most expensive operations.

• The function Fire(M , t) returns a set of markings M ′ obtained by firing the
transition t in the set of markings M

Fire(M , t) = {m′ ∈ MN | ∃m ∈ M : m
t

−→ m′ }.

55

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Algorithm 6 (Picking a state)

1 func iPick (GM)
2 func AuxPick (r , i)
3 if r = 0 ∨ i = n + 1 then return r fi

4 if var(r) > xi then

5 c := oneof (N0)
6 r ′ := AuxPick(r , i + 1)
7 else /* var(r) = xi */
8 k := oneof ({j | childj(r) 6= 0})
9 c := oneof (partk(r))

10 r ′ := AuxPick(childk(r), i + 1)
11 fi

12 NewChild := {0, r′, 0}
13 NewPart := {[0, c), [c, c + 1), [c + 1,∞)}
14 res := MakeNode(xi, NewPart , NewChild)
15 return res

16 end

17 begin

18 Gm .root := AuxPick(GM .root , 1)
19 return Gm

20 end

• Img(M) returns a set of markings M ′ obtained by firing all transitions of the net
in the set of markings M

Img(M) = {m′ ∈ MN | ∃m ∈ M,∃t ∈ T : m
t

−→ m′ }.

• RevFire(M , t) returns a set of markings M ′ from which M can be reached if the
transition t fires

RevFire(M , t) = {m′ ∈ MN | ∃m ∈ M : m′ t
−→ m }.

• PreImg(M) returns a set of markings M ′ from which M can be reached, if any
transition of the net fires

PreImg(M) = {m′ ∈ MN | ∃m ∈ M,∃t ∈ T : m′ t
−→ m }.

4.2.2 Enabling and Firing

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs and let
t ∈ T be some transition of N . With Et ∈ M we denote a set of markings in which t
can be enabled, a characteristic function for this set can be defined as

56

4.2 Symbolic Manipulation of Petri Nets using ROIDDs

χEt =
∧

pi∈•t

(pi ≥ t−(pi) ∧ pi < t−I (pi) ∧ pi ≥ t−R(pi)).

Here we treat p again as a place of the net, as well as a variable of the characteristic
function. Correspondingly, a set of markings Dt in which t can not be enabled is
described by the function χDt = ¬χEt.

As mentioned above, characteristic functions can be used to represent binary relations
between sets. In the traditional symbolic approach that employs ROBDDs this fact is
used to encode a transition relation of a net. The function Img is implemented then
using standard ROBDD operations. This technique is not very well suited for Petri
nets. Consider, for example, a transition t that adds two tokens to a place p. We have
to represent explicitely all possible pairs of a place’s state and its successor after firing
of the transition t, i.e.

{(p, p′)} = {(0, 2), (1, 3), . . . , (n − 2, n)}.

The transition relation becomes too large and firing becomes a very inefficient opera-
tion. Notice that we also have to introduce an upper bound n to keep the relation finite.
To avoid these problems firing can be implemented as a special operation on decision
diagrams. This approach was first applied in [YHTM96] for the analysis of 1-bounded
Petri nets using ZBDDs. The implementation of the function Fire resembled the Apply
algorithm, the function got a decision diagram GM encoding a set of markings M and
a list of adjacent places of the transition t as arguments. A decision diagram GM ′

encoding the resulting set M ′ was constructed during a single traversal of GM . Com-
putation of a set K = Img(M) was done then as K =

⋃

t∈T Fire(M, t). This technique
was shown to be very efficient and was applied also in [Rid97] and [Noa99]. A special
type of diagrams called Predicate action diagrams (PAD) was introduced in [ST98].
Instead of the function Fire, the function Img was implemented as a special operation
on ROIDDs, it got a decision diagram GM and a PAD encoding all transitions of the
net as arguments.

We shall use action lists which encode single transitions and implement the function
Fire as a special ROIDD operation. Action lists naturally support enabling and firing
rules of P/T nets with extended arcs, compared to simple lists of places they allow
a more flexible implementation of the function Fire. For example, this implementa-
tion can be also reused in the function RevFire. As we shall see, implementation of
the function Fire instead of the function Img as a special operation on ROIDDs al-
lows application of different traversal techniques which can enormously speedup the
construction and exploration of state spaces.

For every transition t connected with nt places {p1t , . . . , pnt} we construct an action list
al using enabling and firing rules of P/T nets with extended arcs (recall section 2.6).

57

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

The list consists of nt elements {al1, . . . , alnt} having the following structure:

• ali.var is an ROIDD variable assigned to the place pit : Pl(ali.var) = pit

• ali.enInterval ∈ I determines how many tokens the place pit may contain if t is
enabled: ali.enInterval = [t−(pit),∞) ∩ [0, t−I (pit)) ∩ [t−R(pi),∞)

• ali.action =

{

SHIFT if (pit , t) 6∈ Z
ASSIGN otherwise

• ali.shift ∈ Z is used when ali.action = SHIFT, ali.shift = ∆t(pit)

• ali.asgnInterval ∈ I is used when ali.action = ASSIGN,
ali.asgnInterval = [t+(pit), t

+(pit) + 1).

Elements of the action list are sorted with respect to the ordering defined for ROIDD
variables. The action list revAl to be used by the implementation of the function
RevFire can be easily constructed from the list al:

• revAli.var = ali.var

• revAli.action = ali.action

• revAli.enInterval =

{

ali.enInterval + ali.shift if ali.action = SHIFT

ali.asgnInterval otherwise

• revAli.shift = −ali.shift

• revAli.asgnInterval = ali.enInterval.

Example 13

Consider a P/T net with extended arcs in Fig. 2.5 (page 26). Action lists created for
transitions of the net are presented in Table 4.2. We assume that ROIDD variables x0

and x1 are assigned correspondingly to the places p0 and p1 and that x0 <π x1.

var enInterval action shift asgnInterval

t0 x0 [0, 2) SHIFT 0

t1 x0 [2,∞) SHIFT 0
x1 [0,∞) ASSIGN [0, 1)

t2 x0 [2, 3) SHIFT 0
x1 [0,∞) ASSIGN [5, 6)

t3 x0 [2,∞) SHIFT −2

Table 4.2: Action lists for the net from Fig. 2.5

58

4.2 Symbolic Manipulation of Petri Nets using ROIDDs

Let us consider Algorithm 7. The function iFire gets an ROIDD GM encoding a set M
and a transition t as arguments and returns an ROIDD encoding the set of markings
obtained by firing t in M . The algorithm is implemented with help of a recursive
function AuxFire which gets a root r of an ROIDD and an action list al as arguments.
The implementation resembles the Apply algorithm discussed in the previous section.
In AuxApply, the construction of the resulting ROIDD is determined by two ROIDDs
and an operation ⋆. In AuxFire, the action list al replaces one of the ROIDDs and ⋆.
Recall here that elements of al are sorted accordingly to the variable ordering defined
for ROIDDs. The action list encodes also how the independence interval partitions
of new nodes must be constructed. As usual, we assume that GM and the resulting
ROIDD GM ′ are saved in the same Shared ROIDD R. We denote with a the first
element of the action list al . Several cases depending on the relationship between r

and al are possible.

1. The end of recursion is reached if the action list al is empty or r is a terminal
node labeled with 0. In this case r can be returned as a result of the function.

2. If var(r) < a.var , then the action list does not determine how the nodes with the
variable var(r) must be constructed, hence |part(r)| children of the root of the
resulting IDD are simply created using recursive calls to AuxFire. The function
MakeNode is used then to insert the IDD into R.

3. If var(r) = a.var , then the resulting IDD is constructed as defined by the action
list. So, a.enInterval determines a set C ′ of children of r that must be used in
recursive calls to AuxFire

C ′ = {childj(r) | partj(r) ∩ a.enInterval 6= ∅}.

a.action determines how the root r′ of the resulting IDD is constructed.

• If a.action = ASSIGN, then r′ can have up to three children. We con-
struct first an outgoing arc labeled by a.asgnInterval which leads to a node
computed as

∨

childj(r)∈C′

AuxFire(childj(r), tail(al)).

Other arcs leading to the terminal node 0 will be constructed by the function
CompletePartition.

• If a.action = SHIFT, then r′ can have up to |part(r)| + 2 children. We
compute |C ′| of them using recursive calls to the function AuxFire. The
function Shift(P=(I1, . . . , In), val) shifts all intervals in the list P on val ∈ Z

and replaces negative bounds of intervals (if such appear) with 0.

59

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

The function CompletePartition (P=(I1, . . . , In),C = (c1, . . . , cn)) guarantees
that intervals in the list P form a partition of N0, modifying if needed the lists
P and C. If an interval including 0 is appended to P , then 0 is appended at
the head of the list C , if an interval including ∞ is appended to P , then 0 is
appended at the end of the list C .

4. A case when var(r) > a.var occurs if M is an infinite set of markings in which
a place Pl(a.var) can contain any number of tokens. The computation is then a
simplified version of the previous case.

As usual, to prevent the algorithm from being exponential AuxFire is implemented as
a memory function.

4.2.3 Reachability Analysis

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs, and let
M ∈ M be some set of markings. A function FwdReach(M) returns a set of markings
reachable from markings in the set M

FwdReach(M) = {m′ ∈ MN | ∃m ∈ M : m
∗

−→ m′ }.

We define also a complementary function BwdReach(M) which returns a set of mark-
ings from which markings in the set M are reachable

BwdReach(M) = {m′ ∈ MN | ∃m ∈ M : m′ ∗
−→ m }.

Given some set M ∈ M, we can apply one of the two strategies to find out if M is
reachable from the initial marking m0 .

• We can use the forward strategy: compute first the reachability set RN (m0) =
FwdReach(m0) and then check whether it intersects M .

• Alternatively, we can compute the set B = BwdReach(M) and check if m0

belongs to B.

It can happen that one of the approaches is more efficient and terminates earlier.
Notice that a possible drawback of the backward strategy is that it can explore too
many markings not present in the RN (m0), we shall discuss this problem later in
section 4.3.3.

Consider Algorithm 8 which implements the function FwdReach using a symbolic
breath-first search. The algorithm maintains a set of already reached markings Reached

and a set of unexplored markings New , both initially equal to M . Iteratively, the suc-
cessors of markings in New are added to the set Reached . A set Old contains markings

60

4.2 Symbolic Manipulation of Petri Nets using ROIDDs

Algorithm 7 (Firing as a special ROIDD operation)

1 func iFire (GM , t)
2 func AuxFire (r , al)
3 if al = ∅ ∨ r = 0 then return r fi
4 a := head(al)
5 if ResultTable[r , a] 6= ∅ then return ResultTable[r , a] fi
6 if var(r) < a.var then
7 NewPart := part(r)
8 forall Ij ∈ NewPart do
9 NewChildj := AuxFire(childj(r), al)

10 od
11 res := MakeNode(var(r), NewPart , NewChild)
12 elseif var(r) = a.var then
13 if a.action = ASSIGN then
14 NewPart1 := a.asgnInterval
15 NewChild1 := 0
16 forall Ij ∈ part(r) do
17 if Ij ∩ a.enInterval 6= ∅ then
18 NewChild1 := AuxApply(∨, NewChild1 , AuxFire(childj(r), tail(al))
19 fi
20 od
21 else
22 NewPart := Intersect(part(r), a.enInterval)
23 forall Ij ∈ NewPart , Ik ∈ part(r) do
24 if Ij ∩ Ik 6= ∅ then
25 NewChildj := AuxFire(childk(r), tail(al))
26 fi
27 od
28 Shift(NewPart , a.shift)
29 fi
30 CompletePartition(NewPart , NewChild)
31 res := MakeNode(var(r), NewPart , NewChild)
32 else /* var(r) > a.var */
33 if a.action = ASSIGN then
34 NewPart1 := a.asgnInterval

35 else
36 NewPart1 := a.enInterval
37 Shift(NewPart , a.shift)
38 fi
39 NewChild1 := AuxFire(r , tail(al))
40 CompletePartition(NewPart , NewChild)
41 res := MakeNode(a.var , NewPart , NewChild)
42 fi
43 fi
44 ResultTable[r , a] := res

45 return res
46 end
47 begin

48 GM ′ .root := AuxFire(GM .root , t .al)
49 return GM ′

50 end

61

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Algorithm 8 (Forward reachability using BFS)

1 func FwdReach (M)
2 Reached := M

3 New := M

4 repeat

5 Old := Reached

6 Reached := Reached ∪ Img(New)
7 New := Reached \ Old

8 until New = ∅
9 return Reached

10 end

1 func Img (M)
2 Res := ∅
3 forall t ∈ T do

4 Res := Res ∪ Fire (M , t)
5 od

6 return Res

7 end

New3

New1
New2

M
New0

RN (m0)

FwdReach(M)

M

New0

New1

RN (m0)

New2

New3

BwdReach(M)

Figure 4.1: Forward and backward reachability analysis

reached in the previous iterations. The set New is computed as a difference between
the sets Reached and Old . The process ends when the set New is found to be empty. It
is easy to see that if d is a diameter3 of the reachability graph RGN , then the algorithm
terminates after making maximally d + 1 iterations.

Note that if we are only interested whether some markings in a set M ′ ∈ M are
reachable from markings in M , we can modify the algorithm to work “on-the-fly”.
Every time after the computation of a set Img(New), we can check if this set intersects
the set M ′ and finish the process with a positive answer if so. The functions PreImg
and BwdReach can be implemented analogously to the functions Img and FwdReach.

Table 4.3 provides statistics4 gathered during the computation of state spaces of a
number of Petri net models5 using Algorithm 8. The first columns provide an informa-
tion about the model: a number of places, transitions, and a maximal number of tokens
a place can contain (bnd). Next comes the size of the state space and the number of
ROIDD nodes (NG) and arcs (AG) needed to encode it. Finally, the last columns show
the number of iterations (it) made in Algorithm 8, the total number of ROIDD nodes

3See the definitions in the Appendix.
4The benchmark was done on a PC with Intel Pentium 4, 2.8GHz, 512MB RAM running Linux
5Short descriptions of the models can be found in the Appendix.

62

4.3 Improving the Reachability Analysis

Model Net RN RN generation
|P | |T | bnd |RN | NG AG it Σ τ

FMS20 22 20 20 6.0 · 1012 1.7 · 103 8.4 · 103 281 2.7 · 105 8
FMS40 22 20 40 2.6 · 1016 5.9 · 103 3.6 · 104 561 1.5 · 106 435
HAL 29 46 44 3.0 · 106 3.7 · 102 1.3 · 103 112 5.8 · 104 0.8
RW500 14 13 500 3.0 · 103 9.1 · 103 2.4 · 104 1506 4.8 · 104 1.2
RW≤500 14 13 500 3.8 · 108 9.1 · 103 2.4 · 104 1506 5.2 · 104 1.3
MUL66 15 14 36 2.8 · 106 2.1 · 103 1.1 · 104 206 3.8 · 105 3
MUL810 15 14 80 1.0 · 108 5.6 · 103 4.2 · 104 434 1.9 · 106 31
ACK33 23 24 61 1.3 · 109 8.4 · 103 8.2 · 104 826 5.6 · 106 150
SLOT9 90 90 1 3.8 · 1011 1.6 · 103 4.1 · 103 160 1.3 · 106 28
PUSH9 168 157 1 1.7 · 108 6.4 · 102 1.6 · 103 952 1.7 · 107 155
CS1 231 202 1 2.5 · 104 4.1 · 103 9.0 · 103 293 3.2 · 105 11
CS5 231 202 1 1.7 · 106 2.0 · 104 4.5 · 104 315 5.6 · 106 225
OS 198 176 1 2.8 · 106 4.9 · 103 1.1 · 104 656 3.7 · 106 120

Table 4.3: State space generation using symbolic BFS

(Σ), and the time in seconds (τ) needed to compute RN (m0). Notice that though
ROIDDs provide quite compact representation for the state spaces, the total number
of used nodes and the computation time can be relatively high.

4.3 Improving the Reachability Analysis

4.3.1 Transition Chaining

It was noticed that the breath-first order strategy used in Algorithm 8 is not well
suited for asynchronous systems. Often, sizes of decision diagrams encoding the working
sets of the algorithm are much larger during the state space exploration than upon
termination. As efficiency of the operations on decision diagrams depends on their
sizes, the performance decreases as big diagrams start to be generated. A number
of techniques have been proposed to combat the problem [BCL+94, PRCB94, GV01,
CLS01, SP02].

Straying from the breath-first strategy in the exploration of state spaces can (heuristi-
cally) improve the reachability analysis. In the technique denoted as transition chaining
[PRCB94], states reached after firing a transition are immediately added to the set of
states to be explored in the next step. The underlying idea of the heuristic is that
such a technique can help to discover new states faster, and the faster states can be
discovered, the faster the algorithm terminates. Actually, the overall performance can
be also improved due to the fact that intermediate sets of states are represented by
smaller decision diagrams. The line 6 in Algorithm 8 is replaced with

63

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

(b) (c)(a)

t1

p3

p1

t2

p4

p2

(0, 0, 0, 0, 1)

(0, 1, 1, 0, 0)

(0, 0, 1, 1, 0)

(1, 0, 0, 1, 0)

(1, 1, 0, 0, 0)

(0, 0, 0, 0, 1)

(0, 1, 1, 0, 0)

(0, 0, 1, 1, 0)

(1, 0, 0, 1, 0)

(1, 1, 0, 0, 0)

t3

p5

i2

i3

t1 t2

t1t2

t3

t1 t2

t1t2

t3

i1

i1

fire t1

fire t2

fire t3

Figure 4.2: An illustration of the transition chaining technique

· forall t ∈ T do

· New := New ∪ Fire (New , t)
· od

· Reached := Reached ∪ New

This slight modification of the algorithm can produce the “domino effect” accelerating
the state space exploration. When the Algorithm 8 is used to compute a reachability
set RN (m0), exactly r(RGN)6 iterations must be made to generate all states. With
transition chaining, the number of iterations at most equals to r(RGN), but is usually
smaller and can, in principle, be reduced by a factor of up to |T |.

Example 14

Consider a P/T net in Fig. 4.2(a). Algorithm 8 requires three iterations to generate
all reachable states. With transition chaining, all states are generated during a single
iteration, compare the figures 4.2(b) and 4.2(c).

Obviously, when transition chaining is used, the order in which transitions are fired
can have an influence on the speed of the new states generation and, consequently, on
the number of iterations needed to end up the process. A simple heuristic algorithm to
define the transition ordering for 1-bounded Petri nets was suggested in [Noa99]. First,
all transitions enabled in the initial marking are added to the ordering. In the next
step, tokens are put in post-places of these transitions (without the usual deletion of
tokens from pre-places). All newly enabled transitions are added to the ordering and

6r(RGN) denotes a radius of the reachability graph, see the definitions in the Appendix.

64

4.3 Improving the Reachability Analysis

the procedure is repeated. The process terminates when no more new transitions can
be added to the ordering. During the state space exploration, transitions chaining is
used and transitions are always applied in this computed order. Several techniques to
schedule the application of transitions were studied in [SP02]. In the token traverse
(TOK) technique, a static analysis employing causality between transition is used to
build the transition application scheme. This scheme does not imply a static application
order of transition, a feedback from the traversal is used to adapt the order dynamically.

For the further reduction of the number of intermediate diagrams a function

FireUnion(M1 ,M2 , t) = Fire(M1 , t) ∪M2 .

was implemented in [Noa99] as a dedicated ZBDD operation and several variations
of Algorithm 8 were considered. A variation, which resulted in the best performance
(the lowest number of ZBDDs nodes used in the computations and, consequently,
the fastest times), is presented in Algorithm 9. We have adopted this technique and
implemented the functions FireUnion and RevFireUnion as special ROIDD operations.
The functions employ a supplementary function AuxFireUnion, which is implemented
as a combination of AuxApply from Algorithm 3 and AuxFire from Algorithm 7. We
forbear from the discussion on quite technical details of the implementation.

Table 4.4 provides statistics gathered during the generation of state spaces with and
without transition chaining.

• BFS denotes the original Algorithm 8.

• MBFS1 denotes Algorithm 9 with a random order of transitions.

• MBFS2 denotes Algorithm 9 with the transitions ordering computed after [Noa99].

Algorithm 9 (Forward reachability with transition chaining and FireUnion)

1 func FwdReach (M)
2 Reached := M

3 repeat

4 Old := Reached

5 forall t ∈ T do

6 Reached := FireUnion(Reached , Reached , t)
7 od

8 until Reached = Old

9 return Reached

10 end

65

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Model BFS MBFS1 MBFS2 TOK
it Σ τ it Σ τ it Σ τ it Σ τ

FMS20 281 2.7 · 105 8 25 6.4 · 104 0.3 22 7.3 · 104 0.3 53 6.3 · 104 0.2
FMS40 561 1.5 · 106 435 45 4.2 · 105 1.7 42 4.4 · 105 1.8 105 3.2 · 105 1.3
HAL 112 5.8 · 104 0.8 95 3.2 · 104 0.6 93 3.4 · 104 0.7 118 5.2 · 104 15
RW500 1506 4.8 · 104 1.2 502 3.0 · 104 2.3 501 3.0 · 104 2.4 293 2.7 · 104 1.3
RW≤500 1506 5.2 · 104 1.3 502 3.0 · 104 2.5 501 3.0 · 104 2.5 293 3.1 · 104 1.3
MUL66 206 3.8 · 105 3 157 1.8 · 105 2.9 157 1.8 · 105 2.6 145 6.1 · 105 16
MUL810 434 1.9 · 106 31 337 8.9 · 105 32 320 8.9 · 105 31 304 3.5 · 106 600
ACK33 826 5.6 · 106 150 598 5.3 · 106 220 430 4.0 · 106 160 >3600
SLOT9 160 1.3 · 106 28 19 2.1 · 105 1.7 12 6.1 · 105 2.5 37 1.9 · 105 1.5
PUSH9 952 1.7 · 107 155 175 1.1 · 105 3.1 51 1.2 · 105 1.1 118 1.8 · 105 1.1
CS1 293 3.2 · 105 11 154 5.2 · 104 3.4 4 5.2 · 104 0.7 73 2.0 · 105 2.3
CS5 315 5.6 · 106 225 96 4.6 · 105 25 10 4.8 · 105 5.8 109 6.5 · 105 11
OS 656 3.7 · 106 120 221 4.3 · 105 18 11 2.9 · 105 2.8 209 3.7 · 105 6.6

Table 4.4: State space generation statistics

• TOK denotes the token traverse algorithm of [SP02]. For this algorithm the
variable it denotes the number of calls to FireUnion divided by the number of
transitions in the net.

Application of the transition chaining technique resulted in the decreased number of
iterations, reduced the number of used nodes and the computation times. An appropri-
ate transitions ordering can significantly improve the performance of Algorithm 9 on
1-bounded models with many transitions. Notice that application of the static order led
to more stable results and outperformed the dynamic token traverse technique on many
models. A variation of this technique denoted as weighted token traverse [SP02] can
potentially accelerate the state space exploration, it involves, however, computation of
the number of new states explored by firing a transition. In our case this operation
requires large integer arithmetic and is very expensive.

We have also studied the influence of the transitions ordering on the performance of
the backward search. A new simple heuristic (to our knowledge, not yet described in
the literature) for the case when the static application order of transitions is used
consists in changing of the computed ordering on the reversed one. Improvements in
the efficiency achieved with this heuristic are usually comparable to the ones achieved
by switching from MBFS1 to MBFS2.

In k-bounded Petri nets, it is often a case that pre-places of a transition t contain
enough tokens for t to fire several times. We have noticed that firing t until fixpoint is
reached in Algorithm 9 can help to discover new states faster and can produce sets of
states which are encoded by smaller ROIDDs. We replace the line 6 with

66

4.3 Improving the Reachability Analysis

· repeat

· Old2 := Reached

· Reached := FireUnion(Reached , Reached , t)
· until Reached = Old2

The only somewhat similar heuristic that we have met in the literature was suggested
in [BCL+94] for the analysis of asynchronous digital circuits with ROBDDs and par-
titioned transition relations. Local fixpoints of subcircuits were repeatedly computed
until a global fixpoint was reached.

To reduce a number of intermediate ROIDDs we implement as a special ROIDD oper-
ation a function FireFixp(M , t), which returns a set of states that represents a fixpoint
of the set M with respect to the firing of the transition t. Recall that firing of t is a
local event, affecting only its neighboring places and leaving all others places of the
net without changes. Loosely speaking, we can exploit this fact and the structure of
ROIDDs to compute fixpoints in the “middle” of an ROIDD. Compare Algorithms 10,
7 and 3. For the sake of simplicity, we assume that the function FireFixp will be used
only with finite sets M . As usual, analogously to FireFixp, we implement also the
complementary function RevFireFixp(M , t).

Table 4.4 provides statistics on the effects of the application of the heuristic.

• MBFS2 denotes Algorithm 9 with the computed transitions ordering.

• MBFS3 uses chaining and the same order of transitions application as MBFS2,
but, as discussed above, every transition is fired until fixpoint is reached. For this

Model MBFS2 MBFS3 MBFS4

it Σ τ it Σ τ it Σ τ

FMS20 22 7.3 · 104 0.3 37 2.9 · 104 0.2 21 1.9 · 104 0.1
FMS40 42 4.4 · 105 1.8 73 1.4 · 105 0.9 41 8.2 · 104 0.7
HAL 93 3.4 · 104 0.7 12 8.2 · 103 0.1 7 8.2 · 103 0.1
RW500 501 3.0 · 104 2.4 732 3.0 · 104 2.4 501 3.0 · 104 2.4
RW≤500 501 3.0 · 104 2.5 732 3.0 · 104 2.4 501 3.0 · 104 2.4
MUL66 157 1.8 · 105 2.6 269 1.6 · 105 2.0 63 9.7 · 104 1.0
MUL810 320 8.9 · 105 31 886 1.0 · 106 35 115 5.2 · 105 10
ACK33 430 4.0 · 106 160 441 1.3 · 106 15 66 8.7 · 105 11
SLOT9 12 6.1 · 105 2.5 19 6.1 · 105 3.1 12 6.1 · 105 2.5
PUSH9 51 1.2 · 105 1.1 57 1.2 · 105 1.2 51 1.2 · 105 1.1
CS1 4 5.2 · 104 0.7 5 5.2 · 104 0.7 4 5.2 · 104 0.7
CS5 10 4.8 · 105 5.8 14 4.8 · 105 6.3 10 4.8 · 105 5.8
OS 11 2.9 · 105 2.8 17 2.9 · 105 3.1 11 2.9 · 105 3.0

Table 4.5: State space generation statistics

67

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Algorithm 10 (FireFixp as a special ROIDD operation)

1 func iFireFixp (GM , t)
2 func AuxFireFixp (r , al)
3 if al = ∅ ∨ r = 0 then return r fi

4 a := head(al)
5 if ResultTable[r , a] 6= ∅ then return ResultTable[r , a] fi

6 if var(r) < a.var then

7 NewPart := part(r)
8 forall Ij ∈ NewPart do

9 NewChildj := AuxFireFixp(childj(r), al)
10 od

11 res := MakeNode(var(r), NewPart , NewChild)
12 elseif var(r) = a.var then

13 newRoot := r

14 repeat

15 oldRoot := newRoot

16 newRoot := AuxFireUnion(newRoot , newRoot , al)
17 until oldRoot = newRoot

18 res := newRoot

19 else /* var(r) > a.var */
20 error “refuse to handle infinite sets”
21 fi

22 ResultTable[r , a] := res

23 return res

24 end

25 begin

26 GM ′ .root := AuxFireFixp(GM .root , t .al)
27 return GM ′

28 end

68

4.3 Improving the Reachability Analysis

algorithm the variable it denotes the number of calls to FireUnion divided by
the number of transitions in the net.

• MBFS4 is identical to MBFS3, but employs the function FireFixp, it denotes
here the number of calls to FireFixp divided by the number of transitions.

Of course, a modification that only fires every transition until fixpoint is reached can
not improve performance on 1-bounded models. However, it can indeed decrease the
number and sizes of intermediate ROIDDs when applied to k-bounded nets, especially
when the function FireFixp is employed. As we shall see later, this effect becomes
even more noticeable when we scale-up the models. Of course, this modification can
be combined not only with MBFS but with any traversal strategy. In the next section
we propose a strategy that exploits both the structure of Petri nets and the structure
of ROIDDs.

4.3.2 Saturation Algorithm

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs. We assume
that a shared ROIDD is used to store sets of marking of N and that the ROIDD variable
ordering π is defined as x1 <π x2 <π . . . <π xn. We define the following functions for
transitions of the net.

1. Bot(t) returns an index of the lowest level in the ROIDD on which the transition t

depends:
Bot(t) = max{j | Pl(xj) ∈ •t ∪ t•}.

2. Top(t) returns an index of the highest level on which t depends:

Top(t) = min{j | Pl(xj) ∈ •t ∪ t•}.

We define now a linear order σ for the transitions of the net as follows:

1. tj <σ tk if Bot(tj) > Bot(tk),

2. if Bot(tj) = Bot(tk) then tj <σ tk if Top(tj) > Top(tk),

3. if Bot(tj) = Bot(tk) and Top(tj) = Top(tk) then tj <σ tk if j < k.

For convenience, we assume that transitions are enumerated accordingly to this newly
defined order: tσ1 <σ tσ2 <σ . . . <σ tσ|T |. A function FirstDep(tσk) returns an index
of the first with respect to the order σ transition that has common pre- or post-places
with tσk

FirstDep(tσk) = min{j | (•tσk ∪ tσk•) ∩ (•tσj ∪ tσj•) 6= ∅}.

Notice that we do not exclude the case FirstDep(tσk) = k, which occurs when there
exists no other transitions which precede t in the order σ and share places with it.

69

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

1 0

x3 x3 x3x3

x2

x1

x2

x4x4

t3 = tσ2

t1 = tσ3

t2 = tσ1

Figure 4.3: An illustration for the Example 15

Example 15
Suppose that we have a P/T net with four places and three transitions and that an
ROIDD in Fig. 4.3 encodes some set of its markings (for the sake of simplicity, we omit
labels on arcs). Let us assume that

•t1 ∪ t1• = {Pl(x1)}, •t2 ∪ t2• = {Pl(x3),Pl(x4)}, •t3 ∪ t3• = {Pl(x2),Pl(x3)}.

In this case

1. Bot(t1) = 1, Top(t1) = 1, Bot(t2) = 4, Top(t2) = 3, Bot(t3) = 3, Top(t3) = 2.

2. The order σ is defined as t2 <σ t3 <σ t1 and transitions are enumerated accord-
ingly: tσ1 = t2, tσ2 = t3, tσ3 = t1.

3. FirstDep(tσ1) = 1, FirstDep(tσ2) = 1, FirstDep(tσ3) = 3.

We say that a transition t is saturated in the set of markings M if M represents a
fixpoint with respect to firing of t and any transition tσj such that tσj <σ t.

In Algorithm 11, which computes a set of all markings reachable from markings in a set
M , we saturate transitions accordingly to the order σ. To saturate a transition t, we
compute a fixpoint of the working set Reached with respect to firing of this transition. If
this adds new markings to the working set, then we must saturate again all transitions
tσk <σ t that can fire in these markings and, potentially, add further markings to the
working set. Due to the locality of Petri nets, we do not have to consider transitions
that have no common places with t, thus, we can proceed to the transition tσ FirstDep(t).
In the case when there are no transitions that precede t in the order σ and share places

70

4.3 Improving the Reachability Analysis

with it or when the set Reached already represented a fixpoint with respect to firing
of t, we proceed to saturate the next transition in the order σ.

The algorithm terminates when the transition tσ|T | is found to be saturated in the set
Reached . It is easy to see that the termination is guaranteed for any bounded net N

and any set M ⊆ RN (m0), as the working set Reached is a monotonically increasing
subset of RN (m0). Obviously, the order in which transitions are fired and states are
added to the working set has no influence on the resulting set, unless some transition
that can add states to the set Reached is ignored forever during the iterations. A trivial
proof that this can not happen is done by contradiction. Of course, only states that are
reachable from states in M can be added to the working set. Thus, for a set of states
M the algorithm indeed computes the set

M ′ = {m′ ∈ MN | ∃m ∈ M : m
∗

−→ m′ }.

Intuitively, we want to achieve an effect that an ROIDD encoding the working set
Reached grows in breadth from bottom to the top during the state space exploration.
According to the order σ, transitions that affect lower levels of the ROIDD are saturated
before transitions affecting higher levels. We compute fixpoints of the working set with
respect to firing of every transition, hoping that it helps to discover new states faster
and produces more regular sets of states which can be encoded by smaller ROIDDs.
Obviously, the efficiency of the saturation strategy depends on the structure of the net
and on a good ROIDD variable ordering. Fortunately, the ordering needed to get a
compact representation of sets of markings, is in most cases also a good ordering for
the saturation algorithm.

Algorithm 11 (Forward reachability using saturation)

1 func FwdReach (M)
2 Reached := M

3 i := 1

4 repeat

5 Old := Reached

6 repeat

7 Old2 := Reached

8 Reached := FireUnion(Reached , Reached , tσi)
9 until Reached = Old2

10 if Reached = Old then

11 i := i + 1
12 else

13 j := FirstDep(tσi)
14 if j = i then i := i + 1 else i := j fi

15 fi

16 until i = |T |+ 1
17 return Reached

18 end

71

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Model Net SAT1 SAT2 SAT3

|P | |T | bnd it Σ τ it Σ τ it Σ τ

FMS150 22 20 150 181 1.4 · 105 5 61 1.3 · 105 5 383 2.7 · 105 7.2
FMS250 22 20 250 301 3.7 · 105 28 100 3.4 · 105 25 638 8.0 · 105 51
HAL 29 46 44 16 6.8 · 103 0.1 10 6.8 · 103 0.1 1437 3.9 · 104 1.8
RW500 14 13 500 390 2.1 · 104 0.9 274 2.1 · 104 0.7 274 2.1 · 104 0.7
RW≤500 14 13 500 390 2.1 · 104 0.9 274 2.1 · 104 0.7 274 2.1 · 104 0.7
MUL2010 15 14 200 970 1.4 · 105 7.4 547 7.7 · 104 1.9 9854 2.5 · 105 140
MUL3010 15 14 300 1453 2.1 · 105 16 819 1.2 · 105 4.4 15014 3.9 · 105 345
ACK33 23 24 61 200 1.7 · 105 2.6 150 1.6 · 105 2.3 269 1.9 · 105 2.6
ACK34 23 24 125 429 5.3 · 105 14 322 4.7 · 105 12.5 580 5.9 · 105 14.5
JAN14 6 6 4096 1448 5.1 · 104 42 20 4.9 · 104 42 2427 4.3 · 104 19
POTATO 18 14 117 192 1.6 · 106 63 98 1.3 · 106 55 412 1.3 · 106 59
KAN25 16 16 25 32 2.0 · 105 0.7 5 4.4 · 104 0.3 107 1.3 · 104 0.3
KAN50 16 16 50 74 6.2 · 106 45 5 5.8 · 105 15 213 4.6 · 104 2.5
SLOT9 90 90 1 36 6.5 · 104 0.5 31 6.5 · 104 0.5 31 6.5 · 104 0.5
PUSH9 168 157 1 41 5.6 · 104 0.3 35 5.6 · 104 0.3 35 5.6 · 104 0.3
CS5 231 202 1 44 1.8 · 105 5.6 41 1.8 · 105 5.3 41 1.8 · 105 5.3
OS 198 176 1 104 1.5 · 105 3.5 98 1.5 · 105 3.0 98 1.5 · 105 3.0

Model RN BFS MBFS2 MBFS4

|RN | |NG| it Σ τ it Σ τ it Σ τ

FMS150 4.8 · 1023 8.3 · 104 size 152 4.1 · 107 760 151 5.1 · 106 270
FMS250 3.4 · 1026 2.3 · 105 size time time
HAL 3.0 · 106 3.7 · 102 112 5.8 · 104 0.8 93 3.4 · 104 0.7 7 8.2 · 103 0.1
RW500 3.0 · 103 9.1 · 103 1506 4.8 · 104 1.2 501 3.0 · 104 2.4 501 3.0 · 104 2.4
RW≤500 3.8 · 108 9.1 · 103 1506 5.2 · 104 1.3 501 3.0 · 104 2.5 501 3.0 · 104 2.4
MUL2010 7.4 · 109 1.3 · 104 1082 5.0 · 106 570 800 4.1 · 106 710 242 1.6 · 106 110
MUL3010 5.2 · 1010 1.9 · 104 time time 362 3.6 · 106 430
ACK33 1.3 · 109 8.4 · 103 826 5.6 · 106 150 430 4.0 · 106 160 66 8.7 · 105 11
ACK34 1.4 · 1011 1.8 · 104 time time 488 9.8 · 106 300
JAN14 1.8 · 107 5.2 · 103 time 6825 4.3 · 105 630 12 5.3 · 104 52
POTATO 3.3 · 1010 8.5 · 105 size 131 4.2 · 106 3000 19 1.6 · 106 210
KAN25 7.6 · 1012 2.0 · 103 351 1.4 · 106 39 39 1.3 · 106 7 5 2.5 · 105 2.2
KAN50 1.0 · 1016 7.0 · 103 time 73 2.8 · 107 310 size
SLOT9 3.8 · 1011 1.6 · 103 160 1.3 · 106 28 12 6.1 · 105 2.5 12 6.1 · 105 2.5
PUSH9 1.7 · 108 6.4 · 102 952 1.7 · 107 155 51 1.2 · 105 1.1 51 1.2 · 105 1.1
CS5 1.7 · 106 2.0 · 104 315 5.6 · 106 225 10 4.8 · 105 5.8 10 4.8 · 105 5.8
OS 2.8 · 106 4.9 · 103 656 3.7 · 106 120 11 2.9 · 105 3.0 11 2.9 · 105 3.0

Table 4.6: State space generation statistics

72

4.3 Improving the Reachability Analysis

Table 4.6 provides statistics on the effectiveness of the new saturation strategy.

• SAT1 denotes the saturation Algorithm 11.

• SAT2 denotes a modification of the saturation algorithm in which fixpoints with
respect to firing of transitions are computed using the function FireFixp.

• SAT3 denotes a modification of the saturation algorithm in which transitions fire
only once and not until a fixpoint is reached. The lines 6–9 of Algorithm 11 are
replaced with the line 8.

• BFS denotes the traditional BFS Algorithm 8.

• MBFS2 denotes the transition chaining Algorithm 9 with the transitions ordering
computed after [Noa99].

• MBFS4 employs transition chaining and the same computed transition ordering
as MBFS2, but the function FireFixp is used to compute fixpoints with respect
to firing of transitions.

• size means that peak sizes of ROIDDs encoding working sets of an algorithm
exceeded the limit of 2 · 106 nodes or the memory limit of 300 MB.

• time means the computation exceeded the time limit of one hour.

The saturation technique consistently outperformed all others on all of the consid-
ered models. It indeed manages to keep sizes of intermediate diagrams smaller than
other approaches, this results also in the reduced computation times. Consider plots
in Fig. 4.4 which illustrate how sizes of ROIDDs encoding the working set Reached

changed during the iterations of Algorithms 8, 9, and 11 when generating reachability
sets of several nets. It is not surprisingly that ROIDDs encoding the set Reached are
significantly larger than the ROIDD encoding RN (m0) when the traditional breath-
first search Algorithm 8 is employed. One could expect that ROIDDs encoding the
smaller set New can be also small, in fact, this is not the case. In some cases ROIDDs
encoding New were even larger than ROIDDs encoding Reached . For all the models,
the plots for diagrams encoding New had the same shape as plots for the set Reached .
Transition chaining allows to reduce sizes of ROIDDs encoding the working set. With
the saturation strategy, intermediate diagrams are kept even smaller, there are more
cases when the peak size of ROIDDs encoding the set Reached is close to the size of the
diagram encoding the reachability set. The improvements can be drastic, especially on
k-bounded models. Firing every transition until fixpoint is reached allows usually to
reduce the number of intermediate ROIDDs and their sizes on such models, especially
when the function FireFixp is used. Only on one model (KAN) the variation of the

73

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

20 40 60 80

7 · 103

6 · 103

5 · 103

4 · 103

3 · 103

2 · 103

1 · 103

FMS10

BFS

20 40 60 80

7 · 102

6 · 102

4 · 102

3 · 102

2 · 102

1 · 102

5 · 102

MBFS2

20 40 60 80

7 · 102

6 · 102

5 · 102

4 · 102

3 · 102

2 · 102

1 · 102

SAT1

20 40 60 80

2.5 · 103

2 · 103

1.5 · 103

1 · 103

5 · 102

3 · 103

HAL

20 40 60 80

1 · 103

8 · 102

6 · 102

4 · 102

2 · 102

20 40 60 80

4 · 102

3 · 102

2 · 102

1 · 102

20 40 60 80

2 · 104

1.5 · 104

1 · 104

5 · 103

ACK32

20 40 60 80

2 · 104

1.5 · 104

1 · 104

5 · 103

20 40 60 80

4 · 103

3 · 103

2 · 103

1 · 103

20 40 8060

5 · 104

4 · 104

3 · 104

2 · 104

1 · 104

6 · 104

CS5

20 40 60 80

2.5 · 104

1.5 · 104

1 · 104

5 · 103

2 · 104

20 40 60 80

2 · 104

2.5 · 104

1.5 · 104

1 · 104

5 · 103

20 40 60 80

5 · 103

4 · 103

3 · 103

2 · 103

1 · 103

PUSH5

20 40 60 80

8 · 102

7 · 102

6 · 102

5 · 102

4 · 102

3 · 102

2 · 102

20 40 60 80

6 · 102

5 · 102

3 · 102

2 · 102

4 · 102

Figure 4.4: A number of ROIDD nodes in the diagram encoding the working set
Reached during the state space generation

74

4.3 Improving the Reachability Analysis

Algorithm 12 (Computation of all direct successors states)

1 func Img (M)
2 Res := ∅
3 for i := 1 to T do

4 Res := Res ∪ Fire (M , tσi)
5 od

6 return Res

7 end

saturation algorithm in which transitions are fired only once resulted in significantly
smaller sizes of intermediate diagrams.

We have noticed that adjusting the transition order σ can sometimes improve efficiency
of the saturation algorithm. For example, postponing firing of transitions that only
consume tokens without producing them can lead to more regular sets of markings
encoded by smaller ROIDDs. Experiments with different orders σ have shown that an
order which exploits both the structure of decision diagrams and the structure of the
net leads to the best results.

As usually, analogously to FwdReach we implement the complementary saturation-
based function BwdReach. A heuristic that transitions affecting lower levels of ROIDDs
must be fired before transitions affecting higher levels can also improve efficiency of
the algorithm implementing the function Img. In Algorithm 12 transitions are fired
accordingly to the order σ. We modify the implementation of the function PreImg in
the same way.

Related techniques that exploit the locality of Petri nets and the structure of decision
diagrams have been developed elaborately in [CLS01, CMS03, CS03]. There are some
similarities between their and our approaches, however, there are even more differences.
In their approach, a net is partitioned into K subnets. Local state spaces are enumer-
ated using explicit techniques. Every local marking is assigned to a natural number,
a global marking corresponds to a K-tuple of natural numbers. Multi-valued decision
diagrams (MDDs) are used to encode sets of global markings, Kronecker operators
encode transitions. An MDD node at a level k is called saturated if it represents a
fixed point with respect to the firing of any transition that does not affect any level
above k. During the state space exploration, MDD nodes are saturated level per level,
starting from the lowest one. To saturate a node at level k, all transitions affecting
this and lower levels are fired. If this creates nodes at lower levels, they are saturated
immediately upon creation. The approach is very promising for large-sized nets that
exhibit a highly asynchronous behavior and can be easily partitioned into a number of
small-sized loosely coupled subnets having small local state spaces. Our approach aims

75

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

primary at the analysis of relatively small-sized k-bounded nets which do not allow
such a partitioning. Algorithm 11 can be easily adapted to implement a limited reach-
ability analysis, which, as we shall see later, is very often required. Implementation of
the limited reachability analysis in [CS03] is more complicated and combines both the
saturation and the traditional breath-first search.

Of course, we have not considered here all the techniques that were suggested to reduce
sizes of intermediate decision diagrams. We have concentrated on those that can be
adopted to the analysis of Petri nets and are not ROBDDs-specific. For a survey on
techniques for the reduction of intermediate decision diagrams we refer the interested
reader to [GV01].

4.3.3 Limited Reachability Analysis

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs. It is easy
to see that for any set M ⊆ RN (m0) a result of the function FwdReach(M) is also
a subset of RN (m0). By contrast, a set M ′ = BwdReach(M) can also contain states
not present in RN (m0). Hence, the backward reachability analysis can become very
inefficient, as too many states not reachable from m0 can be explored in the algorithm
computing BwdReach(M).

Example 16

Consider a P/T net in Fig. 4.5. It is easy to see that its reachability set contains only
two markings m0 = (n, 0, 0, 0) and m1 = (0, n, 0, 0). A set M ′ = BwdReach({m1})

contains (n+2)·(n+1)
2 +1 markings. In addition to m0 it includes also all markings where

n tokens are distributed over the places p2, p3, and p4.

n

p1

n

t1

p3

p2

t2

t3

p4

n

Figure 4.5: A P/T net

Let us consider now some P/T net N which contains a transition without post-places.
It is easy to see that a set M ′ = BwdReach(M) is infinite even if N is bounded and
M is a finite set of markings.

To speedup convergence of the algorithms implementing the functions BwdReach(M)
and FwdReach(M), or just to make it possible that the algorithm computing BwdReach

76

4.3 Improving the Reachability Analysis

terminates, we can often use some care set C to limit states the algorithms have to
explore. We define the set M ′ = LimFwdReach(M ,C) inductively:

1. The set M ′ contains all markings m′ ∈ (M ∩ C).

2. If M ′ contains a marking m′, then it also contains all markings

{m′′ ∈ C | ∃t ∈ T : m′ t
−→ m′′}.

Notice that we have defined this set in such a way that it contains only markings reach-
able from the set M ∩C over paths in which every marking belongs to the set C . Later,
we shall need the limited reachability analysis in the implementation of algorithms for
the symbolic decomposition of sets of states into strongly connected components and
in model checking algorithms.

Algorithms 8, 9 and 11 can be easily adapted to implement the limited reachability
analysis. The set Reached must be intersected with the set C at the beginning of the
computation, hereafter, every set returned by the function Fire or FireUnion must
be intersected with C as well. It is easy to see that this strategy can not be applied
to the variation of Algorithm 11 in which we employ the function FireFixp. A naive
intersection of the set returned by FireFixp with C can not guaranty that we do not
stray from paths on which every marking belongs to C . Nevertheless, we can still use
the function FireFixp for the computation of fixpoints with respect to forward-safe
transitions. We refine the classification of transitions suggested in [CS03].

Definition 36
Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs, t ∈ T be
some transition, and let M be some set of markings of N . The transition t can be
classified as follows:

1. t is forward-safe with respect to M if its firing can not lead from a state in M

to a state not in in M : Fire(M) ⊆ M .

2. t is forward-unsafe with respect to M if its firing can lead from a state in M to
a state not in M : Fire(M) \ M 6= ∅.

3. t is forward-dead with respect to M if there is no state in M from which its firing
leads to a set in M : Fire(M) ∩ M = ∅.

The notions of backward-safe, backward-unsafe, and backward-dead transitions are de-
fined analogously.

Consider Algorithm 13 which implements the limited reachability analysis. First, all
transitions of the net are classified, initializing boolean arrays safe and dead . Transi-
tions that are forward-dead with respect to the set C can be skipped. The function

77

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Algorithm 13 (Limited forward reachability with saturation)

1 func LimFwdReach (M , C)
2

3 forall t ∈ T do /* Classifying transitions */
4 dead [t] := (Fire(C) ∩ S = ∅)
5 safe[t] := (Fire(C) \ S = ∅)
6 od

7

8 Reached := M ∩C

9 i := 1

10 repeat

11 Old := Reached

12 if ¬dead [tσi] then

13 if safe [tσi] then

14 Reached := FireFixp(Reached , tσi)
15 else

16 repeat

17 Old2 := Reached

18 Reached := FireUnion(Reached ,Reached , t) ∩ C

19 until Reached = Old2

20 fi

21 fi

22 if Reached = Old then

23 i := i + 1
24 else

25 j := FirstDep(tσi)
26 if j = i then i := i + 1 else i := j fi

27 fi

28 until i = |T |+ 1
29 return Reached

30 end

78

4.3 Improving the Reachability Analysis

FireFixp is used to compute a fixpoint of the set Reached with respect to t when t is a
forward-safe transition. Note here that all states generated by forward-safe transitions
are guaranteed to belong to the set C . For forward-unsafe transitions, fixpoints are
computed using the function FireUnion, in this case sets returned by this function
must be intersected with C . As usually, analogously to LimFwdReach, we implement
also the complementary function LimBwdReach.

If we want to make a backward reachability analysis, usually RN (m0) is the first choice
to be used as a care set, as in many cases RN (m0) can be computed very efficiently
using the saturation algorithm. If computation of RN (m0) must be unconditionally
avoided, we can try to employ the structural methods of the Petri nets theory. Traps
and P-invariants can be used to construct an approximation of RN (m0), which can be
used then as a care set for the backward reachability analysis. Such techniques have
been discussed in [LR95, Cor98, PCP99].

Example 17
Consider a P/T net in Fig. 4.6. From the existence of two minimal semipositive
P-invariants ~y1 = (1, 1, 0, 1) and ~y2 = (2, 0, 1, 4) follows that for all reachable mark-
ings m holds

m(p1) + m(p2) + m(p4) = 3,

2 · m(p1) + m(p3) + 4 · m(p4) = 8.

Moreover, from the two traps H1 = {p1, p2} and H2 = {p1, p4} follows

m(p1) > 0 ∨ m(p2) > 0, m(p1) > 0 ∨ m(p4) > 0.

Using this information we can cheaply construct a coarse approximation A, a set de-
scribed by the characteristic function

χA = (p1 ∈ [0, 4) ∧ p2 ∈ [0, 3) ∧ p3 ∈ [0, 7) ∧ p4 ∈ [0, 3)) ∧

(p1 > 0 ∨ p2 > 0) ∧ (p1 > 0 ∨ p4 > 0).

2

t2t1

p2

p1

p4t3p3

2

2

Figure 4.6: A P/T net covered by semipositive P-Invariants

79

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Of course, P-Invariants can be used to construct much finer approximations. Unfor-
tunately, interval logic functions are badly suited for the representation of arithmetic
constraints, thus, in general, construction of such approximations can not be done
efficiently.

Provided that the set A is finite, we can refine the approximation using a backward
state elimination:

1 repeat

2 Old := A

3 A := Img(A) ∪ {m0}
4 until A = Old

At each step of the recurrence, all those states that are not reachable from any of the
states in A are eliminated from A, except the initial state. Obviously, this procedure
can not guaranty that the refined approximation will be the exact state space, as it
can not remove states not belonging to the set RN (m0) that build non-trivial strongly
connected components. Note also that the procedure can be very expensive when there
are many states in A that must be eliminated, but only few states can be removed
from A at each iteration.

4.3.4 Heuristics for Variable Ordering

Recall that sizes of decision diagrams depend heavily on the used variable ordering.
We use a static variable ordering technique in our ROIDD package, hence, we aspire
to get a good variable ordering using the structural information of a Petri net.

It was noticed that decision diagrams tend to be smaller if related variables are close
together in the ordering. We can presume that pre- and post-places of a transition
depend on each other, our saturation algorithm also suggests that variables assigned
to adjacent places of a transition should lie close to each other in the ordering. This
idea is exploited in a simple greedy algorithm proposed in [Noa99] for the computation
of ZBDD variable ordering. The ordering π is constructed in the bottom-up manner.
Assuming that x1 <π x2 <π . . . <π x|P |, we assign places to the variables starting from
the variable x|P |. To select a place for a variable xi, we compute weights W(p) for all
places p ∈ P \ S, where S denotes a set of places already assigned to some variable

S =
⋃

i<j≤|P |

Pl(xj), W(p) :=

∑

t∈•p

|•t∩S|
|•t| +

∑

t∈p•

|t•∩S|
|t•|

| • p ∪ p • |
.

A place p with the highest weight W(p) is assigned then to the variable xi.

We notice also that moving variables that have a large number of different values
down in the ordering can decrease a breadth of an ROIDD and reduce its size. P-
invariants and traps can help finding places that potentially induce such variables

80

4.4 Symbolic SCC Decomposition

(recall Example 17). Moreover, we can assume that places belonging to one P-invariant
depend on each other. These facts can be used to adjust the weighting function W.

The described heuristics allow us to compute automatically quite good ROIDD variable
orderings for most of the nets we face. For the exceptional cases, we provide in our tool
a possibility to fine tune manually the computed ordering.

4.4 Symbolic SCC Decomposition

Decomposing a graph into its strongly connected components (SCCs) is a fundamental
graph problem and has many applications in the analysis of different properties. For
example, recall that liveness and reversibility of a Petri net can be decided by analyzing
terminal SCCs of its reachability graph. The classic algorithm for the SCC decompo-
sition is the Tarjan’s algorithm [Tar72]. It is an explicit algorithm that has to consider
every node of a graph individually. Hence, it is not feasible for large graphs.

The first symbolic algorithms for SCC decomposition were based on the computation of
the transitive closure (TC) of the transition relation [MMB93]. This operation is often
very expensive and algorithms based on the reachability analysis [XB98, XB99, BGS00]
were shown to be superior over the TC-algorithms.

In this section we shall discuss efficient reachability-analysis-based SCC decomposition
algorithms for Petri nets. First, we have to introduce several notations and discuss
properties of SCCs.

4.4.1 Properties of SCCs

Definition 37 (SCC-closed set)
Let G = [V ,E] be a directed graph. We denote with C(G) a set of all SCCs of G. A set
of nodes U ⊆ V is called SCC-closed if no SCC intersects both U and its complement U

6 ∃ U ′ ∈ C(G) : U ′ ∩ U 6= ∅ ∧ U ′ \ U 6= ∅.

Lemma 5
Let G = [V ,E] be a directed graph, and let U and U ′ be two SCC-closed sets. A set
D = U \ U ′ is SCC-closed.

Proof: If U ∩ U ′ = ∅, then D = U and D is SCC-closed. If U ∩ U ′ 6= ∅, then either
U ⊆ U ′ or U ′ ⊆ U . If U ⊆ U ′, then D = ∅ and D is obviously SCC-closed. Let us
assume that U ′ ⊂ U . Suppose that D is not SCC-closed, then there must exist an SCC
C ∈ C(G) : C ∩ D 6= ∅ ∧ C \ D 6= ∅. Since U is SCC-closed we have C ⊆ U and
C \ D ⊆ U . Since U = D ∪ U ′ then C \ D ⊆ U ′. This implies C ∩ U ′ 6= ∅, which
contradicts to that U ′ is SCC-closed. 2

81

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

Definition 38 (Forward and Backward Sets)
Let G = [V ,E] be a directed graph, and let v ∈ V be some node of G.

• A set F(v) = { v′ ∈ V | v
∗

−→ v′ } is denoted as a forward set of v.

• A set B(v) = { v′ ∈ V | v′
∗

−→ v } is denoted a backward set of v.

Notice that by the definition a node v belongs both to its forward and its backward
sets. The following corollary follows directly from the definition.

Corollary 11
Let G = [V ,E] be a directed graph, and let v ∈ V be some node of G.

• For all nodes v′ ∈ F(v) holds F(v′) ⊆ F(v).

• For all nodes v′ ∈ B(v) holds B(v′) ⊆ B(v).

Lemma 6
Let G = [V ,E] be a directed graph, and let v ∈ V be some node of G. The sets F(v)
and B(v) are SCC-closed.

Proof: Suppose that F(v) is not SCC-closed, then there exists an SCC

C ∈ C(G) : C ∩ F(v) 6= ∅ ∧ C \ F(v) 6= ∅.

Let a node v′ ∈ V belong to the set C ∩ F(v) and v′′ ∈ V belong to the set C \ F(v).

Since C is an SCC we have v′
∗

−→ v′′ and v′′ ∈ F(v′). From v′ ∈ F(v) and Corollary 11
follows v′′ ∈ F(v), which contradicts to the assumption v′′ ∈ C \ F(v). Using similar
considerations we can show that B(v) is also SCC-closed. 2

From Lemmas 5 and 6 follows the following corollary.

Corollary 12
Let G = [V ,E] be a directed graph, and let v, v′ ∈ V be some nodes of G. The sets
F(v) \ F(v′) and B(v) \ B(v′) are SCC-closed.

Theorem 2
Let G = [V ,E] be a directed graph, and let v ∈ V be some node of G. A set C =
F(v) ∩ B(v) is an SCC of G.

Proof: Suppose that C is not an SCC of G. We have to consider two cases then.

1. There exist nodes v′, v′′ ∈ C : v′ 6
∗

−→ v′′ or v′′ 6
∗

−→ v′. If v′ 6
∗

−→ v′′, then v′′ 6∈ F(v′)
which by Corollary 11 implies that v′′ 6∈ F(v). This contradicts to the definition

C = F(v) ∩ B(v). Analogously, if v′′ 6
∗

−→ v′, then v′′ 6∈ B(v′), which implies that
v′′ 6∈ B(v) and contradicts again to the definition of C.

82

4.4 Symbolic SCC Decomposition

2. There exist at least one node u ∈ C : ∀u′ ∈ C u′ ∗
−→ u and u

∗
−→ u′. As v ∈ C

then v
∗

−→ u and u
∗

−→ v, which contradicts to the assumption u ∈ F(v) ∩ B(v).

2

Notice that if F(v) ∩ B(v) = { v }, then the set { v } is a trivial SCC when v 6−→ v,
nontrivial otherwise.

Definition 39 (Recurrent and transient nodes)
Let G = [V ,E] be a directed graph, and let v ∈ V be some node of G.

1. v is denoted as a recurrent node if and only if ∀v′ ∈ V : v
∗

−→ v′ holds also
v′

∗
−→ v.

2. v is denoted as transient if and only if ∃v′ ∈ V : v
∗

−→ v′, but v′ 6
∗

−→ v.

Obviously, every recurrent node belongs to some terminal SCC of G. Transient nodes
are those, not belonging to any terminal SCC of G. The following corollary follows
directly from the definition.

Corollary 13
Let G = [V ,E] be a directed graph, and let v ∈ V be some node of G.

1. v is recurrent if and only if F(v) ⊆ B(v).

2. v is transient if and only if F(v) 6⊆ B(v).

Theorem 3
Let G = [V ,E] be a directed graph, and let v ∈ V be some node of G. If v is transient,
then all nodes in B(v) are transient. If v is recurrent, then F(v) is a terminal SCC
and a set B(v) \ F(v) (if not empty) contains only transient nodes.

Proof: Suppose v is transient. By Corollary 13 there exists v′ ∈ F(v) : v′ 6∈ B(v).
Suppose v′′ ∈ B(v), then v′ ∈ F(v′′) as F(v) ⊆ F(v′′) by Corollary 11. On other hand
B(v′′) ⊆ B(v) since v′′ ∈ B(v). Therefore, we have a node v′ ∈ F(v′′), but v′ 6∈ B(v′′).
This implies F(v′′) 6⊆ B(v′′) and v′′ is transient by Corollary 13.

Suppose now v is recurrent. By Corollary 13 F(v) ⊆ B(v), so F(v) ∩ B(v) = F(v)
and from Theorem 2 follows that F(v) is an SCC. We have to show now that F(v) is
a terminal SCC. By Corollary 11 for all nodes v′ ∈ F(v) holds F(v′) ⊆ F(v), which
implies that F(v) is terminal.

Finally, suppose that v is recurrent, F(v) is a terminal SCC and B(v) \ F(v) 6= ∅. Let

v′ ∈ B(v) \ F(v), then v′ is transient by the definition, as v′
∗

−→ v, but v 6
∗

−→ v′. 2

Now we can proceed to discuss SCC decomposition algorithms. An algorithm enumer-
ating terminal SCCs is worth a special consideration, as different analysis techniques
rely only on terminal SCCs.

83

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

4.4.2 Computation of Terminal SCCs

Consider Algorithm 14, it is an adapted (to our needs and notations) version of the
algorithm introduced in [XB98] for the state classification of finite-state Markov chains.
The algorithm aims at the enumeration of terminal SCCs in a directed graph G =
[V ,E]. The set V ′ contains nodes, not yet considered by the decomposition procedure.
At the beginning of each iteration we take some random node v from V ′ and compute its
backward and forward sets in the graph induced by the nodes of V ′. Due to Corollary 13
and Theorem 3 the set F is a terminal SCC if F ⊆ B. Found terminal SCCs are
reported using the function ReportTerminalSCC. Nodes in the set B do not need to be
considered any more, as they either belong to the found terminal SCC or are transient
due to Theorem 3. Hence, the set B is removed from V ′. The iteration terminates when
there are no more nodes in V ′ to be considered. The termination is guaranteed, as the
set V ′ is initially finite and at least one node is removed from V ′ during each iteration.

The worst case for the algorithm occurs if at every iteration the backward set of the
taken node v contains only this node while its forward set contains all other nodes
in V ′. In this case only v is removed from V ′ and exactly |V | iterations must be made.
Assuming that computation of the sets F(v) and B(v) requires linear number of steps,
we conclude that the complexity of the algorithm is O(|V |2).

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs and let S

be some finite set of its markings. Algorithm 15 aims at the efficient enumeration of
terminal SCCs in S . We notice first that the set containing trivial terminal SCCs of
S can be easily computed as D = S \ PreImg(S). Due to Theorem 3 we can conclude
that for every state s ∈ D, states in the set B(s) \ {s} are all transient. Suppose that
a reachability graph of a net has a form of the graph in Fig. 4.7 and we want to find
all terminal SCCs in RN (m0). We compute first the set

D = S \ PreImg(S) = {m0, . . . ,m12} \ {m0, . . . ,m9,m11,m12} = {m10}.

Markings m0, . . . ,m8 that belong to the set B(m10) are all transient and must not be
considered any more.

To compute the sets B and F we use efficient saturation-based reachability functions
LimFwdReach and LimBwdReach. The set S can be used to limit the backward reach-
ability analysis. As we are interested only in such sets F that F ⊆ B, we can use the
set B to limit the forward reachability analysis. As we do not compute the whole set
F(s), we have to check if the found set is really a terminal SCC, i.e. Img(F) \ F = ∅.

The worst case for the algorithm still occurs if at every iteration the backward set of
the taken state s contains only this state. Though we avoid the quadratic complexity
of the original algorithm due to the usage of the limited analysis, eliminating only one
trivial SCC per iteration is still inefficient. We can prune trivial SCCs more efficiently
using the forward trimming :

84

4.4 Symbolic SCC Decomposition

Algorithm 14 (Enumeration of terminal SCCs in a set of nodes V)

1 proc TerminalSCCs (V)
2 V ′ := V

3 while V ′ 6= ∅ do

4 v := oneof (V ′)
5 F := F(v)
6 B := B(v)
7 if F \ B = ∅ then ReportTerminalSCC(F) fi

8 V ′ := V ′ \ B
9 od

10 end

Algorithm 15 (Enumeration of terminal SCCs in a set of markings S)

1 proc TerminalSCCs (S)
2 D := S \ PreImg(S)
3 ReportTrivialTerminalSCCs(D)
4 B := LimBwdReach(D, S)
5 S := S \ B

6 if S = ∅ then return fi

7 while S 6= ∅ do

8 s := Pick(S)
9 B := LimBwdReach({s}, S)

10 F := LimFwdReach({s}, B)
11 if Img(F) \ F = ∅ then

12 ReportTerminalSCC(F)
13 fi

14 S := S \ B

15 od

16 end

2

3

4

5

6 7 8

1

90

10

i2 i3

i4

1211

i1

Figure 4.7: A graph used in the explanation of Algorithm 15

85

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

· repeat

· Old := S

· S := S ∩ Img(S)
· until S = Old

This procedure deletes all states that can not be reached from a state in some non-trivial
SCC. For example, consider again Fig. 4.7, but suppose now that the marking m10 does
not belong to the graph. In this case the markings m0, . . . ,m8 would not be deleted
as predecessors of a trivial SCC. The forward trimming would delete the markings
m0, . . . ,m6 in four iterations.

Computation of Img is usually denoted in symbolic algorithms as a step. It is easy to
see that the number of steps in Algorithm 15 is limited by O(|S|) due to the usage of
the functions for the limited reachability analysis.

4.4.3 Lockstep Algorithm

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs and let
S be some finite set of its markings. Algorithm 16 can be used to decompose S into
strongly connected components. It is an adapted to our needs version of the algorithm
proposed in [BGS00]. The algorithm is based on the facts that the forward set and the
backward set of a state are SCC-closed (recall Corollary 12) and that intersection of
these sets forms an SCC (due to Theorem 2).

First, a random state s is taken from S. Then the sets F and B are computed simulta-
neously (that’s why the algorithm is named Lockstep). It is possible, that computation
of one of the sets requires less iterations. Let us assume, for example, that after the
termination of the first cycle F = F(s), but B 6= B(s). As an SCC containing s is
C = F(s)∩B(s), we can limit the computation of the set B by F . When bFront = ∅ the
set B includes all states of the SCC containing s. We report the found SCC C = F ∩B
and then recur. For the recursion we split the set S into three subsets: S \ F , F \ C,
and C and recur on the first two. The worst case complexity bound of the algorithm
is O(log(|S|) · |S|) [BGS00].

Obviously, symbolic enumeration of trivial SCCs can not be efficient. When we are
interested in non-trivial SCCs (which is quite often the case), then before picking a
state on the line 4, we prune all states that can not be reached from a state in some
non-trivial SCC of S and can not reach a non-trivial SCC in S. In addition to the
forward trimming defined above, we apply also the backward trimming :

· repeat

· Old := S

· S := S ∩ PreImg(S)
· until S = Old

86

4.4 Symbolic SCC Decomposition

Algorithm 16 (Lockstep)

1 proc Lockstep(S)
2 if S = ∅ then return fi

3

4 s := Pick(S)
5 F := {s}; fFront := {s}
6 B := {s}; bFront := {s}
7

8 while fFront 6= ∅ ∧ bFront 6= ∅ do

9 fFront := (Img(fFront) ∩ S) \ F

10 F := F ∪ fFront

11 bFront := (PreImg(bFront) ∩ S) \ B

12 B := B ∪ bFront

13 od

14

15 if fFront = ∅ then

16 Converged := F

17 while bFront 6= ∅ do

18 bFront := (PreImg(bFront) ∩ F) \ B

19 B := B ∪ bFront

20 od

21 else

22 Converged := B

23 while fFront 6= ∅ do

24 fFront := (Img(fFront) ∩ B) \ F

25 F := F ∪ fFront

26 od

27 fi

28

29 C := F ∩ B

30 reportSCC(C)
31 Lockstep(Converged \ C)
32 Lockstep(S \ Converged)
33 end

87

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

The Lockstep algorithm is based on the breath-first search, but, obviously, its cor-
rectness does not depend on the exploration strategy. To improve the efficiency of the
algorithm, we rewrite it using our saturation techniques.

4.5 Analysis of Basic Petri Nets Properties

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs, and let
RN (m0) be a set of reachable from m0 markings. Recall that with χEt we have denoted
a characteristic function for a set of markings in which a transition t ∈ T can be enabled.
Correspondingly, χDt is a characteristic function for markings in which t can not be
enabled

χEt =
∧

pi∈•t

(pi ≥ t−(pi) ∧ pi < t−I (pi) ∧ pi ≥ t−R(pi)), χDt = ¬χEt .

Let DN be a set of all potentially dead markings of N , its characteristic function
can be defined as χDN

=
∧

t∈T χDt. If we are only interested whether dead markings
are reachable from m0, then, as mentioned in section 4.2.3, we can use the modified
versions of FwdReach or BwdReach to check the reachability on-the-fly. Assuming that
the set RN (m0) is already computed, a set of reachable from m0 dead markings can
be computed as DN (m0) = RN (m0) ∩ DN . Alternatively, we can compute this set as
DN (m0) = RN (m0) \ PreImg(RN (m0)), avoiding the construction of the set DN .

The set of markings from which m0 is reachable can be computed as BwdReach(m0).
Hence, to check reversibility of N we can check whether this set contains all reachable
from m0 markings or, equally, if

RN (m0) ≡ LimBwdReach(m0,RN (m0)).

Analogously, to check liveness of a transition t we can check if

RN (m0) ≡ LimBwdReach(Et,RN (m0)).

Recall that liveness of transitions can be also decided using terminal SCCs of RGN ,
thus, we can employ Algorithm 15 which enumerates terminal SCCs. In the function
ReportTerminalSCC we check if the found terminal SCC C contains markings in which
t can fire: C ∩Et 6= ∅, t is not live if we meet some SCC C such that C ∩Et = ∅. This
approach is much more efficient when liveness of many transitions must be decided
(for example, when we are deciding liveness of the whole net N) and RGN contains
few terminal SCCs. This is very often a case in Petri net models of reactive systems
[MP92] which are usually designed not to terminate. Of course, reversibility can be
also decided using SCC decomposition.

Surely, before checking reversibility or liveness, we first make a cheaper test if the net
has reachable dead markings. If DN (m0) 6= ∅, then N can not be reversible and has no
live transitions.

88

4.6 Closing Remark

4.6 Closing Remark

The key idea underlying symbolic methods is to represent sets of states concisely using
their characteristic functions and to manipulate them as if they were in bulk. For
sets of markings describable by interval logic functions, reasoning in terms of sets
and set operations is isomorphic to reasoning in terms of interval logic functions and
logic operations on them. As ROIDDs provide a canonical form representation for
interval logic functions, they can be used as an efficient data structure for storage
and manipulations of large sets of markings. Moreover, ROIDDs allow a quite natural
implementation of the special operations needed in symbolic algorithms.

Though small decision diagrams can encode large sets of states, not every large set
of states can be encoded by a small decision diagram. Straying from the traditional
breath-first strategy in the exploration of state spaces can improve efficiency of the
reachability analysis. We have studied a number of iteration strategies and techniques
to reduce sizes of intermediate diagrams and proposed a new saturation-based ap-
proach, which exploits the structure of ROIDDs and the structure of k-bounded Petri
nets. It manages to keep sizes of intermediate diagrams smaller than other approaches
and can significantly improve efficiency of the reachability analysis.

Algorithms for the symbolic SCC decomposition are based on the observation that an
SCC containing some state can be computed as an intersection of a set of states that can
reach this state with a set of states that are reachable from it. An algorithm introduced
in [XB98] for the state classification of finite-state Markov chains can be adapted to the
enumeration of terminal SCCs in sets of markings of Petri nets. Moreover, it benefits
also from the new saturation strategy.

An efficient implementation of the reachability analysis allows an efficient check of
the basic Petri net properties. Usually, not only basic net properties are an object of
interest. In the next chapter we shall discuss how a wide class of properties can be
specified with temporal logics and verified using model checking .

89

4 Symbolic Analysis of Bounded Petri Nets Using ROIDDs

90

5 Temporal Logic and Model Checking

Temporal logics have proven to be useful for specifying properties of concurrent sys-
tems as they can describe the ordering of events in time without introducing the time
explicitely. Originally, temporal logics were developed by philosophers to study the
way that time is used in natural language arguments. They were first suggested for
the specification of properties and verification of concurrent programs in [Pnu77]. The
introduction of temporal-logic model checking algorithms [CE81] allowed this type of
reasoning to be automated.

Model checking was developed as a technique for the formal verification of hardware
and software systems. It has been proven to be a successful method, frequently used
to uncover well-hidden bugs in complex sequential circuit designs and communication
protocols. Model checking provides means to check whether a finite state model of a
system satisfies a given specification. The benefit of this restriction is that the verifica-
tion can be performed fully automatically. The procedure uses normally an exhaustive
exploration of all possible states of the model to determine whether it satisfies a prop-
erty expressed in a temporal logic. An important feature of a model checker is that
in case of a negative result, the user is often provided with a trace which can be used
as a counterexample for the checked property. Counterexamples can help to determine
whether the negative result was caused by an error in the system or comes from in-
correct modeling or an incorrect specification. Today, applications of model checking
are not limited to the hardware and software verification, it is often used to study
properties of models arising in different, not necessary technical areas [CF03]. Perfect
monographs on model checking are [CGP01] and [BBF+01].

There are two possible views regarding the nature of time, which induce two types of
temporal logics [Lam80]. In linear temporal logics, time is treated as if each moment
has a unique possible future. Thus, linear temporal logic formulas are interpreted over
linear sequences and can be regarded as formulas describing a behavior of a single
computation of a system. In branching temporal logics, each moment in time may split
into various possible futures. Accordingly, the structures over which branching temporal
logics are interpreted can be viewed as infinite computation trees, each describing the
behavior of the possible computations of the system. The discussion of relative merits
of linear versus branching time has a long history [Pnu77, Lam80, EL85, EH86, Var01].

In the Linear Temporal Logic (LTL) [Pnu80], formulas are composed of atomic proposi-
tions, usual boolean operators, and temporal operators: X (“next”), U (“until”), F (“fi-

91

5 Temporal Logic and Model Checking

nally”), G (“globally”), and R (“release”). The branching temporal logic CTL⋆ [EH86]
augments LTL by the path quantifiers E (“there exists a computation”) and A (“for all
computations”). The branching Computation Tree Logic (CTL) [CE81] is a fragment of
CTL⋆ in which every temporal operator must be preceded by a path quantifier. CTL
and LTL are expressively incomparable [Lam80], for example, the LTL formula FGϕ
can not be expressed in CTL, while the CTL formula AGEFϕ is not expressible in
LTL. The expressiveness of CTL can be increased if its semantics is modified to handle
fairness. A fairness constraint can be an arbitrary set of states. Given a set of fairness
constraints F , a fair path must contain an element of each fairness constraint infinitely
often. The path quantifiers of CTL are restricted then to fair paths.

Given a labeled state transition graph M and a CTL formula ϕ, the model checking
problem is to decide whether ϕ holds in all initial states of M . The classic algorithm to
solve the problem is a bottom-up labeling procedure [CES86]. It labels all states of M

by subformulas of ϕ, starting from the innermost formulas and proceeding such that
when labeling by some formula, all its subformulas are already processed. Depending
on a formula, labeling can involve a backward reachability analysis and SCC decompo-
sition. The procedure requires time O(|M | · |ϕ|). The complexity of the model checking
algorithm for CTL with fairness constraints is O(|M | · |ϕ| · |F|).

Given a labeled state transition graph M and an LTL formula ϕ, the model checking
problem is to decide whether ϕ holds in all computations of M . The dominant approach
to LTL model checking is the automata theoretic approach [VW86, Var96]. The key
idea of this approach is that, given an LTL formula, it is possible to construct a Büchi
automaton [Büc60] that accepts all computations that satisfy this formula. This allows
to reduce the model checking problem to an automata theoretic problem as follows:
(1) construct the automaton A¬ϕ that corresponds to the negation of the formula ϕ,
(2) take the product of M and A¬ϕ to obtain the automaton AM,ϕ, and (3) check if the
automaton AM,ϕ accepts some input. If it does not, then ϕ holds in M . The problem
can be solved in time O(|M | · 2|ϕ|) [LP85]. This is considered acceptable since the size
of the specification is typically significantly smaller than the size of M .

The main drawback of model checking is the state explosion problem. A number of
techniques have been proposed to combat the problem. The most successful approaches
are partial-order reductions [Val91, God91, Pel94] and symbolic methods [BCM+90,
McM92]. The original CTL model checking algorithm [CES86] can be adapted to the
case when the labeled state transition graph is represented symbolically. The symbolic
CTL model checking algorithm [BCM+90] is based on computing fixpoints of predicate
transformers. Symbolic LTL model checking can be reduced to symbolic CTL model
checking with fairness constraints [CGH94].

In this chapter (based on [CGP01]) we introduce the temporal logics CTL and LTL
and discuss corresponding model checking algorithms.

92

5.1 Temporal Logics

5.1 Temporal Logics

5.1.1 Computation Tree Logic CTL⋆

Formulas of the Computation Tree Logic CTL⋆ [EH86] are composed of atomic proposi-
tions, usual boolean operators, temporal operators, and path quantifiers. Atomic propo-
sitions are used to make statements about states of a system. These propositions are
elementary statements which have well-defined truth values in every given state. The
meaning of temporal logic formulas is defined with respect to a labeled state transition
graph or a Kripke structure [Kri63].

Definition 40 (Kripke structure)
Let AP be a set of atomic propositions. A Kripke structure is a tuple M = [S,R,L, S0]
where:

• S is a finite set of states.

• R ⊆ S × S is a total transition relation, hence ∀s ∈ S ∃s′ ∈ S : (s, s′) ∈ R.

• L : S → 2AP is a function labeling each state with a set of atomic propositions
true in that state.

• S0 ⊆ S is a set of initial states.

A computation or a path in the structure M from a state s is an infinite sequence of
states π = s0s1s2 . . . such that s0 = s and (si, si+1) ∈ R ∀i ≥ 0. π(i) denotes a state si

in π, πi denotes a suffix of π starting at π(i), P(s) denotes a set of all paths starting
at a state s ∈ S.

Conceptually, CTL⋆ formulas can describe properties of computation trees. The tree
is formed by designating a state in a Kripke structure as the initial state and then
unwinding the structure into an infinite tree with the designated state as the root, as
illustrated in Fig. 5.1.

c c

cc
b, c

a, b a, b

b, c

a, b

Figure 5.1: Unwinding Kripke structure to get a computation tree

93

5 Temporal Logic and Model Checking

Temporal operators describe properties of a path through the computation tree. There
are five basic so-called future-tense temporal operators:

• Xφ (“next time φ”) requires that the property φ holds in the next state of the
path.

• Fφ (“finally” φ or “eventually φ”) operator is used to assert that the property φ
will hold at some future state of the path.

• Gφ (“globally φ”) specifies that the property φ holds in the current and all future
states of the path.

• φ1Uφ2 (“φ1 until φ2”) holds if there is a state in the path where φ2 holds and in
every preceding state holds φ1.

• φ1Rφ2 (“φ1 releases φ2”) is the logical dual of the U operator. It requires that
the φ2 holds along the path up to and including the first state where φ1 holds.
However, φ1 is not required to hold eventually.

Definition 41 (Syntax of CTL⋆)
There are two types of formulas in CTL⋆: state formulas (which are true in a specific
state) and path formulas (which are true along a specific path). Let AP be the set of
atomic propositions. The syntax of state formulas is given by the following rules:

• Every atomic propositions p ∈ AP is a state formula.

• If φ1 and φ2 are state formulas, then φ1∧φ2, φ1 ∨φ2 and ¬φ1 are state formulas.

• If φ is a path formula, then Eφ and Aφ are state formulas.

The syntax of path formulas is defined by the following rules:

• If φ is a state formula, then φ is also a path formula.

• If φ1 and φ2 are path formulas, then φ1 ∧φ2, φ1 ∨φ2 and ¬φ1 are path formulas.

• If φ1 and φ2 are path formulas, then Xφ1,Fφ1, φ1Uφ2, φ1Rφ2, and Gφ1 are path
formulas.

We introduce the constants True and False as abbreviations for p ∨ ¬p and p ∧ ¬p.

Definition 42 (Semantics of CTL⋆)
The semantics of CTL⋆ is defined with respect to a Kripke structure M . If φ is a state
formula, then M,s |= φ means that φ holds in the state s. If γ is a path formula,
then M,π |= γ means that γ holds along the path π. Assuming that p is an atomic
proposition, φ, φ1, and φ2 are state formulas and γ, γ1, and γ2 are path formulas, the
relation |= is defined inductively as follows:

1. M,s |= p if p ∈ L(s).

94

5.1 Temporal Logics

2. M,s |= ¬φ if M,s 6|= φ.

3. M,s |= φ1 ∨ φ2 if M,s |= φ1 or M,s |= φ2.

4. M,s |= φ1 ∧ φ2 if M,s |= φ1 and M,s |= φ2.

5. M,s |= Eγ if ∃π ∈ P(s) such that M,π |= γ.

6. M,s |= Aγ if ∀π ∈ P(s) M,π |= γ.

7. M,π |= φ if M,π(0) |= φ.

8. M,π |= ¬γ if M,π 6|= γ.

9. M,π |= γ1 ∨ γ2 if M,π |= γ1 or M,π |= γ2.

10. M,π |= γ1 ∧ γ2 if M,π |= γ1 and M,π |= γ2.

11. M,π |= Xγ if M,π1 |= γ.

12. M,π |= Fγ if ∃k ≥ 0 such that M,πk |= γ.

13. M,π |= Gγ if ∀i ≥ 0 M,πi |= γ.

14. M,π |= γ1Uγ2 if ∃k ≥ 0 such that M,πk |= γ2 and 0 ≤ j < k M,πj |= γ1.

15. M,π |= γ1Rγ2 if ∀j ≥ 0, if for every i < j M, πi 6|= γ1, then M,πj |= γ2.

Any CTL⋆ operator can be expressed with help of X,U, and E:

• Fφ ≡ TrueUφ

• Gφ ≡ ¬F¬φ

• φ1Rφ2 ≡ ¬(¬φ1U¬φ2)

• A(φ) ≡ ¬E(¬φ).

5.1.2 CTL and LTL

Linear Temporal Logic (LTL) [Pnu80] and Computation Tree Logic (CTL) [CE81] are
the two most commonly supported temporal logics in model checking tools. In the
branching-time logic CTL, the temporal operators quantify over the paths that are
possible from a given state. In the linear-time logic LTL, operators are provided for
describing events along a single computation.

95

5 Temporal Logic and Model Checking

Definition 43 (Syntax of LTL)
Let AP be the set of atomic propositions. The syntax of LTL formulas is given by the
following rules:

• Every atomic proposition p ∈ AP is an LTL formula.

• If φ1 and φ2 are LTL formulas, then φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ1 are LTL formulas.

• If φ1 and φ2 are LTL formulas, then Xφ1,Fφ1, φ1Uφ2, φ1Rφ2, and Gφ1 are LTL
formulas.

Each LTL formula φ corresponds to a CTL⋆ formula Aφ, where φ is a path formula
in which state subformulas can be build only from atomic propositions connected by
boolean operators.

CTL can be seen a restricted fragment of CTL⋆ in which each of the temporal operators
X, F, U, G, and R must be directly preceded by a path quantifier. Formally, CTL is
the subset of CTL⋆ that is obtained by defining the syntax of path formulas as follows:

• If φ1 and φ2 are state formulas, then Xφ1,Fφ1, φ1Uφ2, φ1Rφ2, and Gφ1 are path
formulas.

The need to quantify always over the possible futures noticeably limits the expressivity
of CTL. CTL formulas are state formulas, the truth of any formula φ depends only
on the current state and does not depend on the current path1. For example, it is not
possible to express the property “for all computations, if φ1 holds infinitely often in a
computation, then φ2 also holds in this computation”, GFφ1 → φ2 in LTL2, as well
as the property “φ2 holds in all those computations in which φ1 holds invariantly”,
Gφ1 → φ2 in LTL. This limitation carries also its benefits, allowing to implement
efficient CTL model checking algorithms. Correspondingly, LTL deals only with a set
of computations and not in the way these are organized into a tree, hence LTL can not
express that at some state it is possible to extend the computation in this or that way.
Characteristically, the property “p is always potentially reachable”, AGEFp in CTL,
can not be expressed in LTL.

Each of the basic CTL operators can be expressed in terms of EX,EU, and EG.

• AXφ ≡ ¬EX(¬φ)

• EFφ ≡ E[TrueUφ]

• AGφ ≡ ¬EF(¬φ)

1Defined formally, φ is a state formula if for any two paths π1, π2, from π1(i) = π2(j) follows that
M, π1(i) |= φ if and only if M, π2(j) |= φ.

2We use here the usual abbreviation a → b ≡ ¬a ∨ b.

96

5.1 Temporal Logics

M, s0 |= EXφ M, s0 |= EFφ M, s0 |= EGφ

M, s0 |= E[φ1Uφ2] M, s0 |= AFφ M, s0 |= AGφ

φ

φ

φ

φ

φ

φ

φ

φφφφ

φ

φ φ

φ1

φ1

φ2

φ

Figure 5.2: Basic CTL operators

• AFφ ≡ ¬EG(¬φ)

• A[φ1Rφ2] ≡ ¬E[¬φ1U¬φ2]

• A[φ1Uφ2] ≡ ¬E[¬φ2U(¬φ1 ∧ ¬φ2)] ∧ ¬EG(¬φ2)

• E[φ1Rφ2] ≡ ¬A[¬φ1U¬φ2]

Example 18

Some of the basic CTL operators are illustrated in Fig. 5.2. The operators are easiest
to understand in terms of the computation tree obtained by unwinding the Kripke
structure M with the state s0 as a root. Several typical CTL and LTL formulas that
might arise in verifying concurrent systems are given below. Notice that some properties
can be expressed only in one of the temporal logics.

• φCTL = ¬EFBad , φLTL = G(¬Bad): The system never reaches the Bad state.

• φCTL = AG(Req → AFAck), φLTL = G(Req → FAck): Every time when a
request occurs it is eventually acknowledged.

• φLTL = GF(¬Lost) → G(Sent → FReceived): Every sent message that is not
systematically lost, is finally received.

• φCTL = AGAF(InCSi), φLTL = GF(InCS): A process i has a possibility to
enter its critical section infinitely often.

97

5 Temporal Logic and Model Checking

• φLTL = GF(ReqCSi) → GF(InCSi): If a process i tries to enter its critical
section infinitely often, it will also succeed infinitely often.

• φCTL = AGEF(Start): From any state it is possible to get to the Start state.

5.1.3 Fairness

As could be seen in the examples above, in many cases we are only interested in the
correctness along fair paths. For example, when considering communication protocols
that operate over channels that may occasionally lose message, we do not wish to
consider the case when all sent messages are systematically lost. Alternatively, when
verifying some mutual exclusion algorithm, we may wish to consider only those execu-
tions in which a process scheduler does not ignore one of the processes forever. Such
properties can not be expressed in CTL. In order to deal with fairness in CTL, its
semantics must be slightly modified [EL85].

A fairness constraint can be an arbitrary set of states, usually described by a formula
of the logic. A fair path must contain an element of each fairness constraint infinitely
often. The path quantifiers of the logic are restricted to fair paths.

Definition 44 (Fair Kripke structure)

Let AP be a set of atomic propositions. A fair Kripke structure is a tuple M =
[S,R,L, S0,F] where:

• [S,R,L, S0] is a Kripke structure.

• F ⊆ 2S is a set of fairness constraints.

Let π = s0s1s2 . . . be a path in M , we define a set inf(π) = {s | ∀k ≥ 0 ∃i > k : si = s}.
A path π is called fair if inf(π) ∩ F 6= ∅ for every F ∈ F . We shall write M,s |=F φ
if φ holds in s when the path quantifiers in φ are restricted to fair paths.

Example 19

In CTL with fairness constraints, we can express properties that could not be expressed
in CTL in the previous example.

• φFCTL = AG(Sent → AFReceived), F = {¬Lost}: Every sent message that is
not systematically lost, is finally received.

• φFCTL = AGAF(InCSi), F = {ReqCSi}: If a process i tries to enter its critical
section infinitely often, it will also succeed infinitely often.

98

5.2 Model Checking CTL

5.2 Model Checking CTL

Given a Kripke structure M = [S,R,L, S0] and a CTL formula ϕ, the model checking
problem is to decide whether ϕ holds in all initial states of M : M,s |= ϕ ∀s ∈ S0.

5.2.1 Explicit Algorithm

We consider now the classic global algorithm to solve the CTL model checking problem
[CES86]. Let M = [S,R,L, S0] be a Kripke structure, we shall determine which states
in S satisfy the CTL formula ϕ. The algorithm labels each state s with the set labels(s)
of subformulas of ϕ which are true in s. Initially labels(s) = L(s). The algorithm goes
through a series of stages. During the ith stage, subformulas with i − 1 nested CTL
operators are processed. When a subformula is processed, it is added to the labels of
each state in which it is true. Once the algorithm terminates, we will have M,s |= φ if
and only if φ ∈ labels(s).

Recall that any CTL formula can be expressed using only atomic propositions, boolean
operators and temporal operators EX,EU, and EG. Hence, for the intermediate stages
of the algorithm it is sufficient to be able to handle the cases when a formula has one
of following forms: ¬φ, φ1 ∨ φ2, φ1 ∧ φ2, EXφ, E[φ1Uφ2], or EGφ.

1. For formulas of the form ¬φ, we label those states that are not labeled by φ. For
φ1 ∨ φ2, we label any state that is labeled either by φ1 or φ2. For φ1 ∧ φ2, we
label any state that is labeled by φ1 and φ2.

2. For EXφ, we label every state that has some successor labeled by φ.

3. For formulas of the form φ = E[φ1Uφ2] we first find all states that are labeled
with φ2 and label them with φ. We work then backwards using the converse of
R and find all states that can reach states labeled by φ2 along a path in which
each state is labeled with φ1. All such states must be labeled by φ. This behavior
is implemented in Algorithm 17.

4. For formulas of the form EGφ, let a graph [S′, R′] be obtained from M by deleting
from S those states in which φ does not hold and restricting R accordingly. Notice
that R′ may not be total. Algorithm 18 depends on the observation M,s |= EGφ
if and only if s ∈ S′ and there exists a path in [S′, R′] that leads from s to some
node t in a nontrivial SCC of the graph [S′, R′].

In order to handle an arbitrary CTL formula ϕ, we apply the state-labeling algorithm to
the subformulas of ϕ, starting from the shortest, most deeply nested and work outward
to include all subformulas of ϕ. By proceeding in this manner we can guarantee that
whenever we process a subformula of ϕ all its subformulas have already been processed.
Finally we can check if all initial states of M are labeled by ϕ. The algorithm requires
time O(|ϕ| · (|S| + |R|)).

99

5 Temporal Logic and Model Checking

Algorithm 17 (Labeling states satisfying E[φ1Uφ2])

1 proc CheckEU (φ1, φ2)
2 T := {s | φ2 ∈ labels(s)}
3 forall s ∈ T do labels(s) ∪ {E[φ1Uφ2]} od

4

5 while T 6= ∅ do

6 s := oneof (T)
7 T := T \{s}
8 forall t : R(t, s) do

9 if E[φ1Uφ2] /∈ labels(t) ∧ φ1 ∈ labels(t) then

10 labels(t) := labels(t) ∪ {E[φ1Uφ2]}
11 T := T ∪ {t}
12 fi

13 od

14 od

15 end

Algorithm 18 (Labeling states satisfying EGφ1)

1 proc CheckEG (φ1)
2 S′ := {s | φ1 ∈ labels(s)}
3 T := {s | s ∈ nontrivial SCC of S′}
4 forall s ∈ T do labels(s) ∪ {EGφ1} od

5

6 while T 6= ∅ do

7 s := oneof (T)
8 T := T \{s}
9 forall t : t ∈ S′ ∧ R(t, s) do

10 if EGφ1 /∈ labels(t) then

11 labels(t) := labels(t) ∪ {EGφ1}
12 T := T ∪ {t}
13 fi

14 od

15 od

16 end

100

5.2 Model Checking CTL

5.2.2 Handling Fairness in Explicit Algorithm

Let M = [S,R,L, S0,F] be a fair Kripke structure. An SCC C of M is called fair if it
intersects all fair sets: C ∩ F 6= ∅ ∀F ∈ F . We consider first how to check formulas of
the form EGfairφ

3. Let a graph [S′, R′] be obtained from M by deleting from S those
states in which φ does not fairly hold and restricting R accordingly. A state s satisfies
the formula EGfairφ if and only if s ∈ S′ and there exists a path in [S′, R′] that leads
from s to some node t in a fair nontrivial SCC of the graph [S′, R′]. An algorithm that
implements the function CheckFairEG replaces computation of the set T on the line 3

in Algorithm 18 with

T := {s | s ∈ nontrivial fair SCC of S′}.

In order to check other CTL formulas with respect to the fair Kripke structure we
introduce first an additional atomic proposition fair , which is true in a state if and
only if there is a fair path starting from this state, fair = EGfairTrue. A call to
the function CheckFairEG(True) can be used to label states with the new atomic
proposition.

1. To determine if M,s |=F p for p ∈ AP we check M,s |= p ∧ fair using the
ordinary model checking procedure.

2. To determine if M,s |=F EXφ we check M,s |= EX(φ ∧ fair).

3. To determine if M,s |=F E[φ1Uφ2] we check M,s |= E(φ1U(φ2 ∧ fair)).

The algorithm requires time O(|ϕ| · (|S| + |R|) · |F|).

5.2.3 Symbolic Algorithm

Recall that in symbolic algorithms operations are performed not on individual states,
but on sets of states. The symbolic CTL model checking algorithm employs a fixpoint
characterization of the temporal logic operators. We shall discuss symbolic algorithms
in terms of sets of states of a Kripke structure.

Definition 45
Let M = [S,R,L, S0] be a Kripke structure, the set 2S of all subsets of S forms a
lattice4 L under the set inclusion ordering: L = [2S ,⊆].

• Each element S′ ∈ L can be thought as a predicate on S, where the predicate is
viewed as being true for exactly the states in S′.

3We shall use this notation to stress the point that the formula EGφ must be considered with respect
to the fair Kripke structure.

4Lattices are introduced in the Appendix.

101

5 Temporal Logic and Model Checking

• A function τ : 2S → 2S is called a predicate transformer .

• A predicate transformer τ is called monotonic if P ⊆ Q implies τ(P) ⊆ τ(Q).

• A set S′ ⊆ S is a fixpoint of a predicate transformer τ if τ(S′) = S′.

Theorem 4 ([Tar55])
A monotonic predicate transformer τ always has a least fixpoint µZ. τ(Z) and a greatest
fixpoint νZ. τ(Z)

µZ. τ(Z) = ∩{Z | τ(Z) ⊆ Z}, νZ. τ(Z) = ∪{Z | τ(Z) ⊇ Z}.

Proposition 3
It can be shown that for a monotonic predicate transformer τ : 2S → 2S there always
exist integers i0, j0 such that µZ. τ(Z) = τ i0(∅) and νZ. τ(Z) = τ j0(S), where τ i(Z)
denotes i applications of τ to Z

τ0(Z) = Z, τ i+1(Z) = τ(τ i(Z)).

If we identify each CTL formula φ with the predicate {s | M,s |= φ}, then each of
the basic CTL operators may be characterized as a least or a greatest fixpoint of an
appropriate monotonic predicate transformer [CE81]

EFφ = µZ. φ ∨ EX Z E[φ1Uφ2] = µZ. φ2 ∨ (φ1 ∧ EX Z)
AFφ = µZ. φ ∨ AX Z A[φ1Uφ2] = µZ. φ2 ∨ (φ1 ∧ AX Z)
EGφ = νZ. φ ∧ EX Z E[φ1Rφ2] = νZ. φ2 ∧ (φ1 ∨ EX Z)
AGφ = νZ. φ ∧ AX Z A[φ1Rφ2] = νZ. φ2 ∧ (φ1 ∨ AX Z).

The symbolic CTL model checking algorithm is implemented using a function Check
that gets a CTL formula φ to be checked as an argument and returns a set of states that
satisfy φ. We define Check inductively over the structure of CTL formulas. Recall that
any CTL formula can be expressed using only atomic propositions, boolean operators
and temporal operators EX,EU, and EG. Hence, it is enough to consider only the
following cases.

1. If φ = p where p ∈ AP , then Check(φ) = EvalAtomic(p).

2. If φ = φ1 ∧ φ2, then Check(φ) = Check(φ1) ∩ Check(φ2).

3. If φ = φ1 ∨ φ2, then Check(φ) = Check(φ1) ∪ Check(φ2).

4. If φ = ¬φ1, then Check(φ) = S \ Check(φ1).

5. If φ = EXφ1, then Check(φ) = EvalEX(Check(φ1)).

102

5.2 Model Checking CTL

6. If φ = EGφ1, then Check(φ) = EvalEG(Check(φ1)).

7. If φ = E[φ1Uφ2], then Check(φ) = EvalEU(Check(φ1),Check(φ2)).

Notice that the functions EvalEX, EvalEG, and EvalEU get sets of states as arguments,
EvalAtomic gets an atomic proposition and the function Check gets a CTL formula as
an argument. In order to check if the Kripke structure M satisfies an arbitrary CTL
formula ϕ, we have to check if all initial states of M belong to the set returned by the
function Check(ϕ).

The function EvalAtomic(p) returns the set {s ∈ S | p ∈ L(s)}. The function EvalEX(S ′)
can be implemented using the standard symbolic operation PreImg(S ′), which returns
a set of all predecessors states of the states in the set S ′:

EvalEX(S ′) = PreImg(S ′) = {s ∈ S | ∃s′ ∈ S′ : (s, s′) ∈ R}.

The function EvalEU(S ′
1 ,S ′

2) gets two sets of states as arguments, the formula φ1 is
satisfied in the set S ′

1 , φ2 is satisfied in S ′
2 . The function is implemented as suggested

by the Proposition 3 and fixpoint characterization of the operators EU. Consider Al-
gorithm 19, in EvalEU we compute a sequence of approximations Q0, Q1, . . . Qi, . . .
that converges to a set of states that satisfy E[φ1Uφ2] in a finite number of steps. The
function EvalEG(S ′) is implemented analogously.

Algorithm 19 (Computing states satisfying E[φ1Uφ2])

1 func EvalEU (S ′
1 , S ′

2)
2 Q := ∅
3 Q ′ := S ′

2

4 while (Q 6= Q ′) do

5 Q := Q ′

6 Q ′ := S ′
2 ∪ (S ′

1 ∩ EvalEX(Q ′))
7 od

8 return Q

9 end

Algorithm 20 (Computing states satisfying EGφ1)

1 func EvalEG (S ′)
2 Q := S

3 Q ′ := S ′

4 while (Q 6= Q ′) do

5 Q := Q ′

6 Q ′ := S ′ ∩ EvalEX(Q ′)
7 od

8 return Q

9 end

103

5 Temporal Logic and Model Checking

qqp

q

q

s0

s1

s2 s5 s6
s3

p, qp

s4

Figure 5.3: A Kripke structure used in the explanation of Algorithms 19 and 20

Example 20

Consider a Kripke structure M in Fig. 5.3. Suppose that we want to check a CTL
formula ϕ = E[pUq]. A formula φ1 = p holds in the set S′

1 = {s0, s2, s3}, a formula
φ2 = q holds in the set S′

2 = {s1, s3, s4, s5, s6}. In the functions EvalEU we compute a
sequence of approximations Q0 ⊂ Q1 ⊂ Q2 ⊂ . . .

1. Q0 = S′
2 = {s1, s3, s4, s5, s6}.

2. Q1 = S ′
2 ∪ (S ′

1 ∩ EvalEX(Q0)) = {s1, s2, s3, s4, s5, s6}.

3. Q2 = S ′
2 ∪ (S ′

1 ∩ EvalEX(Q1)) = {s0, s1, s2, s3, s4, s5, s6}.

4. Q3 = S ′
2 ∪ (S ′

1 ∩ EvalEX(Q2)) = {s0, s1, s2, s3, s4, s5, s6} = Q2.

The fixpoint is reached, therefore the algorithm terminates and returns the set Q3.

Suppose now that we want to check a CTL formula EGq. In the functions EvalEG we
compute a sequence of approximations Q0 ⊃ Q1 ⊃ Q2 ⊃ . . .

1. Q0 = S′
2 = {s1, s3, s4, s5, s6}.

2. Q1 = S ′
2 ∩ EvalEX(Q0) = {s3, s4, s5, s6}.

3. Q2 = S ′
2 ∩ EvalEX(Q1) = {s3, s4, s5, s6} = Q1.

5.2.4 Handling Fairness in Symbolic Algorithm

Let M = [S,R,L, S0,F] be a fair Kripke structure. Consider a formula EGφ under
the fairness constraints F . The formula means that there is a path beginning in the
current state on which φ holds globally and each formula in F holds infinitely often
on this path. The set of such states Z is the largest set in which all states both satisfy
φ and have a path on which every state satisfies φ to a non-trivial fair SCC. This
characterization can be expressed by means of a fixpoint as follows:

EGfairφ = νZ. φ ∧
∧

∀F∈F

EX(E[φ U (Z ∧ F)]).

104

5.2 Model Checking CTL

Algorithm 21 (Computing states satisfying EGfairφ1)

1 func EvalFairEG(S ′)
2 Q ′ := S

3 repeat

4 Q := Q ′

5 forall F ∈ F do

6 D := EvalEU(S ′, Q ′ ∩ F)
7 Q ′ := Q ′ ∩ EvalEX(D)
8 od

9 until (Q = Q ′)
10 return Q

11 end

Implementing the function EvalFairEG using this representation results in a variation
of the Emerson-Lei algorithm [EL86]. Consider Algorithm 21, it maintains a set of states
that might lead to a non-trivial fair SCC. This approximation is repeatedly refined by
removing states that can not lead to any non-trivial fair SCC. The procedure requires
time O(|F| · |S|2) as the algorithm employs computation of nested fixpoints.

A set fair contains all states that are beginnings of some fair computation paths:
fair = EvalFairEG(S). Analogously to the function Check, we define now the function
CheckFair inductively over the structure of CTL formulas.

1. If φ = p where p ∈ AP , then CheckFair(φ) = EvalAtomic(p) ∩ fair .

2. If φ = φ1 ∧ φ2, then CheckFair(φ) = CheckFair(φ1) ∩ CheckFair(φ2).

3. If φ = φ1 ∨ φ2, then CheckFair(φ) = CheckFair(φ1) ∪ CheckFair(φ2).

4. If φ = ¬φ1, then CheckFair(φ) = S \ CheckFair(φ1).

5. If φ = EXφ1, then CheckFair(φ) = EvalEX(CheckFair(φ1) ∩ fair).

6. If φ = EGφ1, then CheckFair(φ) = EvalFairEG(CheckFair(φ1)).

7. If φ = E[φ1Uφ2], then CheckFair(φ) = EvalEU(CheckFair(φ1),
CheckFair(φ2) ∩ fair).

Example 21
Consider a Kripke structure M in Fig. 5.4. Suppose that we want to check the CTL
formula ϕ = EGq under fairness constraints F = {p}. A formula φ1 = p holds in the
set F = {s0, s5, s6}, φ2 = q holds in the set S′ = {s0, s2, s3, s4, s5, s6}. In the functions
EvalFairEG we compute a sequence of approximations Q0 ⊃ Q1 ⊃ Q2 ⊃ . . .

105

5 Temporal Logic and Model Checking

qq

s1 s4 s5
s2

s3s0

s7s6

p, q

p, qp, q q

Figure 5.4: A Kripke structure used in the explanation of Algorithm 21

1. Q0 = S = {s0, s1, s2, s3, s4, s5, s6, s7}.

2. • Q0 ∩ F = {s0, s5, s6}

• D = EvalEU(S ′,Q0 ∩ F) = {s0, s2, s3, s4, s5, s6}

• Q1 := Q0 ∩ EvalEX(D) = {s0, s2, s3, s4, s5}.

3. • Q1 ∩ F = {s0, s5}

• D = EvalEU(S ′,Q1 ∩ F) = {s0, s2, s3, s4, s5}

• Q2 := Q1 ∩ EvalEX(D) = {s2, s3, s4, s5}.

4. • Q2 ∩ F = {s5}

• D = EvalEU(S ′,Q2 ∩ F) = {s2, s3, s4, s5}

• Q3 := Q2 ∩ EvalEX(D) = {s2, s3, s4, s5} = Q2.

The fixpoint is reached, therefore the algorithm terminates and returns the set Q3.

5.3 Model Checking LTL

Given a Kripke structure M = [S,R,L, S0] and an LTL formula ϕ, the model checking
problem is to decide whether ϕ holds in all computations of M :

M,π |= ϕ ∀π ∈ P(s) ∀s ∈ S0.

Today, the dominant approach to LTL model checking is the automata theoretic ap-
proach [VW86, Var96]. The approach is based on the fact that given an LTL formula, it
is possible to construct a Büchi automaton [Büc60] that accepts all computations that
satisfy this formula. This allows to reduce the model checking problem to an automata
theoretic problem.

106

5.3 Model Checking LTL

5.3.1 Büchi automata

Definition 46 (Büchi automaton)

A Büchi automaton is a tuple A = [Σ, Q,∆, q0, F] where:

• Σ is a finite alphabet .

• Q is a finite set of states.

• ∆ ⊆ Q × Σ × Q is the transition relation.

• q0 ∈ Q is an initial state.

• F ⊆ Q is a set of accepting states.

A run of A over an infinite word ζ is an infinite sequence of states σ = q′0q
′
1 . . . such

that q0 = q′0 and (q′i, ζ(i), q′i+1) ∈ ∆ ∀i ≥ 0. We define a set

inf(σ) = {q ∈ Q | ∀k ≥ 0 ∃i > k : q′i = q}.

A run σ over ζ is called accepting if inf(σ) ∩F 6= ∅, we say in this case that A accepts
the infinite word ζ. We define the language L(A) as a set of infinite words accepted
by A. The automaton A is called empty if its language L(A) = ∅. We shall denote F

as a fair set and call an SCC of A fair if it is non-trivial and intersects F .

Notice that we allow the transition relation ∆ to be nondeterministic, that is, there can
be transitions (q, a, q′), (q, a, q′′) ∈ ∆ where q′ 6= q′′. Every nondeterministic automaton
over finite words one can be translated into an equivalent deterministic automaton
that accepts the same language using the subset construction. This is not the case with
Büchi automata, not every Büchi automaton has an equivalent deterministic Büchi
automaton.

Example 22

Two Büchi automata are shown in Fig. 5.5. The automaton A1 accepts infinite words
with a finite number of a’s, the automaton A2 accepts words with an infinite number
of a’s. The accepting states are denoted by doubled circles, initial states by small
incoming arrows. Note that A2 is deterministic, but it is not possible to construct an
equivalent deterministic automaton that accepts the language L(A1).

q0

b

b b

a

words with a finite number of a’s words with an infinite number of a’s

A2A1

q0

a bba

q1
q1

Figure 5.5: Büchi automata

107

5 Temporal Logic and Model Checking

Sometimes it is convenient to work with Büchi automata with several accepting sets
of states, although this does not extend the set of languages that can be expressed.

Definition 47 (Generalized Büchi automaton)
A generalized Büchi automaton is a tuple A = [Σ, Q,∆, q0,F] where:

• Σ is a finite alphabet .

• Q is a finite set of states.

• ∆ ⊆ Q × Σ × Q is the transition relation.

• q0 ∈ Q is an initial state.

• F ⊆ 2Q is a set of fair sets.

A generalized Büchi automaton A accepts an infinite word ζ if there exists a run σ
over ζ such that inf(σ) ∩ F 6= ∅ ∀F ∈ F . An SCC of A is called fair if it is non-trivial
and intersects all fair sets.

It is often defined that every infinite run of a generalized Büchi automaton A is ac-
cepting when F = ∅, we renounce such a definition to avoid ambiguities. There exists
a simple translation from a generalized Büchi automaton to a Büchi automaton.

Lemma 7 ([Tho90])
Let A = [Σ, Q,∆, q0, {F1, . . . , Fn}] be a generalized Büchi automaton, and let A′ =
[Σ, Q′,∆′, q′0, F

′] be a Büchi automaton. L(A) = L(A′) if

• Q′ = Q × {1, . . . , n}

• q′0 = (q0, 1)

• ∆′ ⊆ Q′ × Σ × Q′ is defined as

∆′ = { ((q1, i), a, (q2, i)) | (q1, a, q2) ∈ ∆ ∧ q1 6∈ Fi } ∪
{ ((q1, i), a, (q2, (i + 1)mod n)) | (q1, a, q2) ∈ ∆ ∧ q1 ∈ Fi }

• F ′ = F1 × {1}.

The translation expands the size of the automaton by a factor of n + 1. However, for
weak automata we can avoid this translation to reduce the number of fair sets to one.
We introduce a notion of a strength of generalized Büchi automata after [SB00].

Definition 48
Let A = [Σ, Q,∆, q0,F = {F1, . . . , Fn}] be a generalized Büchi automaton, and let ΘA

be the union of all fair SCCs of A.

• A is called weak if and only if for every SCC C of A, either for each fair set
Fi ⊇ C, or there exists a fair set Fk such that Fk ∩ C = ∅.

108

5.3 Model Checking LTL

• A is called terminal if and only if it is weak, there is no arcs from a fair SCC to
a non-fair SCC: 6 ∃q ∈ ΘA, q′ ∈ Q \ ΘA, a ∈ Σ : (q, a, q′) ∈ ∆, and for every
state s ∈ ΘA holds Σ =

⋃

{a ∈ Σ | (s, a, s′) ∈ ∆}.

• A is called strong if it is not weak.

Lemma 8 ([SB00])
Let A = [Σ, Q,∆, q0,F] be a weak generalized Büchi automaton. Let A′ be a Büchi
automaton defined as A′ = [Σ, Q,∆, q0, {ΘA}]. Then L(A) = L(A′).

5.3.2 Automata Theoretic Approach

Let M = [S,R,L, S0] be a Kripke structure. A computation of M can be considered
as an infinite word over the alphabet Σ = 2AP . Thus, the set of all computations of M

builds a language L(M) ⊆ Σw. Analogously, every LTL formula ϕ describes a language
L(ϕ) ⊆ Σw, defined as a set of all infinite words that satisfy this formula.

Theorem 5 ([VW94, Var96])
Let φ be an LTL formula. There exists a Büchi automaton Aφ = [Σ, Qφ,∆φ, q0φ

, Fφ]

such that L(Aφ) = L(φ) and |Qφ| ≤ 2O(|φ|).

For every Kripke structure M we can also construct a Büchi automaton AM such that
L(AM) = L(M) as follows: AM = [Σ, S ∪ {si}, ∆M , si, S ∪ {si}] where:

• (s, p, s′) ∈ ∆M for s, s′ ∈ S if and only if (s, s′) ∈ R and p = L(s′).

• (si, p, s) ∈ ∆M if and only if s ∈ S0 and p = L(s).

Notice that all the states of the constructed automaton are accepting.

An LTL formula ϕ holds in all computations of M if L(AM) ⊆ L(Aϕ). This can be

rewritten as L(AM) ∩ L(Aϕ) = ∅, which means, there is no computation in M that is
disallowed by ϕ. If the intersection is not empty, any computation in it corresponds
to a counterexample. Büchi automata are closed under intersection and complemen-
tation [Büc60]. This means that there exists an automaton that accepts exactly the
intersection of the languages of two automata and an automaton that recognizes exactly
the complement of the language of a given automaton. Computation of the complement
for a Büchi automaton is a complicated procedure, which is, in general, exponential.
Fortunately, instead of translating an LTL formula ϕ into a Büchi automaton Aϕ and
then complementing it, we can simply translate ¬ϕ, which immediately provides an
automaton A¬ϕ for the complement language L(Aϕ).

Moreover, the fact that all states of the automaton AM are accepting simplifies also
the construction of the intersection of these Büchi automata. It is defined then as
AM ∩ A¬ϕ = AM,ϕ = [Σ, Q,∆, q0, F] where:

109

5 Temporal Logic and Model Checking

• Σ = 2AP

• Q = (S ∪ {si}) × Q¬ϕ

• ((si, qj), a, (sm, qn)) ∈ ∆ if and only if (si, a, sm) ∈ ∆M and (qj, a, qn) ∈ ∆¬ϕ

• q0 = (si, q0¬ϕ)

• F = (S ∪ {si}) × F¬ϕ.

The constructed automaton AM,ϕ is often denoted as a product automaton. To check
if the LTL formula ϕ holds in all computations of M , it is enough to check whether
the product automaton AM,ϕ is empty.

A usual translation procedure produces from an LTL formula ¬ϕ a generalized Büchi
automaton A¬ϕ = [Σ, Q¬ϕ,∆¬ϕ, q0¬ϕ , {F¬ϕ1, . . . , F¬ϕn}]. We can also define the prod-
uct automaton AM,ϕ as a generalized automaton AM,ϕ = [Σ, Q,∆, q0, {F1, . . . , Fn}]
where Q, ∆, and q0 are defined as above and Fi = (S ∪ {si}) × F¬ϕi). Notice that the
strength of the product automaton depends only on the strength of A¬ϕ. It easy to see
that AM,ϕ can not be stronger than A¬ϕ.

Checking emptiness of a Büchi automaton is simple. Let σ be an accepting run of a
Büchi automaton A = [Σ, Q,∆, q0, F]. Then σ contains infinitely many accepting states
from F . Since Q is finite, there is some suffix σ′ of σ such that every state on it appears
infinitely many times. Each state on σ′ is reachable from any other state on σ′. Hence,
the states in σ′ are included in an SCC that is reachable from the initial state and
contains an accepting state. Conversely, any fair SCC that is reachable from the initial
state generates an accepting run of the automaton. Thus, the Büchi automaton is not
empty if there is a reachable accepting state with a cycle back to itself or, equivalently,
there is a reachable fair SCC.

Analogously, a generalized Büchi automaton is not empty if there is a reachable state
lying on a cycle that intersects all fair sets, or a equivalently, there is a reachable fair
SCC. If the automaton is not empty, then there is a counterexample, which can be
presented in a finitary manner. The counterexample is a run, constructed from a finite
prefix followed by a periodic sequence of states.

Tarjan’s algorithm [Tar72] for finding SCCs can be used to decide emptiness of a
Büchi automaton in time O(|Q| + |∆|). Consider Algorithm 22. For every state q of
an automaton we keep two integers: q .num and q .lowlink , q .num stores the deep-first
search (DFS) number of the state. q .lowlink is the lowest DFS number of a state t
in the same SCC as q such that t was reachable from q via states that were not
yet explored when the search reached q. If after visiting all adjacent states of q its
q .lowlink = q .num , then q is a root of a found SCC. When an SCC is found, we check
if it is fair, in this case the automaton is not empty.
A number of algorithms that can be more efficient in practice and/or require less
memory have been proposed by many authors, see [SE05] for the latest survey.

110

5.3 Model Checking LTL

Algorithm 22 (Emptiness check)

1 proc CheckEmptiness (A)
2 count := 0
3

4 proc visit(q)
5 Visited := Visited ∪ {q}
6 count := count + 1
7 num[q] := count

8 lowlink [q] := count

9 push(SCCStack , q)
10

11 forall { q′ | [q, _, q′] ∈ ∆ } do

12 if q′ 6∈ Visited then

13 visit(q ′)
14 lowlink [q] := min(lowlink [q ′], lowlink [q])
15 elseif q′ ∈ SCCStack then

16 lowlink [q] := min(num[q ′], lowlink [q])
17 fi

18 od

19

20 if num[q] = lowlink [q] then

21 C := ∅
22 repeat

23 x := pop(SCCStack)
24 C := C ∪ {x}
25 until x = q

26 if C ∩ F 6= ∅ then

27 if C 6= {q} then

28 exit (“a fair SCC is found”)
29 else

30 if (q, _, q) ∈ ∆ then exit (“a fair SCC is found”) fi

31 fi

32 fi

33 fi

34 end

35

36 begin

37 visit(q0)
38 exit (“no fair SCC was found”)
39 end

111

5 Temporal Logic and Model Checking

5.3.3 Translating LTL Formulas into Büchi Automata

As outlined above, the automata theoretic approach to LTL model checking consists of
translating the negation of a given LTL formula ϕ into a Büchi automaton A¬ϕ, and
checking the product AM,ϕ of the property automaton and the model for emptiness.
The initial approaches to the translation of LTL formulas were not designed to yield
small automata. The procedure suggested in [WVS83] always yielded to the worst
case result |Qφ| = 2O(|ϕ|). Over last twenty years many LTL translation algorithms
have been developed. Most of them strive to produce small automata in an attempt to
produce a smaller product AM,ϕ and hence to speedup the emptiness check. As noticed
lately in [ST03], another way to reduce AM,ϕ is to output more deterministic automata.
Most of the modern translation algorithms are based on the approach proposed in
[GPVW95]. We sketch the general procedure and mention possible improvements.

Definition 49

• An LTL formula φ is said to be in the negation normal form (NNF) if the only
temporal operators used in it are X,U, and R and negations are applied only to
atomic propositions.

• For every temporal operator op ∈ {X,U,R}, we say that φ is an op-formula if
op is the root operator of φ.

• An elementary formula is either a constant c ∈ {True,False}, an atomic propo-
sition p ∈ AP , a negation of an atomic proposition, or an X-formula.

• A cover for a set of LTL formulas {φk}k is a set of sets of elementary formulas
{{νij}j}i such that

∧

k φk ⇔
∨

i

∧

j νij.

• We say that the occurrence of a subformula φ1 in an LTL formula φ is a top level
occurrence if it occurs only in the scope of boolean operators.

Using De Morgan’s Laws and the following equalities every LTL formula can be trans-
lated into an equal LTL formula of the same length5 in the negation normal form.

Fφ ≡ TrueUφ Gφ ≡ FalseRφ
¬(φ1Uφ2) ≡ ¬φ1R¬φ2 ¬Xφ ≡ X(¬φ).

A cover for a set of LTL formulas {φk}k is a typically obtained by computing the dis-
junctive normal form (DNF) of

∧

k φk, considering X-subformulas as boolean proposi-
tions.

Let AP be a set of atomic propositions used in ϕ. A translation procedure that we
consider creates a generalized Büchi automaton Aϕ = [Σ, Q,∆, q0,F]. However, it
annotates edges of the automaton with boolean expressions, rather than subsets of AP.

5This means with the same number of temporal operators.

112

5.3 Model Checking LTL

Each edge may represent several transitions in ∆, where each transition corresponds
to a truth assignment for AP that satisfies this boolean expression. For example, when
AP = {p1, p2, p3}, an edge labeled with p1 ∧ ¬p3 corresponds to transitions labeled
with {p1, p2} and {p1}.

The general translation schema of an LTL formula ϕ into a Büchi automaton works as
follows. First, ϕ is rewritten in the negation normal form. Second, ϕ is expanded by
applying the tableau rewriting rules:

φ1Uφ2 ≡ φ2 ∨ (φ1 ∧ X(φ1Uφ2)) φ1Rφ2 ≡ φ2 ∧ (φ1 ∨ X(φ1Rφ2))

until no U-formula or R-formula occurs a the top level. Then the resulting formula is
rewritten into a cover by computing its disjunctive normal form. Each disjunct of the
cover corresponds to a state of the resulting automaton. Atomic propositions and their
negations define a label l of the state, that is, a condition that an input word must
satisfy in this state. This means that in the automaton Aϕ, all incoming edges of this
state must be labeled by l . Remaining X-formulas represent the next part of the state,
that is, the obligations that must be fulfilled to get an accepting run. They determine
edges outcoming from the state as well as definition of fair sets.
The expansion process is applied recursively to the next part of each state, creating new
covers until no new obligations are produced. This results in a closed set of covers C,
so that, for each cover Cφi

∈ C, the next part of each disjunct in Cφi
has a cover in C.

The automaton is obtained by connecting each state to those in the cover of its next
part. A special state q0 without incoming edges is created and connected with all states
induced by the elementary cover of ϕ. Fair sets Fi must be added to the automaton for
every elementary subformula of the form X(φ1Uφ2). The fair set Fi contains all states
q 6= q0 such that the label of q implies φ2 or the next part of the state does not imply
φ1Uφ2. In the case when no fair sets must be added, we define F = {Q \ q0}.

Example 23
Let us start with a very simple translation of the formula ϕ = G¬p. We rewrite ϕ in
the NNF and apply tableau expansion rules

ϕ = FalseR¬p = ¬p ∧X(FalseR¬p).

The formula ϕ is in the DNF, thus the cover Cϕ = {{¬p,X(FalseR¬p)}}. This means,
we have a state q1 with a label l1 = ¬p. The obligation in the next part of q1 is
φ1 = FalseR¬p = ϕ. Thus, the cover Cφ1 = Cϕ and we have already got the closed
set of covers C = {Cϕ}. We create two states q0 and q1. The cover in the next part
of q1 is Cϕ, thus we create an edge from q1 back to itself. As q1 is induced by the
cover Cϕ, we create also an edge from q0 to q1. All incoming edges of q1 must be
labeled by the label l1 = ¬p. We have met no subformulas of the form X(φ1Uφ2),
therefore F = {Q \ q0} = {{q1}}. The resulting automaton is shown in Fig. 5.6, left.

113

5 Temporal Logic and Model Checking

¬p

AG¬p

AXp1∧(p2U¬p1)

q1q0
q0

p2

¬p1

q1

q2

p1

q5

q3

¬p1

p2p1 ∧ p2

p2

True

True

q4

True

q6

¬p1

q7

¬p

Figure 5.6: Automata produced in the Examples 23 and 24

Example 24
Let us consider now a more complicated translation of the formula ϕ = Xp1∧(p2U¬p1).
We apply tableau expansion rules and rewrite ϕ in the DNF:

ϕ = Xp1 ∧ (p2U¬p1)

= Xp1 ∧ (¬p1 ∨ p2 ∧ X(p2U¬p1))

= ¬p1 ∧ Xp1 ∨ p2 ∧ Xp1 ∧ X(p2U¬p1).

The cover for the formula ϕ is

Cϕ = {{¬p1,Xp1}, {p2,Xp1,X(p2U¬p1)}}.

This means, we have a state q1 with a label l1 = ¬p1 and a state q2 with a label l2 = p2.
New obligations are φ1 = p1 and φ2 = p1 ∧ (p2U¬p1).

We notice that φ1 = p1 ∧XTrue, thus Cφ1 = {{p1,XTrue}}. We get a state q3 with a
label l3 = p1 and a new obligation φ3 = True.

φ3 = True ∧ XTrue and the cover Cφ3 = {{True ,XTrue}}, a state q4 has a label
l4 = True, no new obligations have to be considered.

We return back and compute a cover for φ2

φ2 = p1 ∧ (p2U¬p1)

= p1 ∧ (¬p1 ∨ p2 ∧ X(p2U¬p1))

= p1 ∧ ¬p1 ∨ p1 ∧ p2 ∧ X(p2U¬p1)

= p1 ∧ p2 ∧ X(p2U¬p1).

The cover Cφ2 = {{p1, p2,X(p2U¬p1)}}, we get a state q5 with a label l5 = p1 ∧ p2

and a new obligation φ5 = p2U¬p1.

Finally,
φ5 = (p2U¬p1) = ¬p1 ∨ p2 ∧ X(p2U¬p1).

114

5.3 Model Checking LTL

The cover Cφ5 = {{¬p1,XTrue}, {p2,X(p2U¬p1)}}, we get a state q6 with a label
l6 = ¬p1 and a state q7 with a label p2. No new obligations have to be considered,
we have finally got the closed set of covers C = {Cϕ, Cφ1 , . . . , Cφ5}. The resulting
automaton is shown in Fig. 5.6, right. This time we have a fair set induced by the
formula X(p2U¬p1), therefore F = {{q1, q3, q4, q6}}.

We can simplify the fair set. The automaton has one non-trivial SCC {q4}, which is
also fair. According to Definition 48, we conclude that the automaton is terminal, due
Lemma 8, we can define the set F = {{q4}}.

In practice, the procedure translating an LTL formula φ into a Büchi automaton pro-
ceeds in three stages:

1. application of rewrite rules to φ,

2. translation of φ into Aφ,

3. optimization of Aφ.

Rewriting is a cheap, simple and effective way to minimize the result of the translation.
Usually, a family of rewrite rules is defined. The rules are applied then recursively,
reducing the number of operators in the LTL formula. Let us consider, for example,
reductions defined in [EH00].

Definition 50
A class of pure eventuality formulas is defined as a smallest set of LTL formulas (in
the negation normal form) satisfying:

1. Any formula of the form TrueUφ is a pure eventuality formula.

2. If φ1 and φ2 are pure eventuality formulas, then φ1∧φ2, φ1∨φ2, φ1Uφ2, FalseRφ1,
φ1Rφ2, and Xφ1 are also pure eventuality formulas.

A class of pure universal formulas is defined as a smallest set of LTL formulas (in the
negation normal form) satisfying:

1. Any formula of the form FalseRφ is a pure universal formula.

2. If φ1 and φ2 are pure universal formulas, then φ1∧φ2, φ1∨φ2, φ1Rφ2, TrueUφ1,
φ1Uφ2, and Xφ1 are also pure universal formulas.

Lemma 9 ([EH00])
For all LTL formulas φ1, φ2, and φ3 the following equivalences hold:

1. (φ1Uφ2) ∧ (φ3Uφ2) ≡ (φ1 ∧ φ3)Uφ2

115

5 Temporal Logic and Model Checking

2. (φ1Uφ2) ∨ (φ1Uφ3) ≡ φ1U(φ2 ∨ φ3)

3. TrueU(φ1Uφ2) ≡ TrueUφ2

4. If φ is a pure eventuality formula, then φ1Uφ ≡ φ, and TrueUφ ≡ φ

5. If φ is a pure universal formula, then φ1Rφ ≡ φ, and FalseRφ ≡ φ.

Recall that in the translation stage we have applied a procedure that produces a closed
set of covers. An LTL formula has many covers, which one is chosen, affects the size of
the resulting automaton by directly affecting what states are added to the automaton
and by determining what covers will belong to the closed set. Boolean optimization
techniques are applied in [SB00] striving for smaller automata, techniques employing
semantic branching are used in [ST03] to get more deterministic automata.

A number of techniques have been proposed to optimize Büchi automata. Simulation
and bisimulation are used to reduce the number of states and transitions in [EH00] and
[SB00]. Simplification of fair sets also has several benefits. It may lead to a reduction
in the strength of the resulting automaton, simplifying the symbolic model checking.
Even when the strength of the automaton is not reduced, fewer, smaller fair sets usually
lead to faster convergence of the emptiness check. Finally, it may also enable further
reductions in the number of states and transitions. Techniques for simplification of fair
sets based on the analysis of SCCs were suggested in [SB00].

5.4 Closing Remark

Model checking is a technique that provides means to automatically check whether a
finite state model of a system satisfies a given specification. Normally, the procedure
uses an exhaustive exploration of all possible states of the model to determine whether
it satisfies a property expressed in a temporal logic. The main drawback of model
checking is the state explosion problem. Symbolic methods, with which we deal in this
thesis, are one of the most successful approaches to combat it.

Two possible views regarding the nature of time induce two types of temporal logics. In
linear temporal logics, time is treated as if each moment has a unique possible future.
In branching temporal logics, each moment in time may split into various possible
futures. We have concentrated on the two most popular and commonly supported
temporal logics: on the linear time logic LTL and on the branching time logic CTL.
Being relatively easy to use, these logics allow specification of many properties of
interest, as well as efficient implementation of model checking tools. A model checker
for the more expressive logic CTL⋆ can be implemented as a combination of CTL and
LTL model checkers [CGP01].

116

5.4 Closing Remark

CTL and LTL are expressively incomparable. CTL formulas are state formulas, the
truth of a CTL formula depends only on the current state and does not depend on the
current path. This limitation carries also its benefits, allowing to implement simple and
efficient CTL model checking algorithms. LTL deals only with a set of computations
and not in the way these are organized into a tree, hence LTL can not express that at
some state it is possible to extend the computation in this or that way. The dominant
approach to the LTL model checking is the automata theoretic approach.

Actually, we have only touched a tip of the iceberg “Model checking”, we refer once
again to [CGP01]. In the next chapters we shall discuss an implementation of symbolic
CTL and LTL model checkers for Petri nets.

117

5 Temporal Logic and Model Checking

118

6 Symbolic CTL Model Checking of

Bounded Petri Nets

Functions for the symbolic manipulations of Petri nets defined in chapter 4 allow a
straightforward implementation of a symbolic CTL model checker. In this chapter we
consider how to make this implementation efficient.

Conventional symbolic CTL algorithms introduced in the previous chapter are based
on the breath-first order exploration of the state space. As shown in section 4.3, stray-
ing from this strategy can significantly improve efficiency of symbolic algorithms for
Petri nets. We study how the saturation technique introduced in section 4.3.2 can be
employed in CTL algorithms.

Performance of the symbolic state space exploration depends heavily on the structure of
the model. Sometimes, forward state traversals are quite efficient, whereas intermediate
decision diagrams created during the backward state space exploration become too
large and can not be handled efficiently. A CTL model checking algorithm based mainly
on forward state traversals was suggested in [INH96]. We show how this algorithm can
be implemented using functions defined in chapter 4.

We also discuss how to improve efficiency of the model checking with fairness con-
straints and how to generate counterexamples and witnesses.

6.1 Petri Nets and CTL

Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a bounded P/T net with extended arcs.
We assume that places of N are enumerated P = {p1, . . . , pn}. Since states of N are its
reachable markings, we should take the set of atomic propositions AP as an arbitrary
set of propositions on the set of markings. For convenience, we take AP as a set of
interval logic expressions over the variables p1, . . . , pn, with the following interpretation:
an atomic proposition G is satisfied in a state m if m belongs to the set of markings MG

described by an interval logic function induced by the expression G1. This allows quite
natural specifications for Petri nets like “AGEF(p1 = 3 ∧ p2 ∈ [2, 5) ∨ p4 > 0)”.

We say that the net N satisfies a CTL formula ϕ if this formula is satisfied in the
Kripke structure MN = [S,R,L, S0] where:

1For the sake of brevity, we shall write simply “a set of markings MG described by G”.

119

6 Symbolic CTL Model Checking of Bounded Petri Nets

• S = RN (m0)

• R = {(m,m′) | m,m′ ∈ S ∧ ∃t ∈ T : m
t

−→ m′} ∪ {(m,m) | m ∈ S ∩ DN}

• L(m) = {G ∈ AP | m ∈ MG}

• S0 = {m0}.

Notice that by adding self-loops in dead states we guaranty that the relation R is total.
Sometimes we have a set2 of initial markings M0 = {m01 , . . . ,m0k

} and want to check
if the net satisfies a CTL formula for all of them. In this case we can solve one model
checking problem instead of k if we modify the definition of MN as

• S =
⋃

m∈M0
RN (m)

• S0 = M0.

Thus, to check if the net N satisfies a CTL formula ϕ we can compute the reachability
sets RN (m0i

), construct the Kripke structure MN and apply model checking algo-
rithms discussed in the previous chapter. Obviously, an explicit construction of MN

suffers from the state explosion problem. We aim at symbolic model checking and reuse
functions for the symbolic manipulations of Petri nets that we have defined in chap-
ter 4. As states of the net N correspond directly to states of the Kripke structure MN ,
the set S can be computed as

S =
⋃

m∈M0

RN (m) = FwdReach(M0).

Furthermore, examining symbolic CTL algorithms introduced in sections 5.2.3 and
5.2.4, we notice that the only functions that have to be adapted are EvalAtomic and
EvalEX, as all algorithms are implemented using only usual set operators and these
functions. As defined above, atomic propositions are interval logic expressions now,
thus

EvalAtomic(G) = S ∩ MG ,

where MG is a set of markings described by G. When computing EvalEX(S′) we must
take into account that the function PreImg was defined for Petri nets in such a way that
the returned set can also contain markings that do not belong to RN (m0). Moreover,
due to the definition of the Kripke structure MN , we have to simulate a self-loop in
dead states, thus

EvalEX(S′) = (PreImg(S′) ∩ S) ∪ (DN ∩ S′).

Implementation of a symbolic CTL model checker for P/T nets with extended arcs
is now straightforward. In the next sections we shall discuss how we can improve
conventional CTL model checking algorithms.

2Of course, we have to require that this set is finite.

120

6.2 Employing Saturation Strategy

6.2 Employing Saturation Strategy

Let us consider the algorithm computing a set Z of states satisfying E[φ1Uφ2] (Algo-
rithm 19 on page 103). We denote a set of states that satisfy φ1 as S ′

1 and a set of
states satisfying φ2 as S ′

2 . Starting from the set S′
2, the algorithm iteratively adds all

states that reach them on the paths along states in S′
1. In other words, it performs the

limited backward reachability analysis starting from the states in S′
2. The exploration

of the state space is done in the breath-first order. Recall that performance of the
symbolic reachability analysis of Petri nets can be drastically improved if we can stray
from the breath-first exploration and employ the saturation strategy. We notice that
we can compute the set Z using the function LimBwdReach defined in section 4.3.3

Z = LimBwdReach(S′
2, S′

1 ∪ S′
2).

This means, we get “for free” an efficient saturation-based implementation of the func-
tion EvalEU.

Consider now the algorithm computing a set Z of states satisfying EGφ (Algorithm 20
on page 103). Let S′ be a set of states that satisfy φ. The algorithm initializes its
working set Q′ with a set S′ and iteratively removes states that have no successors in
Q′ until only non-trivial SCCs of S′ and their incoming paths along states in S′ are left.
We have not yet defined any suitable saturation-based function that could be directly
used to compute Z. Moreover, as the algorithm is based on the computation of the
greatest fixpoint and its working set Q′ is monotonically decreasing, we can not directly
rewrite it to use the saturation strategy, which exploits the fact that transitions can
add states to the working set in any desired order and independently from each other.
Recall that EGφ ≡ ¬AF¬φ and AF has a least fixpoint characterization

AFφ = µZ. φ ∨ AX Z.

We can not apply the saturation strategy to compute the set of states satisfying AF¬φ
as well: for a state s we have to consider all its direct successors to decide whether s

can be added to the working set or not. Nevertheless, saturation-based algorithms can
be still employed to compute Z. We can adapt Algorithm 18 (page 100) used in the
explicit CTL model checking. The saturation-based version of the Lockstep algorithm
(Algorithm 16 on page 87) can be used to enumerate all SCCs in the set S′. Let T be
a set of all non-trivial SCCs computed in this way, we can compute the set Z as

Z = LimBwdReach(T ∪ (DN ∩ S′) , S′).

However, this approach is not promising. The need to enumerate trivial SCCs decreases
drastically performance of the Lockstep algorithm. Eliminating trivial SCCs using the
backward trimming corresponds directly to the elimination procedure of the original
algorithm computing EGφ.

121

6 Symbolic CTL Model Checking of Bounded Petri Nets

6.3 OWCTY Algorithm

Let us consider the algorithm computing states satisfying EGfairφ1 (Algorithm 21 on
page 105). It maintains a set of states that may lead to a non-trivial fair SCC and
repeatedly refines this approximation by removing states that can not lead to any non-
trivial fair SCC. Only one pruning step is done per iteration. It was noticed that more
aggressive pruning strategies can improve efficiency of the algorithm. As analyzed in
[FFK+01], a total number of computations made in the algorithm can be reduced by
balancing a number of computations made in the function EvalEU and a number of
pruning steps. Consider Algorithm 23, proposed in [FFK+01] under the name One-
Way-Catch-Them-Young (OWCTY). The difference between the pruning strategies of
the original algorithm (denoted as EL, for Emerson-Lei) and OWCTY is easiest to
understand by an example.

Example 25

Two Kripke structures are sketched in Fig. 6.1. We assume that all states satisfy φ1,
fair states are shaded. Consider the upper Kripke structure. Both algorithms elimi-
nate the rightmost state in the first iteration and capture the remaining states in the
approximation set. During the first iteration, OWCTY eliminates all but the leftmost
fair state. EL eliminates only the rightmost fair set. EL requires an additional iteration
to eliminate each of the five middle fair states. Each iteration involves a reachability
computation that OWCTY does not perform. If the chain of fair states contained n fair
states, OWCTY would perform O(n) calls to EvalEX while EL would make O(n2) calls.
Thus, EL has a quadratic overhead relative to OWCTY on such Kripke structures.

Now consider the second Kripke structure. Both algorithms eliminate the rightmost

Algorithm 23 (Computing states satisfying EGfairφ1)

1 func EvalFairEG(S ′)
2 Q ′ := S ′

3 repeat

4 Q := Q ′

5 forall F ∈ F do

6 Q ′ := EvalEU(Q ′, Q ′ ∩ EvalEX(F ∩ Q ′))
7 repeat

8 Old := Q ′

9 Q ′ := Q ′ ∩ EvalEX(Q ′)
10 until Old = Q ′

11 od

12 until (Q = Q ′)
13 return Q

14 end

122

6.4 Model Checking Based on Forward Traversals

Figure 6.1: Kripke structures illustrating the difference between EL and OWCTY

state in the first iteration and retain the remaining states in the approximation set.
During the first iteration EL throws away the rightmost fair state. The reachability
computation in the second iteration begins at the middle fair state. Thus, EL eliminates
the non-fair sets between the right two fair sets without traversing them explicitly.
OWCTY, in contrast uses an additional call to EvalEX to eliminate each of these non-
fair states. The Kripke structure contains two copies of a chain of states consisting of
four non-fair states followed by a fair state. If it had k consecutive copies of this chain,
each with m states in the initial non-fair chain, EL would perform O(k2 · m) calls to
EvalEX as compared to OWCTY’s O(k2 ·m + km) = O(k2 ·m). That is, the overhead
of OWCTY relative to EL is linear. As for any Kripke structure OWCTY performs
no more external iterations than EL, in practice, OWCTY almost always matches or
improves on EL’s performance.

Notice that in our case the efficiency of the algorithms is improved due to the saturation-
based implementation of the function EvalEU.

6.4 Model Checking Based on Forward Traversals

Performance of the symbolic state space exploration depends heavily on the structure of
the model. Sometimes, forward state traversals are quite efficient, whereas intermediate
decision diagrams created during the backward state space exploration become too
large and can not be handled efficiently. A CTL model checking algorithm based mainly
on forward state traversals was suggested in [INH96]. The algorithm can check many
realistic CTL properties without doing backward state space exploration.

The underlying idea of the algorithm is that the model checking problem can be
translated into a problem of comparing a formula with the constant False . Let M =
[S,R,L, S0] be a Kripke structure, s ∈ S0 be some state and φ be an arbitrary CTL
formula. Let p0 be a CTL formula that holds only in the state3 s0, and P0 be a formula
that holds only in the states of the set S0. The notation “ |=” can be rewritten then as
follows:

M,s0 |= φ ⇐⇒ p0 ∧ φ 6= False

3Equivalently, we can say that p0 is a characteristic function of the set {s0}.

123

6 Symbolic CTL Model Checking of Bounded Petri Nets

M,s0 |= φ ⇐⇒ p0 ∧ ¬φ = False

∀s ∈ S0 M,s |= φ ⇐⇒ P0 ∧ ¬φ = False .

We introduce temporal operators that can be evaluated in the forward manner. EY
and EH are commonly used past-tense CTL operators, FwdUntil and FwdGlobal were
proposed in [INH96].

• EY is a past-tense operator dual to EX, EYφ holds in a state s ∈ S if φ holds
at least in one of the predecessors states of s

EvalEY(S ′) = {s ∈ S | ∃s′ ∈ S′ : (s′, s) ∈ R}.

• EH is a past-tense operator dual to EG, EHφ = νZ. φ ∧ EY Z.

• FwdUntil(φ1, φ2) = µZ. φ1 ∨ EY(Z ∧ φ2).

• FwdGlobal(φ1, φ2) = EH(FwdUntil(φ1, φ2) ∧ φ2)).

Using these operators, a family of conversion rules which can replace outermost eval-
uations of EX, EG, and EU can be defined [INH96]

φ1 ∧ EXφ2 6= False ⇐⇒ EYφ1 ∧ φ2 6= False

φ1 ∧ EXφ2 = False ⇐⇒ EYφ1 ∧ φ2 = False

φ1 ∧ E[φ2Uφ3] 6= False ⇐⇒ FwdUntil(φ1, φ2) ∧ φ3 6= False

φ1 ∧ E[φ2Uφ3] = False ⇐⇒ FwdUntil(φ1, φ2) ∧ φ3 = False

φ1 ∧ EGφ2 6= False ⇐⇒ FwdGlobal(φ1, φ2) 6= False

φ1 ∧ EGφ2 = False ⇐⇒ FwdGlobal(φ1, φ2) = False.

Notice that a problem of comparing a disjunctive expression with the constant False ,
such as “φ1 ∨ φ2 6= False”, can be divided into subproblems, such as “φ1 6= False” and
“φ2 6= False”. Each term can be checked separately and if at least one of them is not
the constant False, the entire expression is not the constant False . Notice also that
not all CTL operators must be converted into forward traversal operators. Remaining
operators can be evaluated in the usual manner, with backward state traversals.

Given a CTL formula φ, a conversion procedure must proceed as follows:

1. Rewrite φ to use only temporal operators EX, EU, and EG.

2. Translate the “ |=” notation into an expression comparing a formula with the
constant False .

3. Arrange outermost boolean operations in disjunctive normal form, and divide the
problem into a set of subproblems comparing each term with False.

124

6.4 Model Checking Based on Forward Traversals

4. For each subproblem, convert an outermost operator EX, EU or EG using the
conversion rules defined above, if applicable.

5. For each newly updated subproblem, call the procedure recursively from the
step 3.

Applying this procedure, many typically used CTL formulas can be fully converted to
forward state traversal problems.

Example 26
Let us consider the conversion of a quite often used CTL formula AG(p1 → AFp2)

M,s0 |= AG(p1 → AFp2)

⇐⇒ M,s0 |= ¬E[TrueU(p1 ∧ EG¬p2)]

⇐⇒ p0 ∧ E[TrueU(p1 ∧ EG¬p2) = False

⇐⇒ FwdUntil(p0,True) ∧ (p1 ∧ EG¬p2) = False

⇐⇒ (FwdUntil(p0,True) ∧ p1) ∧EG¬p2) = False

⇐⇒ FwdGlobal((FwdUntil(p0,True) ∧ p1),¬p2) = False .

Not every CTL formula can be converted to use only forward operators. Let us try to
translate a formula φ = AGEFp.

M,s0 |= AGEFp

⇐⇒ M,s0 |= ¬E[TrueU¬E[TrueUp]]

⇐⇒ p0 ∧ E[TrueU¬E[TrueUp]] = False

⇐⇒ FwdUntil(p0,True) ∧ ¬E[TrueUp] = False .

No more conversion rules are applicable, therefore both forward and backward traver-
sals must be done to check this formula.

We aim at symbolic model checking of Petri nets, thus, to implement the described
approach we must implement functions EvalEY, EvalFwdUntil, and EvalEH using
operations defined in chapter 4. Implementing EvalEY is easy, we just have not to
forget to simulate a self-loop in dead states.

EvalEY(S′) = Img(S′) ∪ (DN ∩ S′).

A fixpoint characterization of the operator FwdUntil suggests the following implemen-
tation of the function EvalFwdUntil(S′

1, S
′
2). We must compute all states reachable

from the states in S′
1 ∩ S′

2 over the paths in S′
2. We notice that it is exactly the set

of states which must be returned by the function LimFwdReach(S′
1, S

′
2) (recall the

125

6 Symbolic CTL Model Checking of Bounded Petri Nets

definition in section 4.3.3). Thus, we can reuse Algorithm 13 and the forward based
CTL model checking will immediately benefit from our saturation strategy. An al-
gorithm implementing the function EvalEH replaces only the line 6 in the algorithm
implementing EvalEG (Algorithm 20 on page 103) with

Q ′ := S ′ ∩ EvalEY(Q ′).

Now, given a CTL formula φ to be verified, we convert it as described above and get a
number of subproblems of the form φi 6= False or φi = False . As usual, we evaluate φi

starting from the innermost subformulas and obtain a set Z of states that satisfy φi.
The set Z = ∅ if and only if φi = False .

6.5 Counterexamples and Witnesses

An important feature of a model checker is the ability to generate counterexamples
and witnesses. When this feature is enabled and the model checker determines that
a formula with a universal path quantifier is not satisfied, it can find a computation
which demonstrates why the negation of the formula is true. Likewise, when the model
checker determines that a formula with an existential path quantifier is satisfied, it can
find a computation that demonstrates why it is so. For example, if a formula AGp is
not satisfied, a path to a state in which ¬p holds will be generated. A counterexample
for a universally quantified formula is a witness for the dual existentially quantified
formula. Thus, it is enough to consider how to generate witnesses for the operators
EX, EU, and EG. We consider how to implement a witnesses generation procedure in
a symbolic CTL model checker for Petri nets. Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0]
be a bounded P/T net with extended arcs.

Suppose, we want to show that a formula EXφ1 holds at least in one of the states
in the set B. Let M be a set of states where φ1 is satisfied. We need to find some

transition t ∈ T such that ∃m′ ∈ B, ∃m ∈ M and m′ t
−→ m. Another possibility is to

find some dead state that belongs both to B and M . This behavior is implemented in
the function ShowEX in Algorithm 24.

Suppose that we want to show that a formula φ = E[φ1Uφ2] holds at least in one of
the states in the set M ⊆ S. Let S ′

1 be a set of states satisfying φ1 and S ′
2 be a set of

states satisfying φ2. If M ∩ S′
2 6= ∅, then the witness is trivial, so let us assume that

M ∩S′
2 6= ∅. Starting with a set Q0 = M ∩S′

1, we generate a sequence of “onion-rings”
Q1, . . . , Qn as follows:

Qi = (Img(Qi−1) ∩ S′
1) \ QΣ where QΣ =

⋃

0≤j≤i−1

Qj.

The generation is stopped when either Img(Qn) ∩ S′
2 6= ∅ or Qn = ∅. Actually, we just

do the limited forward breath-first search and save intermediate frontier sets. As QΣ is

126

6.5 Counterexamples and Witnesses

Algorithm 24 (Witness generation for EX)

1 func ShowEX (M , B)
2 M ′ := M ∩ DN ∩ B

3 if M ′ 6= ∅ then

4 say(“dead”)
5 return M ′

6 fi

7 forall t ∈ T do

8 M ′ := RevFire(M , t) ∩ B

9 if M ′ 6= ∅ then

10 say(t)
11 return M ′

12 fi

13 od

14 /* EX does not hold */
15 return ∅
16 end

Algorithm 25 (Auxiliary functions for the witness generation procedure)

1 func FindEU (M , S ′
1 , S ′

2)
2 M ′ := M ∩ S′

2

3 if M ′ 6= ∅ then return (M ′, ∅) fi

4 Q := M ∩ S′
1

5 QΣ := ∅
6 Stack := ∅
7 while Q 6= ∅ do

8 push(Stack , Q)
9 QΣ := QΣ ∪ Q

10 M ′ := Img(Q) ∩ S′
2

11 if M ′ 6= ∅ then break fi

12 Q := (Img(Q) ∩ S′
1) \ QΣ

13 od

14 if M ′ 6= ∅ then return (M ′,Stack) fi

15 return (∅, ∅) /* EU does not hold */
16 end

1 func Show (M , Stack)
2 M ′ := M

3 while Stack 6= ∅ do

4 Q := pop(Stack)
5 M ′ := ShowEX(M ′, Q)
6 od

7 return M ′

8 end

127

6 Symbolic CTL Model Checking of Bounded Petri Nets

φ1

φ1

φ1

φ1

Q3

Q4

Q2

φ2

Q1

Q0

φ1

Figure 6.2: Generation of a witness for E[φ1Uφ2]

a monotonically increasing subset of S , the search terminates after a finite number of
steps. Qn = ∅ if φ is not satisfied in all states in M . Suppose M ′

n = Img(Qn)∩ S′
2 and

M ′
n 6= ∅. In this case the witness (presented in the reversed order) can be generated by

n calls M ′
i = ShowEX(M ′

i+1, Qi) for i = n− 1, . . . , 0. The correctness of the procedure
follows from the fact that

for 0 ≤ i ≤ n − 1 M ′
i ⊆ Qi and Qi+1 ⊆ Img Qi.

Notice that due to the usage of the breath-first exploration we have generated the
shortest possible witness. The described procedure is illustrated in Fig. 6.2. The sets
M ′

i are shaded, transitions chosen in ShowEX are drawn with solid, possible transitions
that were not chosen, with dashed lines. Consider Algorithm 25. Generation of onion-
rings is implemented in the function FindEU, it returns the Stack with onion-rings
and the set M ′

n. Demonstration of the witness is implemented in the function Show, it
returns the set M ′

0.

Let us consider the case when we must generate a witness for a set M ⊆ S and a
formula φ = EGφ1. Let Z be a set of states satisfying φ. The problem is easy if there
exists some dead state of N that belongs to the set Z . Let GD be an interval logic
expression that describes the set Z ∩ DN . We just need to generate a witness for the
formula E[φ1UGD]. Let us assume that Z ∩ DN = ∅, a witness has a form of a finite
stem followed by a finite cycle in this case. We shall employ the symbolic algorithm
which enumerates SCCs, recall section 4.4. Let C be the first non-trivial SCC found
in the set Z . With a call (M ′

1,Stack1) = FindEU(M,Z,C) we find the first states
in C that are reachable from states in M . We can search for a cycle now, so we pick
some state s ∈ M ′

1 and make a call (M ′
2, Stack2) = FindEU(Img({s}), C, {s}). Since

C is a non-trivial SCC, the cycle is guaranteed to be found. We announce the end
of the cycle and make a call M ′

3 = Show({s},Stack2) to demonstrate (in the reversed
order) a path from states in Img({s}) to s. The demonstration of the cycle is completed
with a call ShowEX(M ′

3, {s}). Hereafter, the stem of the witness is demonstrated using
onion-rings stored in Stack1 .

128

6.6 Closing Remark

Generation of a witness for a formula φ = EGfairφ1 is similar. We just need to find a
fair non-trivial SCC and demonstrate a cycle that intersects all fair sets.

In procedures generating witnesses for EGφ1 and EGfairφ1, the found SCC may be far
away from the initial states and can induce a long witness. To generate witnesses with
shorter stems we can adopt an approach proposed in [RBS00]. The SCC enumeration
algorithm must be modified so, that sets to be decomposed are prioritized by the
distance from the initial states (computed using onion-rings produced by the breath-
first order traversal of the set Z).

We have to notice that due to the fact that generation of witnesses is based on the
breath-first order exploration of the state space, this procedure becomes expensive
when long witnesses must be generated and intermediate sets of states are not repre-
sented concisely by decision diagrams. Adopting the conventional algorithm [CGMZ95,
CGP01] (only generation of witnesses for formulas EGfairφ is considered there) would
result in the procedure that can require even more breath-first order traversals.

6.6 Closing Remark

Functions for the symbolic manipulations of Petri nets defined in chapter 4 allow a
straightforward implementation of a symbolic CTL model checker. We have discussed
how to make this implementation efficient.

Conventional symbolic CTL algorithms are based on the breath-first order exploration
of the state space. Recall that any CTL formula can be expressed using only temporal
operators EX,EU, and EG. Correspondingly, the model checking algorithm employs
functions EvalEX, EvalEU, and EvalEG. A single computation of EvalEX can be con-
sidered as a cheap operation. Our saturation-based implementation allows to improve
significantly the efficiency of EvalEU. Unfortunately, we could not employ the satura-
tion technique to improve the computation of EvalEG.

Performance of the symbolic state space exploration depends heavily on the structure of
the model. Sometimes, forward state traversals are quite efficient, whereas intermediate
decision diagrams created during the backward state space exploration become too
large and can not be handled efficiently. A CTL model checking algorithm based mainly
on forward state traversals [INH96] can be easily implemented using functions defined
in chapter 4, moreover, it benefits also from the saturation technique.

More aggressive pruning strategies can improve efficiency of the Emerson-Lei algorithm,
which is used in the CTL model checking with fairness constraints. We shall return to
them in the next chapter where we shall discuss implementation of a symbolic LTL
model checker for Petri nets.

129

6 Symbolic CTL Model Checking of Bounded Petri Nets

130

7 Symbolic LTL Model Checking of

Bounded Petri Nets

Implementing a symbolic LTL model checker for Petri nets is a challenging task. Im-
plementation for 1-bounded P/T nets was considered in [Spr01]. We are not aware of
any attempts to implement a symbolic LTL model checker for k-bounded nets.

The automata theoretic approach to LTL model checking consists of translating a
model M and a negation of an LTL formula ϕ into Büchi automata AM and A¬ϕ and
checking the product automaton AM,ϕ = AM ∩ A¬ϕ for emptiness. Construction of
the automaton AM for a Petri net NM involves computation of its reachability set and
suffers obviously from the state explosion problem. An approach based on the Büchi
net formalism [EM97] was employed in [Spr01]. The underlying idea of the approach is
to construct a product Büchi net instead of the product Büchi automaton and reduce
then the model checking problem to a certain net emptiness problem.

When the net NM has no reachable dead states, the approach employing Büchi nets is
very elegant and has a number of advantages. However, it becomes unnatural when nets
which can have reachable dead states must be verified. We forbear from the adaptation
of the Büchi net formalism. The underlying idea of the used approach is to construct a
product net in such a way that sets of its reachable markings can represent sets of states
of the product automaton AM,ϕ. Operations defined in chapter 4 are used to implement
functions for the symbolic exploration of AM,ϕ. These functions are employed then in
the implementation of algorithms for the emptiness check of AM,ϕ.

7.1 LTL and Petri Nets

Definition 51
Let N = [P ,T ,F , I ,R,Z ,V ,VI ,VR,m0] be a P/T net with extended arcs. A run of
the net N is an infinite sequence of markings m′

0,m
′
1,m

′
2, . . . such that m′

0 = m0 and

for every i ≥ 0 either ∃t ∈ T : m′
i

t
−→ m′

i+1 or m′
i ∈ DN and m′

i+1 = m′
i. A language

L(N(m0)) of the net N is a set of all its runs.

For every bounded P/T net with extended arcs N we can construct a Büchi automaton
AM = [Σ, QM ,∆M , q0M

, QM] such that L(AM) = L(N(m0)) as follows:

• Σ = MN

131

7 Symbolic LTL Model Checking of Bounded Petri Nets

• QM = RN (m0) ∪ {q0M
}

• (m,m′,m′) ∈ ∆M for m,m′ ∈ (QM \ {q0M
}) if and only if ∃t ∈ T : m

t
−→ m′ or

m ∈ DN and m′ = m

• (q0M
,m,m) ∈ ∆M if and only if m = m0.

Given a set of initial markings I0 = {m01 , . . . ,m0k
}, we can construct a Büchi au-

tomaton AMI0 such that L(AMI0) =
⋃

m∈I0
L(N(m)) if we modify the definition as

follows:

• QM =
⋃

m∈I0
RN (m) ∪ {q0M

}

• (q0M
,m,m) ∈ ∆M if and only if m ∈ I0.

We assume that places of N are enumerated P = {p1, . . . , pn}. As a set of atomic
propositions for LTL formulas we can define a set containing interval logic expressions
over the variables p1, . . . , pn. We shall use Büchi automata produced by the procedure
described in section 5.3.3. Recall that it creates automata with edges labeled by boolean
expressions over atomic propositions. Let A¬ϕ = [Σ, Q¬ϕ,∆¬ϕ, q0¬ϕ,F¬ϕ] be such an
automaton, F¬ϕ = {F¬ϕ1, . . . , F¬ϕn}. We can also treat ∆¬ϕ directly as a set of edges,
notice that due to Definition 25, labels on the edges are again interval logic expressions.
The product automaton AM,ϕ = AM ∩ A¬ϕ = [Σ, QM,ϕ,∆M,ϕ, q0M,ϕ

,FM,ϕ] is defined
then as follows:

• Σ = MN

• QM,ϕ = QM × Q¬ϕ

• ((m, q), m′, (m′, q′)) ∈ ∆M,ϕ if and only if (m,m′,m′) ∈ ∆M and there exists
(q,G, q′) ∈ ∆¬ϕ such that m′ ∈ MG (MG denotes a set of markings described by
the expression G).

• q0M,ϕ
= (q0M

, q0¬ϕ)

• FM,ϕ = {F1, . . . , Fn} where Fi = (QM × F¬ϕi).

7.2 Product Net

An explicit construction and exploration of the product automaton AM,ϕ defined in
the previous section suffers obviously from the state explosion problem. We can try to
adopt an approach based on the Büchi net formalism. The approach was introduced
in [EM97] to implement a semidecision test whether a 1-bounded P/T net satisfies an
LTL formula ϕ (a procedure based on the T-invariants analysis which might answer

132

7.2 Product Net

q0 q1

p2 = 0

p2 = 0

p2

p1

NM

t1

t2

q0

SCN

pi

p2

p1

q1

NM A¬ϕ
SCA

ti

t2

tA2

tA1

t1

A¬ϕ

NM,A

Figure 7.1: Example construction of a product Büchi net

either “don’t know”, or “yes”, in which case ϕ was satisfied). The underlying idea of the
approach was to construct a product Büchi net instead of the product Büchi automaton.
The model checking problem was reduced then to a certain net emptiness problem, very
similar to the emptiness problem of Büchi automata. This approach was employed in
[Spr01] for the symbolic LTL model checking of 1-bounded P/T nets. The following
example should give an intuition how we can uplift the technique to k-bounded P/T
nets with extended arcs.

A net NM , a Büchi automaton A¬ϕ (obtained from the LTL formula ¬ϕ = G(p2 = 0)),
and a corresponding product Büchi net NM,A are shown in Fig. 7.1. The places SCN

and SCA are used to guaranty that the net counterparts corresponding to NM and A¬ϕ

alternate their steps. The A¬ϕ counterpart can be seen as an “observer”, which monitors
markings of NM and allows to recognize its accepting runs. Every edge (q,G, q′) ∈ ∆¬ϕ

is represented by a transition, which is connected with contextual arcs with places of
NM and can fire only in markings of NM which belong to the set described by the
expression G. So, inhibitor arcs connect the place p2 with transitions tA1 and tA2 .
The Büchi net formalism defines a notion of accepting places and a notion of the net
emptiness. A Büchi net is not empty if some marking in which an accepting place
contains a token lies on a cycle in its reachability graph. In our example, the place q1

is accepting and the net NM,A is empty (it is easy to see that its reachability graph
contains no cycles).

The main problem of the sketched construction of the product Büchi net NM,A is that
it can correctly represent the behavior of the product automaton AM,ϕ (i.e. NM,A is
empty if and only if AM,ϕ is empty) only when the net NM has no reachable dead
states. Suppose that the transition t1 does not exist in NM , obviously, AM,ϕ is not

133

7 Symbolic LTL Model Checking of Bounded Petri Nets

empty then. There exits an accepting run

(q0M
, q0), (m0, q1), (m0, q1), (m0, q1), . . .

However, the net NM,A is empty in this case: when t1 is missing, the reachability graph
of NM,A contains only three markings and no cycles. The construction of NM,A requires
also that contextual arcs can be used to allow transitions corresponding to the edges
of A¬ϕ fire only in markings which belong to sets described by expressions on these
edges. We can deal with both of these problems.
It is easy to see that for any interval logic expression G which is a conjunction of
atomic interval logic expressions we can create a number of contextual arcs that allow
a transition t to fire exactly in markings described by G. For every atomic expression
pi ∈ [a, b) we create two arcs connecting the place pi and the transition t: a read arc
with a weight a and an inhibitor arc with a weight b. We do not need to create the
read arc when a = 0 and the inhibitor arc when b = ∞.
Thus, if it is not known beforehand that the net NM has no reachable dead markings,
then dummy transitions which can fire in dead markings can be added to the net. To
obtain them we convert the characteristic function χDNM

into the disjunctive normal
form and create a transition for each term in it. Analogously, if an expression on some
edge of A¬ϕ is not a conjunction of atomic interval logic expressions, we can split the
edge into a number of edges which satisfy this requirement. Thus, from the theoret-
ical viewpoint, we can always construct a product Büchi net NM,A which represents
correctly the behavior of a product automaton AM,ϕ.

However, from the practical viewpoint, due to the explosion of transitions the con-
struction of NM,A has more drawbacks than advantages. We construct instead a “not
synchronized” product net N× in such a way that sets of its reachable markings can
represent sets of states of the product automaton AM,ϕ. We shall use operations de-
fined in chapter 4 and implement functions for the symbolic exploration of AM,ϕ. We
forbear from the formal introduction of the Büchi net formalism and continue to reason
in terms of Büchi automata.

When constructing N× for the net NM and the automaton A¬ϕ in Fig. 7.1, we create
neither places SCA and SCN nor all dashed arcs present in the net NM,A. Formally,
the construction is defined as follows.

Definition 52 (Product net)
Let NM = [PM ,TM ,FM , IM ,RM ,ZM ,VM ,VIM ,VRM

,m0M
] be a P/T net with ex-

tended arcs and let A¬ϕ = [Σ, Q¬ϕ,∆¬ϕ, q0¬ϕ] be a Büchi automaton obtained from
an LTL formula ¬ϕ . Let us assume that edges and fair sets of A¬ϕ are enumerated:

∆¬ϕ = {(q′1, G1, q
′′
1), . . . , (q′n, Gn, q′′n)}, F¬ϕ = {F¬ϕ1, . . . , F¬ϕm}.

We construct the product net N× = [P ,T ,F , IM ,RM ,ZM ,V ,VIM ,VRM
,m0] as fol-

lows:

134

7.2 Product Net

• P = {pi} ∪ PM ∪ Q¬ϕ

• T = {ti} ∪ TM ∪ TA, where TA = {tA1 , . . . , tAn}

• F = FM ∪
{(pi, ti) } ∪
{(ti, p) | ∃p ∈ PM : m0M

(p) > 0 } ∪
{(q′k, tAk

), (tAk
, q′′k) | ∃(q′k, Gk, q′′k) ∈ ∆¬ϕ}

• V (f) = VM (f) for all f ∈ FM ,
V ((pi, ti)) = 1,
V ((ti, p)) = m0M

(p) for all (ti, p) ∈ F,
V ((q′k, tAk

)) = 1 for all (q′k, tAk
) ∈ F,

V ((tAk, q
′′
k)) = 1 for all (tAk

, q′k) ∈ F

• m0(p) = 1 if p = pi or p = q0¬ϕ otherwise m0(p) = 0.

We shall use the following notations:

1. M× denotes a set of all possible markings of N×.

2. RN×
denotes a set of markings RN×

(m0).

3. χDt denotes a characteristic function for markings in which a transition t can not
be enabled (recall section 4.2.2).

4. DM ∈ 2M× denotes a set of markings described by a characteristic function
χDM

=
∧

t∈TM
χDt .

5. A function Cnd : TA → 2M× takes a transition tAi
as argument and returns a

set of markings described by the expression Gi on the edge (q′i, Gi, q
′′
i) ∈ ∆¬ϕ.

6. F× = {F1, . . . , Fm} denotes a set of sets of markings, every Fi ∈ 2M× is described
by a characteristic function χFi

=
∨

q∈F¬ϕi
(q = 1).

Lemma 10
Let N× be a product net constructed for NM and A¬ϕ, and let AM,ϕ = AM ∩A¬ϕ be a
corresponding product Büchi automaton. Then |RN×

| = |QM,ϕ|.

Proof: Due to the construction, N× consists of two subnets: N1, which is induced by
places in {pi} ∪ PM and transitions in {ti} ∪ TM , and N2, which is induced by places
in Q¬ϕ and transitions in TA. In its turn, N1 consists of the net NM , the place pi,
and the transition ti. ti can fire only once, its firing produces the initial marking of
NM , thus N1 has |RNM

(m0)|+1 markings. N2 is a state machine: every transition has
exactly one pre-place and one post-place. There exists one token in the place q0 in the

135

7 Symbolic LTL Model Checking of Bounded Petri Nets

initial marking of N2, thus in all reachable markings of N2 only one of the places in
Q¬ϕ contains a token. All states of A¬ϕ are reachable from its initial state, hence N2

contains |Q¬ϕ| markings. The subnets N1 and N2 are not connected, therefore the state
space of N× is a product of the state spaces of these subnets. Due to the construction
of AM and AM,ϕ

|QM,ϕ| = (|RNM
(m0)| + 1) · |Q¬ϕ|. 2

We can say that every marking m ∈ RN×
represents some state of the product au-

tomaton AM,ϕ. We define a one-to-one function ̺ mapping states of AM,ϕ to markings
in RN×

as follows: ̺(m, qi) = m if m(qi) = 1, m(qk) = 0 ∀k 6= i and

• either m = q0M
and m(pi) = 1, m(p) = 0 ∀p ∈ PM

• or m 6= q0M
and m(pi) = 0, m(p) = m(p) ∀p ∈ PM .

A marking m ∈ RN×
represents a state (m, qi) of the product automaton AM,ϕ if

̺(m, qi) = m. A set of markings K ∈ 2RN× represents a set of states K ′ of AM,ϕ if
|K| = |K ′| and every marking in K represents some state in K ′. It is easy to see that
m0 represents the initial state of AM,ϕ, and that fair sets of AM,ϕ are represented by
sets in F× intersected with RN×

.

As we can represent sets of states of Petri nets symbolically, we have also got a possi-
bility to represent symbolically sets of states of the product automaton AM,ϕ. Now we
shall implement functions for the symbolic exploration of AM,ϕ using functions defined
in chapter 4.

We define functions PostM : 2RN× → 2RN× and PostA : 2RN× → 2RN× as follows:

PostM(K) = {m′ ∈ RN×
| ∃m ∈ K, ∃t ∈ TM :

̺(m, q) = m, ̺(m′, q) = m′,m
t

−→ m′}

PostA(K) = {m′ ∈ RN×
| ∃m ∈ K, ∃(q,GC , q′) ∈ ∆¬ϕ :

̺(m, q) = m, ̺(m, q′) = m′,m ∈ C}.

Implementation of these functions is trivial due to the construction of the net N×

PostM(K) =
⋃

t∈TM

Fire(K, t), PostA(K) =
⋃

t∈TA

Fire(K ∩ Cnd(t), t).

Due to the construction of AM , A¬ϕ, and AM,ϕ, the product automaton AM,ϕ can
change its state from (m, q) to (m′, q′) if and only if

1. a) There exists t ∈ TM such that m
t

−→ m′ or

136

7.2 Product Net

b) m ∈ DN and m′ = m or

c) m = q0M
and m′ = m0M

.

2. There exists (q,G, q′) ∈ ∆¬ϕ and m′ belongs to the set described by G.

This behavior is implemented in the function Img× : 2RN× → 2RN×

Img×(K) = PostA(PostM(K) ∪ K ∩ DM ∪ Fire(K , t i)).

Lemma 11
Let KA be a set of states of the product automaton AM,ϕ represented by a set of markings

K ∈ 2RN× . Img×(K) returns a set of markings which represents the set of all direct
successors states of KA in AM,ϕ

{(m′, q′) ∈ QM,ϕ | ∃(m, q) ∈ KA, ∃((m, q),m′, (m′, q′)) ∈ ∆M,ϕ}.

We implement a function FwdReach× : 2RN× → 2RN× replacing a call to the function
Img with a call to the function Img× in Algorithm 8 (page 62). Now a set of markings
representing a set of states of the product automaton AM,ϕ reachable from q0M,ϕ

can be
computed as Q′

M,ϕ = FwdReach×({m0}). To avoid problems with large intermediate
diagrams that appear during the breath-first exploration made in Algorithm 8, we can
try to adopt our saturation strategy, recall section 4.3.2.

First, we implement a function Fire× : 2RN× × (TM ∪ {ti}) → 2RN×

Fire×(K, t) = PostA(Fire(K, t)).

It is easy to see that Fire×(K, t) ⊆ Img×(K) and that

Img×(K) =
⋃

t∈TM∪{ti}

(Fire×(K, t)) ∪ PostA(K ∩ DM).

For the net N× we define the ROIDD variable ordering π as follows: we assign first
variables in the ordering to places in Q¬ϕ and pi. The remaining variables, assigned to
the places in PM , are ordered exactly as variables assigned to places of the net NM .
We define the linear order σ for transitions in TM exactly as described in section 4.3.2,
and assume that they are enumerated accordingly to this order.

Consider Algorithm 26 which computes a set of markings representing a set of all
states of AM,ϕ reachable from states represented by markings in the set K. It differs
only slightly from the original Algorithm 11 (page 71). We compute now fixpoints with
respect to the function Fire× and take finally care that states corresponding to dead
markings of the net NM are handled correctly. Of course, more computations are done
in the new algorithm and more intermediate diagrams are created. As firing of every

137

7 Symbolic LTL Model Checking of Bounded Petri Nets

Algorithm 26 (Forward reachability analysis with saturation)

1 func FwdReach× (K)
2 Reached := K ∪ Fire×(K, ti)
3 i := 1

4 repeat

5 Old := Reached

6 repeat

7 Old2 := Reached

8 Reached := Reached ∪ Fire×(Reached , tσi)
9 until Reached = Old2

10 if Reached = Old then

11 i := i + 1
12 else

13 j := FirstDep(tσi)
14 if j = i then i := i + 1 else i := j fi

15 fi

16 until i = |TM | + 1
17

18 D := Reached ∩ DM

19 if D 6= ∅ then

20 repeat

21 Old := Reached

22 Reached := Reached ∪ PostA(Reached)
23 until Reached = Old

24 fi

25 return Reached

26 end

138

7.3 Computing Emptiness

transition in TM is followed by firing of all transitions in TA, the approach is promising
when the automaton A¬ϕ is relatively small. Automata for many typically used LTL
formulas are indeed small (up to several tens of states and edges) and improvements in
efficiency achieved by switching to Algorithm 26 are comparable to the ones achieved
by switching from the BFS Algorithm 8 to the saturation Algorithm 11.

Analogously1 to the functions PostM, PostA, Img×, and Fire×, we implement the func-
tions PrevM, PrevA, PreImg×, and RevFire×. We implement also the functions for
the limited reachability analysis LimFwdReach× and LimBwdReach×. Consider, for
example, the function LimFwdReach×(K , C). Its implementation modifies slightly
Algorithm 26: the initial set Reached , as well as every set returned by the functions
Fire× and PostA is intersected with C . Equipped with the functions Img×, PreImg×,
LimFwdReach×, and LimBwdReach×, which allow the exploration of the product au-
tomaton AM,ϕ, we can proceed to implement algorithms for the symbolic emptiness
check. For the sake of simplicity, we shall abstract from the implementation details and
reason so, as if these functions manipulate directly on sets of states of AM,ϕ.

7.3 Computing Emptiness

7.3.1 SCC-hull Algorithms

Let A = [Σ, Q,∆, q0,F] be a generalized Büchi automaton. The classic algorithm to
decide emptiness of A is the Emerson-Lei algorithm [EL86], which computes a set K of
all states that have a path to some fair SCC by evaluating the nested fixpoint formula

K = νY.
⋂

∀F∈F

PreImg(µZ. Y ∩ (F ∪ PreImg(Z))).

Evaluation of this formula requires two nested loops. The inner loop identifies the
states from which there exists a path that is contained in Y and reaches a state
in F . It finds these states by starting with states in Y ∩ F and extending the paths
backward. Hereafter, the predecessors of these states are computed using PreImg to
eliminate states that are not on cycles. The procedure is repeated for each fair set.
Every terminal SCC in the computed set K is fair. The Büchi automaton A is empty
if its initial state q0 does not belong to the computed set K. The obvious complexity
bound of the algorithm is O(|F| · |Q|2). It can be sharpen [BGS00] to O(|F| · d · h),
where d is the diameter of A and h is the diameter of its SCC quotient graph.

A variation of the algorithm proposed in [HTKB92] is based on forward traversals
and replaces PreImg computations made in the algorithm with Img computations. It
computes a set K containing all fair SCCs and states reachable from them. Every initial
SCC in the computed set K is fair. The sets computed by the algorithms are illustrated

1Of course, taking care of the right sequence of the application of transitions in TM and TA.

139

7 Symbolic LTL Model Checking of Bounded Petri Nets

EL,OWCTY
CTY

EL2, OWCTY2

Figure 7.2: An SCC quotient graph of Q. Shaded circles are fair SCCs, big circles are
non-trivial SCCs, small circles are trivial SCCs.

in Fig. 7.2, the original algorithm is denoted as EL, the forward variation as EL2. The

automaton A is empty if no states in the set K ∩
⋂

∀F∈F

F are reachable from q0.

Let N× be a product net constructed for NM and A¬ϕ, and let AM,ϕ = AM ∩A¬ϕ be a
corresponding product Büchi automaton. A procedure CheckOWCTY in Algorithm 27
allows to check emptiness of AM,ϕ. It uses functions defined in the previous section and
employs the pruning strategy of the OWCTY algorithm introduced in section 6.3. Q′

M,ϕ

is a set of states reachable from the initial state of AM,ϕ. We limit the search for fair
SCCs and states that have a path to them to the set Q′

M,ϕ. Hence, it is enough to check
whether the computed set K is empty to decide emptiness of AM,ϕ. We implement the
forward variation of the algorithm analogously: in CheckOWCTY2, the calls to the
functions LimBwdReach× and PreImg× are replaced with the calls to LimFwdReach×

and Img×.

A Catch-Them-Young (CTY) algorithm proposed in [HKSV97] aggressively prunes the
set of states potentially lying on accepting cycles, a set of states which it computes is
also illustrated in Fig. 7.2. In the adapted to our needs implementation a computation
on the line 7 of Algorithm 27 is replaced with

K := LimBwdReach×(F ∩ K ,K) ∩ LimFwdReach×(F ∩ K ,K),

and a computation on the line 10 is replaced with

K := K ∩ PreImg×(K) ∩ Img×(K).

Experiments made in [FFK+01] showed that usually too many computations are made
in the CTY algorithm and it is significantly outperformed by the OWCTY. We notice
also that simultaneous backward and forward pruning of the set K results usually in
intermediate sets of states that are encoded by larger decision diagrams.

140

7.3 Computing Emptiness

Algorithm 27 (Emptiness check)

1 proc CheckOWCTY(N×)
2 Q′

M,ϕ := FwdReach×(m0)

3 K := Q′
M,ϕ

4 repeat

5 Old := K

6 forall F ∈ F× do

7 K := LimBwdReach×(F ∩K , K)
8 repeat

9 Old2 := K

10 K := K ∩ PreImg×(K)
11 until Old2 = K

12 od

13 until (Old = K)
14 if K 6= ∅ then

15 exit (“a fair SCC is found”)
16 fi

17 end

The EL algorithm and its variations are often denoted as SCC-hull algorithms [RBS00].
They compute an SCC-hull, that is, a set of states that contains all fair SCCs with-
out enumeration of these SCCs. Symbolic SCC-enumeration algorithms can be also
employed to decide emptiness of Büchi automata.

7.3.2 Algorithm Based on SCC-enumeration

Let A = [Σ, Q,∆, q0,F] be a generalized Büchi automaton. A is not empty if there
exists a fair SCC reachable from q0.

Let N× be a product net constructed for NM and A¬ϕ, and let AM,ϕ = AM ∩ A¬ϕ

be a corresponding product Büchi automaton. We use functions defined in section 7.2
for the exploration of AM,ϕ to implement an algorithm that enumerates SCCs in sets
of states of AM,ϕ (recall section 4.4.3). The procedure is adapted as follows. Before
decomposing a set of states S, we check whether it intersects all sets in F×, S can be
skipped if it is not the case as it can not contain any fair SCCs then. Instead of taking
a random state s ∈ S we take some state belonging both to S and some set in F×.
When a Büchi automaton is empty, it often contains many accepting states forming
trivial SCCs. Thus, to avoid the expensive enumeration of trivial SCCs, the trimming
routines must be enabled in the decomposition procedure. To decide emptiness of AM,ϕ

we compute the set of all its reachable states Q′
M,ϕ = FwdReach×(m0) and decompose

it into SCCs. Once an SCC is found, we check if it intersects all sets in F× and stop the

141

7 Symbolic LTL Model Checking of Bounded Petri Nets

process announcing non-emptiness if so. Though the SCC-enumeration algorithm has
a better worst case complexity O(log(|Q′

M,ϕ|) · |Q
′
M,ϕ|) than SCC-hull algorithms, in

practice its performance is often inferior to that of SCC-hull algorithms. Experiments
made in [RBS00] corroborate our observations.

7.3.3 Algorithms for Weak and Terminal Automata

The emptiness check is easy for weak and terminal Büchi automata [BRS99] (recall
Definition 48 on page 108).

Let A = [Σ, Q,∆, q0,F] be a weak Büchi automaton. Any SCC of A contains either
only accepting states or only non-accepting states. Thus, the only way for a run to visit
an accepting state infinitely often is to eventually be confined inside one non-trivial
SCC that contains only accepting states.

Let N× be a product net constructed for NM and a weak Büchi automaton A¬ϕ, and let
AM,ϕ = AM ∩A¬ϕ be a corresponding product Büchi automaton. Recall that AM,ϕ can
not be stronger than A¬ϕ. We assume that A¬ϕ was simplified according to Lemma 8
and the set F× contains only one set F1. To decide emptiness of AM,ϕ we compute
first the set of all its reachable states Q′

M,ϕ = FwdReach×(m0). Backward or forward
trimming can be used to check if the set Q′

M,ϕ ∩ F1 contains at least one non-trivial
SCC. Forward trimming is employed in Algorithm 28.

Let A = [Σ, Q,∆, q0,F] be a terminal Büchi automaton simplified according to Lemma 8.
A run of A which reaches some accepting state is guaranteed to be confined inside a
terminal SCC containing accepting states.

Let N× be a product net constructed for NM and a terminal Büchi automaton A¬ϕ,
and let AM,ϕ = AM ∩ A¬ϕ be a corresponding product Büchi automaton. We assume
that A¬ϕ was simplified according to Lemma 8 and the set F× contains only one
set F1. We can decide emptiness of the product automaton AM,ϕ “on-the-fly” during
the computation of Q′

M,ϕ. The automaton AM,ϕ is not empty if we meet some state

Algorithm 28 (Emptiness check for weak automata)

1 proc CheckWeak2(N×)
2 Q′

M,ϕ := FwdReach×(m0)
3 K := Q′

M,ϕ ∩ F1

4 repeat

5 Old := K

6 K := K ∩ Img×(K)
7 until Old = K

8 if K 6= ∅ then

9 exit (“accepting cycle found”)
10 fi

11 end

142

7.3 Computing Emptiness

belonging to the set F1.

Obviously, the discussed algorithms perform only linear number of steps. Fortunately,
translation of many typically used LTL formulas produces weak and terminal Büchi
automata.

7.3.4 On-the-fly Algorithm

Explicit-state LTL model checkers typically check emptiness of the product automa-
ton AM,ϕ “on-the-fly”, i.e. while constructing it. Thus, the model checker may be able
to find an accepting cycle without ever constructing the complete state space of AM,ϕ.
The best known on-the-fly algorithms use deep-first search (DFS) strategies to explore
the state space. Among the discussed above symbolic algorithms for the emptiness
check only the algorithm for terminal Büchi automata can decide emptiness of AM,ϕ

on-the-fly. An algorithm which combines the approach of explicit-state model checkers
with the symbolic representation of sets of states and is capable of deciding emptiness
of strong automata on-the-fly was suggested in [Spr01]. Actually, the proposed Sym-
bolic DFS algorithm was designed to decide emptiness of Büchi nets, but it can be
straightforwardly adopted for checking emptiness of not generalized Büchi automata.

Let A = [Σ, Q,∆, q0, F] be a Büchi automaton. The underlying idea of the approach
is to construct and explore a so called M-graph MG(A), whose nodes consist of sets
of states of the automaton A. The M-graph MG(A) is used to reason about accepting
cycles of A. As decision diagrams can be used to encode sets of states of A, its M-graph
can, in principle, be represented more concisely than A.

We shall use a notation q
A+
−→ q′ to denote that the node q′ is reachable from a node

q in the automaton A. Consider Algorithm 29. A function MakeMG1 gets a Büchi
automaton A as an argument and constructs an M-graph MG(A) = [V,E] using a
simple DFS and the function Img(K), which returns a set of all direct successors
states of K . The construction is illustrated in Fig. 7.3 (we omit labels on arcs of the
automaton as they are irrelevant for the example).

q1 q2 q3 q4 q5

A

q0

MG(A)

{q1, q3, q5}{q1} {q1, q3}{q2}

{q2, q4}K0 K1 K2 K3

K4

K5

{q0}

Figure 7.3: A Büchi automaton and its M-graph

143

7 Symbolic LTL Model Checking of Bounded Petri Nets

Algorithm 29 (M-graph construction)

1 func MakeMG1 (A)
2 V := ∅; E := ∅
3 proc visit (K)
4 V := V ∪ {K}
5 K ′ := Img(K)
6 E := E ∪ {[K, K ′]}
7 if K ′ 6∈ V then visit(K ′) fi

8 end

9 begin

10 visit({q0})
11 return [V, E]
12 end

Lemma 12
Let A be a Büchi automaton, MG(A) = [V,E] be an M-graph constructed using the

function MakeMG1, and let K ∈ V be a node of MG(A) such that K
+

−→ K. There

exists q ∈ K : q
A+
−→ q.

Proof: Let n be a number of states in K. Due to the construction of MG(A), for every

state q′1 there exists q′2 ∈ K : q′2
A+
−→ q′1. Analogously, there exist q′3 ∈ K : q′3

A+
−→ q′2.

We can repeat this consideration n times and get a sequence of n + 1 states

q′n+1
A+
−→ q′n

A+
−→ . . .

A+
−→ q′1.

As K has only n states, at least two states in the sequence must be identical. 2

Notice that Lemma 12 does not state that for all states q ∈ K holds q
A+
−→ q. Consider

Fig. 7.3, though a state q3 belongs to the node K5, which lies on a cycle in MG(A), q3

does not lie on any cycles in the automaton A. As we aim at finding accepting cycles
in A, we must partition the nodes of MG(A) into accepting and non-accepting. Notice
also that as sets of states in different nodes of MG(A) can overlap, a number of nodes
in MG(A) corresponds to the number of different subsets of Q. Thus, in the worst case,
a number of nodes of the constructed M-graph MG(A) is exponential in the number
of states of the automaton A. However, it can be shown that the size of MG(A) can
be kept linear in the size of Q. The idea is to maintain the following invariant: let K1

and K2 be two nodes of MG(A), then K1 ∩ K2 = ∅, K1 ⊆ K2 or K2 ⊆ K1.

Lemma 13
Let P ⊆ 2S be a set of nonempty subsets of a finite set S 6= ∅. If for all K1,K2 ∈ P
either K1 ∩ K2 = ∅, K1 ⊆ K2 or K2 ⊆ K1 holds, then |P | ≤ 2 · |S|.

144

7.3 Computing Emptiness

Proof: By induction over |S|. 2

Given a Büchi automaton A, a function MakeMG2 implemented in Algorithm 30 con-
structs an M-graph MG(A) with the following properties:

1. The size of MG(A) is linear in the number of states of A.

2. For a successor node K ′ of a node K holds either K ′ ⊆ K or K ′ ∩ K = ∅.

3. A union of all sets of all direct successors nodes of a node K is a set returned by
the function Img(K).

4. Every node consists either of accepting or of not accepting states.

Theorem 6
Let A = [Σ, Q,∆, q0, F] be a Büchi automaton and let MG(A) = [V,E] be an M-graph
constructed using the function MakeMG2. There exists an accepting run σ of A if and

only if there exists a node K ∈ V such that K
+
−→ K and K consists of accepting

states of A.

Proof: "⇒": Let q be some state that occurs in σ infinitely often. Unwinding the
M-graph MG(A) with the designated node K0 = {q0}, we get a tree. A union of all
nodes on the level i corresponds to the result of i applications of the function Img to the
set {q0}. Thus, after a finite number of steps we can reach a node K1 such that q ∈ K1.
We can unwind the subgraph of MG(A) with the designated node K1 and, applying
the same argumentation, get a node K2 such that q ∈ K2. Due to the construction of
MG(A), we have K1 ⊇ K2. Repeating the consideration, we can construct an infinite
sequence K1 ⊇ K2 ⊇ . . . ⊇ K ⊇ As K1 has only a finite number of proper subsets,
there must be nodes that repeat in this sequence.
"⇐": Follows from Lemma 12. 2

Tarjan’s algorithm was adapted in [Spr01] to check emptiness of Büchi nets on-the-fly.
Analogously, we can adapt Tarjan’s algorithm presented on page 111 to explore the
M-graph MG(A), which would be constructed by the function MakeMG2, and check
emptiness of the Büchi automaton A on-the-fly.

145

7 Symbolic LTL Model Checking of Bounded Petri Nets

Algorithm 30 (Divide)

1 func Divide(S , K)
2 Res := ∅
3 forall K ′ ∈ S do

4 if K ⊆ K ′ then

5 Res := Res ∪ {K}
6 elseif K ⊇ K ′ then

7 Res := Res ∪ {K ′}
8 K := K \ K ′

9 elseif K ∩ K ′ 6= ∅ then

10 Res := Res ∪ {K ∩ K ′}
11 K := K \ K ′

12 fi

13 od

14 if K 6= ∅ then Res := Res ∪ {K} fi

15 return Res

16 end

Algorithm 31 (M-graph construction)

1 func MakeMG2 (A)
2 V := ∅
3 E := ∅
4 proc visit (K)
5 V := V ∪ {K}
6 Tmp := Img(K)
7 Acc := Tmp ∩ F
8 NonAcc := Tmp \ F
9 forall K ′ ∈ (Divide(V ,Acc) ∪ Divide(V , NonAcc)) do

10 E := E ∪ {[K, K ′]}
11 if K ′ 6∈ V then visit(K ′) fi

12 od

13 end

14 begin

15 visit({q0})
16 return [V, E]
17 end

146

7.3 Computing Emptiness

We replace the line 37 of Algorithm 22 with

· visit({q0})

The line 11 is replaced then with the lines 6–9 of Algorithm 31

· Tmp := Img(q)
· Acc := Tmp ∩ F
· NonAcc := Tmp \ F
· forall q′ ∈ (Divide(Visited ,Acc) ∪ Divide(Visited ,NonAcc)) do

and, finally, the line 30 is replaced with

· if Img(q) ∩ q 6= ∅ then exit (“a fair SCC is found”) fi

We notice, however, that the complexity of the obtained algorithm is not linear, as
it was analyzed in [Spr01]. Consider an automaton with n states q0, . . . , qn−1 such
that Img({qi}) = {qi+1}. Every time we explore a state qk, k > 0, we have to look
through k already constructed nodes {q0}, . . . , {qk−1} in the function Divide. Thus,
the algorithm makes O((n + 1) · n

2) = O(n2) steps during the exploration of the whole
automaton.

Tarjan’s algorithm is, actually, not the best choice for the on-the-fly emptiness check.
It is often criticized due to its high memory requirements. Moreover, it does not check
fairness of an SCC until this SCC and all SCCs reachable from it have been completely
explored. In fact, it is not necessary to compute the entire SCC to decide non-emptiness,
it suffices just do detect a cycle with an accepting state. Consider, for example, an
automaton in Fig. 7.4. An on-the-fly algorithm could find the cycle q0, q1, q0 and stop
without examining the right part of the automaton, provided that the edge (q0,_, q1) is
explored before (q0,_, q2). Tarjan’s algorithm is bound to explore the whole automaton
regardless of the order of the exploration. However, recent developments have shown
that Tarjan’s algorithm can be modified to eliminate this disadvantage and to reduce
memory requirements.

q0 q2q1

Large subgraph

without cycles

Figure 7.4: Tarjan’s algorithm performs much not necessary work on such automata

147

7 Symbolic LTL Model Checking of Bounded Petri Nets

Let N× be a product net constructed for NM and a not generalized Büchi automa-
ton A¬ϕ, and let AM,ϕ = AM ∩ A¬ϕ be a corresponding product Büchi automaton.
Instead of adapting Tarjan’s algorithm as it was done in [Spr01], we adapt its vari-
ation suggested in [GV04]. Consider Algorithm 32, we just mention some differences
to Tarjan’s algorithm and refer the interested reader to the original publication for
details.

1. An obvious minor difference is that the algorithm is iterative and not recursive.

2. Tarjan’s algorithm uses an implicit procedural stack to manage the deep-first
search and an explicit SCCStack to store partially explored SCCs. The former
is a subset of the later: a new node is inserted into both stacks when it is first
encountered. Once it is fully processed, it is removed from the DFS stack, but
remains on the SCCStack until the entire SCC can be removed. This makes
possible to use only a single stack and thread the DFS stack through it by means
of the pre field and a second pointer dftop to the top element of the DFS stack.

3. When a transition from a node f to a node t is encountered, Tarjan’s algorithm
updates the lowlink of f either with the DFS number of t or with the lowlink

value of t. In Algorithm 32, it is always the lowlink of t that is used for updates.

4. The most important addition is the acc field of the stack entry. It keeps track of
the closest to the top of the stack accepting node on the DFS path that leads to
this stack entry. Combined with the previous modification, this allows to detect
an accepting cycle as soon as all transitions of this cycle have been explored. In
other words, the amount of exploration is minimal among all DFS algorithms
that follow the same search order.

Our experiments with the described in this section approach have shown that it rep-
resents primary a basis for the future research. Though Algorithm 32 can outperform
symbolic emptiness check algorithms described in the previous sections on some models
when the net NM does not satisfy the LTL formula ϕ, it is absolutely not competitive
when NM indeed satisfies ϕ. Potentially, Algorithm 32 can be easier combined with
partial order reductions [God91, Pel94] than algorithms considered in the previous
sections.

7.4 Model Checking Procedure

Summarizing the previous sections, given a P/T net with extended arcs NM and an
LTL formula ϕ, the model checking procedure proceeds as follows:

1. A negation of the formula ϕ is translated into a generalized Büchi automaton A¬ϕ

as described in section 5.3.3.

148

7.4 Model Checking Procedure

Algorithm 32 (Emptiness check)

1 top := -1
2 dftop := -1
3 violation := False

4 proc Main (N×)
5 PushNode({m0})
6 while ¬violation ∧ dftop ≥ 0 do

7 if Stack [dftop].succ = ∅ then

8 PopNode()
9 else

10 K := oneof (Stack [dftop].succ)
11 Stack [dftop].succ := Stack [dftop].succ \ K

12 if K 6∈ Visited then

13 PushNode(K)
14 else

15 if K ∈ Stack then

16 m := PositionOnStack(K)
17 LowlinkUpdate(dftop, m)
18 fi

19 fi

20 fi

21 od

22 if violation then

23 exit (“an accepting cycle is found”)
24 fi

25 end

26 proc PushNode (K)
27 Visited := Visited ∪ {K}
28 top := top + 1
29 Tmp := Img×(K)
30 Stack [top].succ := Divide(Visited ,Tmp ∩ F) ∪
31 Divide(Visited ,Tmp \ F)
32 Stack [top].lowlink := top

33 Stack [top].pre := dftop

34 if K ∈ F then

35 Stack [top].acc := top

36 elseif dftop ≥ 0 then

37 Stack [top].acc := Stack [dftop].acc
38 else

39 Stack [top].acc := -1
40 fi

41 dftop := top

42 end

43 proc PopNode ()
44 p := Stack [dftop].pre
45 if p ≥ 0 then

46 LowlinkUpdate(p, dftop)
47 fi

48 if Stack [dftop].lowlink = dftop then

49 top := dftop - 1
50 fi

51 dftop := p

52 end

53 proc LowlinkUpdate (f , t)
54 if Stack [t].lowlink ≤ Stack [f].lowlink then

55 if Stack [t].lowlink ≤ Stack [f].acc then

56 violation := True

57 fi

58 Stack [f].lowlink := Stack [t].lowlink

59 fi

60 end

149

7 Symbolic LTL Model Checking of Bounded Petri Nets

2. A strength of A¬ϕ is determined using the SCC-analysis. A¬ϕ is simplified ac-
cording to Lemma 8 if it is weak or terminal. If the Symbolic DFS algorithm is
going to be used and A¬ϕ has more than one fair set, A¬ϕ is translated into a
not generalized Büchi automaton according to Lemma 7.

3. A product net N× is constructed for NM and A¬ϕ.

4. An emptiness check procedure selected by the user is employed to decide empti-
ness of AM,ϕ.

5. If AM,ϕ is found to be not empty, then ϕ is not satisfied. A counterexample is
generated if requested.

Which emptiness check procedure should be selected depends on the structure of the
model. Surely, specialized algorithms for terminal and weak automata are preferable
when they are applicable. In our experiments, variations of the algorithms based on
forward state traversals performed usually better than the ones based on backward
traversals.

Notice that we can easily adapt the model checking procedure if we need to check
whether NM satisfies ϕ for a set of initial markings. Let χI be a characteristic function
of this set, we define a set M0 ∈ 2M× as the set described by a characteristic function

χM0 = χI ∧ q0 = 1 ∧
∧

q∈Q¬ϕ\{q0¬ϕ}

(q = 0).

Due to the construction, a state q0 of the product automaton AM,ϕ = AMI0 ∩ A¬ϕ

can not lie on accepting cycles, so we can start exploration of the state space of AM,ϕ

directly from the set K1 = Img×({q0}) of all direct successors of q0. It is easy to see
that K1 = PostA(M0). Creation of the place pi and the transition ti in the net N× can
be skipped.

An important feature of a model checker is the ability to generate counterexamples.
We adapt algorithms described in section 6.5 to demonstrate the non-emptiness of the
product automaton AM,ϕ. Speaking in terms of CTL, we have to generate witnesses
for the following formulas:

1. EFF1 for terminal automata,

2. EFEGF1 for weak automata,

3. EGfairTrue for strong automata.

150

7.5 Closing Remark

7.5 Closing Remark

In this chapter we have considered implementation of a symbolic LTL model checker
for k-bounded P/T nets with extended arcs. The underlying idea of the used approach
was to construct a product net in such a way that sets of its reachable markings can
represent sets of states of the product automaton AM,ϕ. Operations for the symbolic
manipulations of Petri nets defined in chapter 4 were used then to implemented func-
tions for the symbolic exploration of the product automaton AM,ϕ. We have shown that
it is possible to adopt the saturation strategy introduced in section 4.3.2 to improve
efficiency of these functions.

We have considered implementation of a number of emptiness check algorithms that can
outperform the classic Emerson-Lei algorithm [EL86], which is conventionally employed
in symbolic LTL model checking. We have also shown how to adapt and improve the
algorithm introduced in [Spr01] for the symbolic on-the-fly emptiness check.

151

7 Symbolic LTL Model Checking of Bounded Petri Nets

152

8 Conclusions and Outlook

8.1 Conclusions

The research in this thesis has focused on the different techniques which can improve
efficiency of the symbolic analysis of k-bounded P/T nets with extended arcs.

Instead of boolean functions and ROBDDs, traditionally used in symbolic methods,
we have employed interval logic functions and ROIDDs, which allow natural, more
compact, and more efficient encoding of sets of states of k-bounded nets. In chapter 3 we
have studied techniques that allow an efficient implementation of an ROIDD package.

In chapter 4 we have discussed how special ROIDD operations needed in the symbolic
algorithms can be implemented efficiently. We have studied how to improve efficiency
of the reachability analysis and proposed a new saturation approach, which exploits the
structure of ROIDDs and the structure of k-bounded P/T nets. It manages to keep sizes
of intermediate diagrams smaller than other approaches and can drastically improve
efficiency of the symbolic analysis of k-bounded P/T nets. Saturation techniques have
been applied then in SCC enumeration algorithms and in model checking. Notice, that
many of the suggested techniques can, in principle, be adopted to other net classes and
other kinds of decision diagrams.
We have proposed SCC enumeration algorithms for Petri nets, adopting the algorithms
introduced in [XB98] and [BGS00]. The algorithms have been used then for efficient
analysis of basic net properties and have been employed in model checking algorithms.

Implementation of a symbolic CTL model checker for k-bounded P/T net with ex-
tended arcs was subject of chapter 6. We have discussed a number of techniques to
improve its efficiency and considered also how to implement a non-conventional CTL
model checking algorithm based on forward state space traversals.

Finally, in chapter 7 we have shown how to implement a symbolic LTL model checker
for k-bounded P/T net with extended arcs. We have discussed a number of emptiness
check algorithms that can outperform the Emerson-Lei algorithm [EL86], which is
conventionally employed in symbolic LTL model checking. We have also considered
how to adapt and improve the “on-the-fly” algorithm introduced in [Spr01].

153

8 Conclusions and Outlook

8.2 Outlook

The considered topics provide a number of directions for the future research.

In chapter 3 we have discussed implementation of an ROIDD package. Introduction
of shared lists and special techniques for memory management allowed to decrease
significantly the memory requirements of the package. A more compact and efficient
data structure for storage of shared lists can improve performance of the package.

Additional heuristics exploiting the structure of Petri nets can improve computation
of ROIDD variable ordering and performance of the saturation algorithm introduced
in chapter 4.

In chapter 6 we have discussed implementation of a symbolic CTL model checker. The
saturation-based implementation allows to improve significantly the efficiency of the
function EvalEU. A question how to improve computation of EvalEG remains open.

P/T net with extended arcs are expressive enough to simulate Timed P/T nets [MF76].
It is interesting to study whether the considered techniques allow to analyze such nets
efficiently. Probably, the algorithms introduced in chapter 4 must be fine tuned, a
special Timed CTL model checking [RK97] should be implemented.

Integration of symbolic methods with partial order techniques [Val91, God91, Pel94]
for analysis of k-bounded nets is a challenging direction for the future research.

154

A Appendix

A.1 Notations

B is a set of boolean elements { 0, 1 }
N is a set of natural numbers { 1, 2, 3, . . . }
N0 is a set N ∪ 0
Z is a set of integers { 0, 1,−1, 2,−2, 3,−3, . . . }
∅ is an empty set
2S is a power set of a set S, this means 2S is the set of all subsets of S.

A.2 Relations

Definition 53
Let S be a set and R be a relation R ⊆ S × S.

1. R is reflexive if ∀x ∈ S holds (x, x) ∈ R.

2. R is symmetric if ∀x, y ∈ S from (x, y) ∈ R follows (y, x) ∈ R.

3. R is asymmetric if ∀x, y ∈ S from (x, y) ∈ R follows (y, x) 6∈ R.

4. R is transitive if ∀x, y, x ∈ S from (x, y) ∈ R and (y, z) ∈ R follows (x, z) ∈ R.

5. R is total if ∀x, y ∈ S holds (x, y) ∈ R or (y, x) ∈ R (or both).

6. R is a total order or a linear order if R is antisymmetric, transitive, and total.
A tuple [S,R] is called then a linear ordered set.

7. R is a partial order if R is reflexive, antisymmetric, and transitive. A tuple [S,R]
is called then a partially ordered set (or poset for short).

A.3 Lattices and Boolean Algebra

Definition 54 (Supremum)
Let [A,≤] be a partially ordered set. An element u ∈ A is denoted as a supremum (or
least upper bound) of a set S ⊆ A if

1. x ≤ u for all x ∈ S,

155

A Appendix

2. for any v ∈ A : x ≤ v ∀x ∈ S holds that u ≤ v.

Definition 55 (Infimum)
Let [A,≤] be a partially ordered set. An element l ∈ A is denoted as an infimum (or
greatest lower bound) of a set S ⊆ A if

1. l ≤ x for all x ∈ S,

2. for any v ∈ A : v ≤ x ∀x ∈ S holds that v ≤ l.

Definition 56 (Lattice as a poset)
A lattice is a tuple L = [S,≤] where:

1. [S,≤] is a partially ordered set,

2. each two-element set {x, y} where x, y ∈ S has a least upper bound sup{x, y}
and a greatest lower bound inf{x, y}.

A lattice L = [S,≤] is called complete if every subset of S has a least upper bound and
a greatest lower bound.

Lattices can also be defined as algebraic structures that satisfy certain laws.

Definition 57 (Lattice as an algebraic structure)
A lattice is a tuple [S,∨,∧] where:

1. S is a nonempty set.

2. ∨,∧ : S × S → S are binary operations.

3. For all elements x, y, z ∈ S and the binary operations ∨,∧ hold

Commutative laws: x ∨ y = y ∨ x, x ∧ y = y ∧ x.
Associative laws: x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z.
Absorption laws: x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x.
Idempotent laws: x ∨ x = x, x ∧ x = x.

A lattice [S,∨,∧] can be obtained from a lattice defined as a poset [S,≤] by defining
a∨b = sup{a, b} and a∧b = inf{a, b} for any a, b ∈ S. Also, from a lattice [S,∨,∧], one
may obtain a lattice [S,≤] by setting a ≤ b if and only if b = a ∨ b. Hence, these two
definitions can be used interchangeably, depending on which of them is more convenient
for a particular purpose.

Definition 58 (Boolean algebra)
Boolean algebra is a tuple B = [S,∨,∧, ,̄ 0, 1] where:

156

A.4 Graphs

1. [S,∨,∧] is a lattice.

2. 0 ∈ S is denoted as a least element of S.

3. 1 ∈ S is denoted as a greatest element of S.

4. For all elements x, y, z ∈ S hold

Distributivity laws: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Complement laws: x ∨ x = 1, x ∧ x = 0.

Corollary 14
Let B = [S,∨,∧, ,̄ 0, 1] be a boolean algebra. Then the following holds

x = x, x ∨ y = x ∧ y, x ∧ y = x ∨ y

Example 27
1. A tuple B = [B,∨,∧,¬, 0, 1] is a boolean algebra, denoted also as a logic algebra.

2. A tuple B = [2S ,∪,∩, ,̄ ∅, S] is a boolean algebra, denoted also as a set algebra.

Proposition 4 ([Sto36])
For every finite boolean algebra there exists an isomorphic set algebra [2S ,∪,∩, ,̄ ∅, S]
where S is a finite set.

Definition 59 (Interval algebra)
Let [S,<] be a linear ordered set with a least element. We define an interval algebra
as a smallest boolean algebra of subsets of S containing all intervals of the form [a, b)
such that a ∈ S and b ∈ S or b = ∞.

Proposition 5
Every countable boolean algebra is isomorphic to an interval algebra.

A.4 Graphs

Definition 60 (Graph)
A graph is a tuple G = [V ,E] where:

1. V is a set of nodes.

2. E is a set of unordered pairs of nodes called edges: E ⊆ V × V .

Definition 61 (Directed graph)
A directed graph (or digraph) is a tuple G = [V ,E] where:

157

A Appendix

1. V is a set of nodes.

2. E is a set of ordered pairs of nodes called arcs: E ⊆ V × V .

We define the following abbreviations:

1. v −→ v′ means there exists (v, v′) ∈ E .

2.
+

−→ is a transitive closure of −→.

3.
∗

−→ is a reflexive transitive closure of −→.

Definition 62 (DAG)
Let G = [V ,E] be a directed graph. G is denoted as a directed acyclic graph (or DAG

for short) if there exist no nodes v ∈ V : v
+

−→ v.

Definition 63 (Root)
Let G = [V ,E] be a directed graph. A node v ∈ V can be denoted a root of G if for

all nodes v′ ∈ V holds v
∗

−→ v′.

Definition 64 (Path)
Let G = [V ,E] be a directed graph.

1. A sequence of nodes v1, . . . , vk is called a path of the length k − 1 in the directed
graph G if (vi, vi+1) ∈ E for all 1 ≤ i ≤ k.

2. A path is called nontrivial if its length is not 0.

3. If v1 = vk, then the path is a cycle.

Definition 65 (Strongly connected components)
Let G = [V ,E] be a directed graph.

1. A maximal set C ⊆ V such that for all nodes v,w ∈ C there exists a path from
v to w is called a strongly connected component (SCC) of G .

2. An SCC C is called nontrivial if for all nodes v,w ∈ C there exists a nontrivial
path from v to w.

3. An SCC C is called terminal if for all nodes v ∈ C there exists no w 6∈ C such
that (v,w) ∈ E .

Definition 66 (SCC quotient graph)
Let G = [V ,E] be a directed graph and let C be a set of all SCCs of G. As an SCC
quotient graph of G we denote a DAG G ′ = [C, E′] where E′ ⊆ C × C is defined as
(C1, C2) ∈ E′ if and only if ∃v1 ∈ C1, v2 ∈ C2 : v1 −→ v2.

158

A.5 Binary Decision Diagrams

Definition 67 (Distance, radius, diameter)
Let G = [V ,E] be a directed graph and let v0 ∈ V be defined as a root of G .

1. A distance from a node v ∈ V to a node v′ ∈ V is defined as a length of the
shortest path from v to v′, if one exists.

2. A radius r(G) of the graph G is defined as a largest distance from v0 to other
nodes v ∈ V .

3. A diameter d(G) of the graph G is defined as a largest distance between any two
nodes v, v′ ∈ V , between which the distance is defined.

A.5 Binary Decision Diagrams

Binary decision diagrams (BDDs) were studied in [Lee59] and [Ake78] as a data struc-
ture for the representation of boolean functions. Reduced ordered binary decision dia-
grams (ROBDDs) defined in [Bry86] are a canonical form representation for boolean
functions. ROBDDs are often substantially more compact than traditional normal
forms, and they can be manipulated very efficiently. Hence, they have become very
popular and are widely used for a variety of applications like computer aided design,
verification of finite-state concurrent systems, etc.

A.5.1 Definitions

Definition 68 (Boolean expressions)
Let B = [S,∨,∧, ,̄ 0, 1] be a boolean algebra. Boolean expressions consisting of symbols
of variables x1, . . . xn, symbols of operations ∧,∨, ,̄ and elements of S are defined
recursively.

1. The elements of S are boolean expressions.

2. The symbols of variables x1, . . . xn are boolean expressions.

3. If F and G are boolean expressions, then (F ∧G), (F ∨G), and F are also boolean
expressions.

Brackets may be omitted according to the usual operator hierarchy.

Definition 69 (Boolean functions)
Every boolean expression G induces a boolean function fG

fG : Sn → S, (s1, . . . , sn) 7→ fG(s1, . . . sn)

where fG(s1, . . . sn) denotes an element of S got by replacing of variables xi with si

followed by the evaluation of boolean operations ∧,∨ and .̄

159

A Appendix

Operations on boolean functions are defined as follows:

1. (f ∨ g)(x1, . . . , xn) = f(x1, . . . , xn) ∨ g(x1, . . . , xn),

2. (f ∧ g)(x1, . . . , xn) = f(x1, . . . , xn) ∧ g(x1, . . . , xn),

3. (f)(x1, . . . , xn) = f(x1, . . . , xn).

From now on we consider only boolean expressions and functions of the logic alge-
bra B = [B,∨,∧,¬, 0, 1].

Definition 70 (Boolean decision diagram)
A Boolean decision diagram (BDD) for variables X = {x1, . . . , xn } is a tuple [V,E, v0]
where:

1. V is a finite set of nodes.

2. E ⊆ V × B × V is finite set of arcs labeled with 0 and 1.

3. [V,E] forms a DAG.

4. v0 ∈ V is a root of the BDD.

The following conditions must also hold

1. V contains two terminal nodes labeled with 0 and 1 which have no outgoing arcs.
We define for these nodes a labeling function value : V → B, which labels one
node with 0, another with 1.

2. All other nodes v ∈ V are denoted as nonterminal nodes, we define for them
a labeling function var : V → X. Every nonterminal node v is labeled with a
variable var(v) and has two successors low(v) and high(v).

3. On every path from the root to terminal nodes a variable may appear as label of
a node only once.

An example of a BDD is shown in Fig. A.1. Every BDD with a root v determines a
boolean function fv(x1, . . . , xn) in the following manner:

1. If v is a terminal node, then fv = value(v).

2. If v is a nonterminal node with var(v) = xi, then fv is the function

f = (¬xi ∧ flow(v)) ∨ (xi ∧ fhigh(v)).

160

A.5 Binary Decision Diagrams

x2

x3 x3 x3

x1

x2

x3

1

10

0

0

10

1 1
10

1

0

0

1
0

Figure A.1: A BDD for a function f = (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3)

Definition 71 (Cofactors)
Let f = f(x1, . . . , xn) be a boolean function.

1. A function f |xi=1 = f(x1, . . . , xi−1, 1, xi+1, . . . xn) is denoted as a positive cofac-
tor of f with respect to the variable xi.

2. A function f |xi=0 = f(x1, . . . , xi−1, 0, xi+1, . . . xn) is denoted as a negative cofac-
tor of f with respect to the variable xi.

Every boolean function f = f(x1, . . . , xn) can be represented by a BDD with help of
the Bool-Shannon expansion

f = (¬xi ∧ f |xi=0) ∨ (xi ∧ f |xi=1)

Definition 72 (Ordered BDDs)
Let B = [V,E, v0] be a BDD. B is called ordered with respect to some variable or-
dering π if on every path from the root v0 to terminal nodes all nodes are ordered
with respect to their labels: for all non-terminal nodes v , v ′ if (v,_, v′) ∈ E, then
var(v) <π var(v ′).

Definition 73 (Isomorphic BDDs)
Let B = [VB , EB , v0B

] and F = [VF , EF , v0F
] be two BDDs. B and F are called

isomorphic if there exists a one-to-one function σ : VB → VF , such that if σ(v) = v ′,
then

1. either v and v ′ are both terminal nodes labeled with the same value

2. or var(v) = var(v ′), σ(low(v)) = low(v′), and σ(high(v)) = high(v′).

161

A Appendix

Definition 74 (Reduced BDD)
Let B = [V,E, v0] be a BDD. B is called reduced if

1. Each non-terminal node has two different children: 6 ∃v ∈ V : low(v) = high(v).

2. There exist no different nodes v , v ′ ∈ V such that the BDDs rooted by v and v ′

are isomorphic.

Lemma 14 (Canonicity of reduced ordered BDDs)
If some variable ordering π is defined, then for every boolean function f(x1, . . . , xn)
there exists a unique reduced ordered with respect to π BDD, representing this func-
tion f .

Proof: By induction on the number of arguments of the function f [Bry86]. 2

An example of a reduced ordered BDD (ROBDD) is shown in Fig. A.2. This ROBDD
represents the same function f as the BDD in Fig. A.1. Note, that all nodes of the
ROBDD on the figure are enumerated (the numbers in the upper side of nonterminal
nodes, the terminal nodes get respectively the numbers 0 and 1). We shall use these
numbers to address nodes. For the simplification of the algorithms we shall also assume
that the function var labels terminal nodes with a special variable x such that x >π

var(v) for all nonterminal nodes v ∈ V .

0

0

0

0
1

1

1

5

4

32
x3 x3

x2

x1

10

1

Figure A.2: An ROBDD for the function f = (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3)

A.5.2 Variable Ordering

The size of an ROBDD can depend critically on the variable ordering used. In gen-
eral, finding an optimal ordering is infeasible, it can be shown that even checking if
a particular ordering is optimal is NP-complete [Bry92]. Moreover, there are boolean

162

A.5 Binary Decision Diagrams

functions that have ROBDD representations of exponential size for any variable or-
dering. Usually heuristics are used for finding a good variable ordering when such an
ordering exists. For example, ROBDDs tend to be smaller if related variables are close
together in the ordering.

Example 28
Consider a n-bit comparator function1 f = f(a1, . . . , an, b1, . . . , bn)

f =
∧

1≤i≤n

(ai ↔ bi).

The number of nodes in the ROBDD representing f will be

• 3n + 2 if we use the variable ordering π1 defined as

a1 <π1 b1 <π1 a2 <π1 b2 <π1 . . . <π1 an <π1 bn.

• 3· 2n − 1 if we use the variable ordering π2 defined as

a1 <π2 a2 <π2 . . . <π2 an <π2 b1 <π2 b2 <π2 . . . <π2 bn.

Two ROBDDs representing a two-bit comparator function f = (a1 ↔ b1) ∧ (a2 ↔ b2)
are shown in Fig. A.3. The variable ordering π1 is used for the left ROBDD, π2 for the
right.

A.5.3 Basic Operations

Consider the Apply [Bry86] algorithm (Algorithm 33) which is a uniform algorithm
for computing all binary logical operations. Let ⋆ be an arbitrary two-argument logical
operation, f and g be two boolean functions over the same set of variables, F and
G be ROBDDs with the same variable ordering representing f and g. The algorithm
calculating f ⋆g is implemented with help of a recursive function AuxApply which gets
roots r1, r2 of two ROBDDs as parameters. We denote with f and f ′ boolean functions
represented by ROBDDs rooted by r1 and r2.

Several cases depending on the relationship between r1 and r2 are possible.

1. If r1 and r2 are both terminal nodes, then f ⋆ f ′ = r1 ⋆ r2.

2. If var(r1) = var(r2), then the Bool-Shannon expansion

f ⋆ f ′ = (¬xi ∧ (f |xi=0 ⋆ f ′|xi=0)) ∨ (xi ∧ (f |xi=1 ⋆ f ′|xi=1))

1with a ↔ b we denote the expression (a ∧ b) ∨ (¬a ∧ ¬b)

163

A Appendix

1 0

b21

0

1 0

b1

a1

b1

10

a2 1

1
1

0
a2

b1 b1 b1

a1

a2

b1

1

10 0 1

0

0

b2

0
1

1

b2

1

1

0
01

0
b2

1

0

0

0

0
1

Figure A.3: ROBDDs for the two-bit comparator function

is used to break the problem into two subproblems. The subproblems are solved
then recursively. The root of the resulting ROBDD will be a new node w with
var(w) = var(r1), low(w) will be the ROBDD for (f |xi=0 ⋆ f ′|xi=0) and high(w)
the ROBDD for (f |xi=1⋆f ′|xi=1). The supplementary function MakeNode is used
to insert a new node in the ROBDD. It takes care that the ROBDD is always
reduced, compare Definition 74. The function checks if a node w represented by
a tuple (var(w), low(v),high(w)) must be created.

a) First, MakeNode checks if low(w) = high(w). If this is a case, then a new
node should not created, as it would be redundant, the function simply
returns low(w).

b) Second, MakeNode uses the hashtable UniqueTable to check if a node w
represented by a (var(w), low(v),high(w)) already exists in the ROBDD.
UniqueTable[var(v), low(v),high(v)] is negative if the node does not exist,
otherwise it contains the number of the node. If the node is found in the
hashtable, it is returned, otherwise a new ROBDD node is created. The
variable nodesInBDD counts the number of nodes in the ROBDD. Note,
that nodesInBDD is initialized with 2, as the values 0 and 1 are reserved
for the terminal nodes.

3. If var(r1) < var(r2), then f ′|xi=0 = f ′|xi=1 = f ′ since f ′ does not depend on xi.
In this case the Bool-Shannon expansion simplifies to

f ⋆ f ′ = (¬xi ∧ (f |xi=0 ⋆ f ′)) ∨ (xi ∧ (f |xi=1 ⋆ f ′))

164

A.5 Binary Decision Diagrams

and the ROBDD for f ⋆ f ′ is computed recursively as in the second case.

4. If var(r1) > var(r2), then the computation is similar to the previous case.

Each problem can generate two subproblems, so care must be used to prevent the al-
gorithm from being exponential. Each subproblem corresponds to a pair of ROBDDs
that are subgraphs of the F and G. The number of subgraphs in an ROBDD is limited
by its size, so the number of subproblems is limited by the product of the sizes of F
and G. A hashtable ResultTable is used to store the results of previously computed sub-
problems, the function AuxApply is a so-called memory function. Before any recursive
calls are made the ResultTable is used to check if the subproblem has been already
solved. ResultTable [r1, r2] is negative if the result for the subgraphs rooted by r1 and
r2 is not known yet, nonnegative otherwise. Usage of the memory function allows to
keep the algorithm polynomial.

The equivalence check and the negation of ROBDDs (Algorithms 34, 35) are also
implemented with help of memory functions and rely on the Bool-Shannon expansion.
We skip discussions of these algorithms as they resemble the one we have just made
for the Apply algorithm.

A.5.4 Construction of ROBDDs

We define a function Construct that takes a boolean function f as an argument and
returns an ROBDD that represents f inductively.

1. If f = 0, f = 1 or f = xi, then Construct(f) returns the elementary ROBDDs
shown in Fig. A.4.

2. If f = f1 ∧ f2 or f = f1 ∨ f2, then Construct(f) is obtained using the function
Apply with the arguments Construct(f1) and Construct(f2).

3. If f = ¬f1, then Construct(f) = Neg(Construct(f1)).

xi

1

f = xi

0

f = 1 f = 0

01 0 1

Figure A.4: Elementary ROBDDs

165

A Appendix

Algorithm 33 (Binary Operation on BDDs)

1 func Apply (⋆, F , G)
2 nodesInBDD := 2
3

4 func MakeNode (x , r0 , r1)
5 if r0 = r1 then return r0 fi

6 res := UniqueTable[x , r0 , r1]
7 if res ≥ 0 then return res fi

8 nodesInBDD := nodesInBDD + 1
9 UniqueTable[x , r0 , r1] := nodesInBDD

10 return nodesInBDD

11 end

12

13 func AuxApply (r1 , r2)
14 if r1 ∈ {0, 1} ∧ r2 ∈ {0, 1} then return r1 ⋆ r2 fi

15 if ResultTable[r1 , r2] ≥ 0 then return ResultTable[r1 , r2] fi

16 if var(r1) = var(r2) then

17 v0 := AuxApply(low(r1), low(r2))
18 v1 := AuxApply(high(r1), high(r2))
19 res := MakeNode(var(r1), v0 , v1)
20 elseif var(r1) <π var(r2) then

21 v0 := AuxApply(low(r1), r2)
22 v1 := AuxApply(high(r1), r2)
23 res := MakeNode(var(r1), v0 , v1)
24 else /* var(r1) >π var(r2) */
25 v0 := AuxApply(r1 , low(r2))
26 v1 := AuxApply(r1 , high(r2))
27 res := MakeNode(var(r2), v0 , v1)
28 fi

29 ResultTable[r1 , r2] := res

30 return res

31 end

32

33 begin

34 B .root := AuxApply(F .root , G.root)
35 return B

36 end

166

A.5 Binary Decision Diagrams

Algorithm 34 (Equivalence check)

1 func Equal (F , G)
2 func AuxEqual (r1 , r2)
3 if r1 ∈ {0, 1} ∧ r2 ∈ {0, 1} then return r1 = r2 fi

4 if var(r1) 6= var(r2) then return 0 fi

5 if ResultTable[r1 , r2] ∈ { 0, 1 } then return ResultTable[r1 , r2] fi

6 res := AuxEqual(low(r1), low(r2)) ∧ AuxEqual(high(r1), high(r2))
7 ResultTable[r1 , r2] := res

8 return res

9 end

10 begin

11 return AuxEqual(F .root , G.root)
12 end

Algorithm 35 (Negation)

1 func Neg (F)
2 func AuxNeg (r1)
3 if r1 ∈ {0, 1} then return ¬r1 fi

4 if ResultTable[r1] ≥ 0 then return ResultTable[r1] fi

5 v0 := AuxNeg(low(r1))
6 v1 := AuxNeg(high(r1))
7 res := MakeNode(var(r1), v0 , v1)
8 ResultTable[r1] := res

9 return res

10 end

11 begin

12 B .root := AuxNeg(F .root)
13 return B

14 end

167

A Appendix

A.6 Models Used in Experiments

We provide only very short descriptions of the models used in our experiments and refer
the interested reader to the original publications, where the models were presented.

ACK is a net which weakly computes the Ackermann’s function [PW03].

CS is a realistic net modeling a production cell [LL95, HD95]. The production cell com-
prises six physical components: two conveyor belts, a rotatable robot equipped
with two expendable arms, an elevating rotary table, a press, and a traveling
crane. The machines are organized in a closed pipeline. Their common goal is the
transport and transformation of N metal plates.

FMS is a net modeling a flexible manufacturing system with three production units
where N parts of each of three different types move around on pallets [CM97].

HAL is a biochemical model, not yet published.

JAN is a net demonstrating the overexponential state explosion [Jan83], see Example 4
on page 17.

KAN is a model of the Kanban system [CM97].

MUL is a net which weakly computes x ∗ y [PW03].

POTATO is a bounded version of a biochemical model describing the complicated
carbon metabolism in potato tubers [KJH05].

OS is an open version of the production cell model [LL95, HD95], see above.

PUSH is an artificial but not so simple net modeling a chain of concurrent push-
ers [RLH96]. Every pusher shifts a detail from its input to the output position.
The net is obtained by connecting N identical subnets in a chain.

RW is a very simple model for the readers and writers protocol. RW≤N denotes a
model with a set of initial markings, the number of readers and writers can vary
from 1 to N .

SLOT is a simple artificial net modeling a slotted ring protocol for local area networks
[PRCB94]. It is obtained by connecting N identical subnets in a circular fashion.

168

Bibliography

[AK77] Araki, T.; Kasami, T.: Some Decision Problems Related to the Reacha-
bility Problem for Petri Nets. In: Theor. Computer Science 3 (1977), pp.
85–104 {10, 22}

[Ake78] Akers, S. B.: Binary Decision Diagrams. In: IEEE Transactions on
Computers C-27 (1978), pp. 509–516 {5, 27, 157}

[BBF+01] Bérard, B.; Bidoit, M.; Finkel, A.; Laroussinie, F.; Petit, A.;
Petrucci, L. ; Schnoebelen, P.: Systems and Software Verification.
Model-Checking Techniques and Tools. Springer, 2001 {89}

[BCL+94] Burch, J.R.; Clarke, E.M.; Long, D.E.; MacMillan, K.L. ; Dill,
D.L.: Symbolic Model Checking for Sequential Circuit Verification. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 13 (1994), Nr. 4, pp. 401–424 {61, 64}

[BCM+90] Burch, J.; Clarke, B.; Mcmillan, K.; Dill, D. ; Hwang, L.: Sym-
bolic Model Checking: 1020 States and Beyond. In: Proceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science, IEEE Computer
Society Press, 1990, pp. 1–33 {4, 49, 90}

[BF99] Bérard, B.; Fribourg, L.: Reachability Analysis of (Timed) Petri Nets
Using Real Arithmetic / Laboratoire Spécification et Vérification, ENS
Cachan, France. 1999 (LSV-99-3). – Research Report {50}

[BGP97] Bultan, T.; Gerber, R. ; Pugh, W.: Symbolic Model Checking of In-
finite State Systems Using Presburger Arithmetic. In: Proceedings of the
9th International Conference on Computer-Aided Verification, Springer-
Verlag, 1997 (LNCS #1254), pp. 400–411 {50}

[BGS00] Bloem, R.; Gabow, H. N. ; Somenzi, F.: An Algorithm for Strongly
Connected Component Analysis in n · log n Symbolic Steps. In: For-
mal Methods in Computer-Aided Design, Springer-Verlag, 2000 (LNCS
#1954), pp. 37–54 {6, 50, 79, 84, 137, 151}

169

Bibliography

[BRB90] Brace, K. S.; Rudell, R. L. ; Bryant, R. E.: Efficient Implementation
of a BDD Package. In: Proceedings of the 27th ACM/IEEE Design Au-
tomation Conference ACM/IEEE, IEEE Computer Society Press, 1990,
pp. 40–45 {36, 44, 45, 47}

[BRS99] Bloem, R.; Ravi, K. ; Somenzi, F.: Efficient Decision Procedures for
Model Checking of Linear Time Logic Properties. In: Proceedings of the
11th International Conference on Computer-Aided Verification, Springer-
Verlag, 1999, pp. 222–235 {140}

[Bry86] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manip-
ulation. C-35 (1986), Nr. 8, pp. 677–691 {5, 27, 33, 38, 49, 157, 160,
161}

[Bry92] Bryant, R. E.: Symbolic Boolean Manipulation with Ordered Binary
Decision Diagrams. In: ACM Computing Surveys 24 (1992), Nr. 3, pp.
293–318 {160}

[Büc60] Büchi, J. R.: On a Decision Method in Restricted Second Order Arith-
metic. In: Proceedings of the 1960 International Congress on Logic,
Methodology and Philosophy of Science, Stanford University Press, 1960,
pp. 1–12 {90, 104, 107}

[Bul00] Bultan, T.: BDD vs. Constraint-Based Model Checking: An Experimen-
tal Evaluation for Asynchronous Concurrent Systems. In: Proceedings of
the 6th International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems, 2000 (LNCS #4785), pp. 441–455 {50}

[Bus98] Busi, N.: Petri Nets with Inhibitor and Read Arcs: Semantics, Analysis
and Application to Process Calculi, Department of Mathematics, Univer-
sity of Siena, Italy, PhD thesis, 1998 {24}

[CE81] Clarke, E. M.; Emerson, E. A.: Design and Synthesis of Synchroniza-
tion Skeletons using Branching Time Temporal Logic. In: Proceedings of
the Workshop on Logics of Programs, Springer-Verlag, 1981 (LNCS #131),
pp. 52–71 {4, 89, 90, 93, 100}

[CEPA+02] Couvreur, J.-M.; Encrenaz, E.; Paviot-Adet, E.; Poitrenaud, D.
; Wacrenier, P.-A.: Data Decision Diagrams for Petri Net Analysis.
In: Proceedings of the 23rd International Conference on Applications and
Theory of Petri Nets, Springer Verlag, 2002 (LNCS #2360), pp. 1–101
{27}

170

Bibliography

[CES86] Clarke, E. M.; Emerson, E. A. ; Sistla, A. P.: Automatic Verification
of Finite State Concurrent Systems Using Temporal Logic Specifications.
In: ACM Transactions on Programming Languages and Systems 8 (1986),
Nr. 2, pp. 244–263 {90, 97}

[CF03] Chabrier, N.; Fages, F.: Symbolic Model Checking of Biochemical Net-
works. In: Computational Methods in Systems Biology, Springer-Verlag,
2003 (LNCS #2602), pp. 149–162 {89}

[CGH94] Clarke, E. M.; Grumberg, O. ; Hamaguchi, K.: Another Look at LTL
Model Checking. In: Proceedings of the 6th International Conference on
Computer-Aided Verification, Springer–Verlag, 1994 (LNCS #818), pp.
415–427 {90}

[CGMZ95] Clarke, E. M.; Grumberg, O.; McMillan, K. L. ; Zhao, X.: Effi-
cient Generation of Counterexamples and Witnesses in Symbolic Model
Checking. In: Proceedings of the 32nd ACM/IEEE Conference on Design
Automation, ACM Press, 1995, pp. 427–432 {127}

[CGP01] Clarke, E. M.; Grumberg, O. ; Peled, D.: Model Checking. MIT
Press, 2001 {4, 89, 90, 114, 115, 127}

[CJMS01] Ciardo, G.; Jones, R. L.; Miner, A. S. ; Siminiceanu, R. I.: SMART:
Stochastic Model Analyzer for Reliability and Timing. In: Tools of
Aachen 2001, International MultiConference on Measurement, Modelling
and Evaluation of Computer-Communication Systems, 2001, pp. 29–34 {5,
49}

[CLS01] Ciardo, G.; Lüttgen, G. ; Siminiceanu, R.: Saturation: An Efficient
Iteration Strategy for Symbolic State-Space Generation. In: Proceedings
of the 7th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, 2001 (LNCS #2031), pp. 328–342 {49,
61, 73}

[CM97] Ciardo, G.; Miner, A. S.: Storage Alternatives for Large Structured
State Spaces. In: Proceedings of the 9th International Conference on
Modeling Techniques and Tools for Computer Performance Evaluation,
Springer-Verlag, 1997 (LNCS #1245), pp. 44–57 {166}

[CMS03] Ciardo, G.; Marmorstein, R. M. ; Siminiceanu, R.: Saturation Un-
bound. In: Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Springer, 2003
(LNCS #2619), pp. 379–393 {49, 73}

171

Bibliography

[Cor98] Cortadella, J.: Combining Structural and Symbolic Methods for the
Verification of Concurrent Systems. In: Proceedings of the 1st Interna-
tional Conference on Application of Concurrency to System Design, IEEE
Computer Society, 1998, pp. 2–7 {77}

[CS89] Colom, J.M.; Silva, M.: Convex Geometry and Semiflows in P/T nets.
A Comparative Study of Algorithms for Computation of Minimal P–
semiflows. In: Proceedings of the 10th International Conference on Ap-
plication and Theory of Petri nets, 1989 (LNCS #483), pp. 74–95 {21}

[CS03] Ciardo, G.; Siminiceanu, R.: Structural Symbolic CTL Model Checking
of Asynchronous Systems. In: Proceedings of the 15th International Con-
ference on Computer-Aided Verification, Springer, 2003 (LNCS #2725),
pp. 40–53 {73, 74, 75}

[DE95] Desel, J.; Esparza, J.: Cambridge Tracts in Theoretical Computer Sci-
ence. Volume 40: Free Choice Petri Nets. Cambridge University Press,
1995 {9, 20}

[EH86] Emerson, E. A.; Halpern, J. Y.: Sometimes and Not Never Revisited:
On Branching versus Linear Time Temporal Logic. In: Journal of the
ACM 33 (1986), pp. 151–178 {89, 90, 91}

[EH00] Etessami, K.; Holzmann, G. J.: Optimizing Büchi Automata. In: Pro-
ceedings of the 11th International Conference on Concurrency Theory,
Springer-Verlag, 2000 (LNCS #1877), pp. 153–167 {113, 114}

[EH01] Esparza, J.; Heljanko, K.: Implementing LTL Model Checking with
Net Unfoldings. In: Proceedings of the 8th International SPIN Workshop
on Model Checking of Software, Springer-Verlag New York, Inc., 2001, pp.
37–56 {5}

[EL85] Emerson, E. A.; Lei, C.L.: Modalities for Model Checking: Branching
Time Logic Strikes Back. In: Proceedings of the 12th Symposium on Prin-
ciples of Programming languages, ACM Press, 1985, pp. 84–96 {89, 96}

[EL86] Emerson, E. A.; Lei, Chin-Laung: Efficient Model Checking in Fragments
of the Propositional Mu-Calculus (Extended Abstract). In: Proceedings of
the 1st Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press, 1986, pp. 267–278 {7, 103, 137, 149, 151}

[EM97] Esparza, J.; Melzer, S.: Model Checking LTL Using Constraint Pro-
gramming. In: Proceedings of the 18th International Conference on Ap-
plication and Theory of Petri Nets, 1997 (LNCS #1248), pp. 1–20 {129,
130}

172

Bibliography

[EN94] Esparza, J.; Nielsen, M.: Decidability Issues for Petri Nets - a Survey.
In: Bulletin of the European Association for Theoretical Computer Science
52 (1994), pp. 245–262 {16}

[FA73] Flynn, M. J.; Agerwala, T.: Comments on Capabilities, Limitations and
Correctness of Petri Nets. In: Proceedings of the 1st Annual Symposium
on Computer Architecture, ACM Press, 1973, pp. 81–86 {10, 22}

[FEJ89] Frutos-Escrig, D.; Johnen, C.: Decidability of Home Space Property
/ Univ. de Paris-Sud, Centre d’Orsay, Laboratoire de Recherche en Infor-
matique. 1989. – Technical Report {19}

[FFK+01] Fisler, K.; Fraer, R.; Kamhi, G.; Vardi, M. Y. ; Yang, Z.: Is There
a Best Symbolic Cycle-Detection Algorithm? In: Proceedings of the 7th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Springer-Verlag, 2001 (LNCS #2031), pp. 420–
434 {120, 138}

[Fin93] Finkel, A.: The Minimal Coverability Graph for Petri Nets. In: LNCS
#674; Advances in Petri Nets (1993), pp. 210–243 {18}

[God91] Godefroid, P.: Using Partial Orders to Improve Automatic Verification
Methods. In: Proceedings of the 2nd International Workshop on Computer-
Aided Verification, Springer-Verlag, 1991, pp. 176–185 {4, 90, 146, 152}

[GPVW95] Gerth, R.; Peled, D.; Vardi, M. ; Wolper, P.: Simple On-the-fly
Automatic Verification of Linear Temporal Logic. In: Protocol Specification
Testing and Verification, Chapman & Hall, 1995, pp. 3–18 {110}

[GV01] Geldenhuys, J.; Valmari, A.: Techniques for Smaller Intermediary
BDDs. In: Proceedings of the 12th International Conference on Concur-
rency Theory, Springer, 2001 (LNCS #2154), pp. 233–247 {61, 74}

[GV04] Geldenhuys, J.; Valmari, A.: Tarjan’s Algorithm Makes On-the-Fly
LTL Verification More Efficient. In: Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2004 (LNCS #2988), pp. 205–219 {146}

[Hac75] Hack, M.: Decidability Questions for Petri Nets, Cambridge, Mass.: MIT,
Dept. Electrical Engineering, PhD thesis, 1975 {18, 19}

[Hac76] Hack, M.: Petri Net Language. Cambridge, MA, USA: Massachusetts
Institute of Technology, 1976. – Technical Report {10, 22, 24}

173

Bibliography

[HD95] Heiner, M.; Deussen, P.: Petri Net Based Qualitative Analysis - A Case
Study / Brandenburg University of Technology at Cottbus. Cottbus,
Germany, 1995 (I-08/1995). – Technical Report {166}

[Hel02] Heljanko, K.: Combining Symbolic and Partial Order Methods for Model
Checking 1-Safe Petri Nets. Espoo, Finland, Helsinki University of Tech-
nology, Department of Computer Science and Engineering, PhD thesis,
2002 {5}

[HK04] Heiner, M.; Koch, I.: Petri Net Based System Validation in Systems Bi-
ology. In: Proceedings of the 25th International Conference on Application
and Theory of Petri Nets, 2004 (LNCS #3099), pp. 216–237 {5, 50}

[HKSV97] Hardin, R.H.; Kurshan, R.P.; Shukla, S.K. ; Vardi, M.Y.: A New
Heuristic for Bac Cycle Detection Uing BDDs. In: Proceedings of the
9th International Conference on Computer-Aided Verification, Springer-
Verlag, 1997 (LNCS #1254), pp. 268–278 {138}

[HKW04] Heiner, M.; Koch, I. ; Will, J.: Validation of Biological Pathways Using
Petri Nets - Demonstrated for Apoptosis. In: BioSystems 75/1-3 (2004),
pp. 15–28 {5, 10, 22}

[HTKB92] Hojati, R.; Touati, H.; Kurshan, R.P. ; Brayton, R.: Efficient
ω-regular Language Containment. In: Proceedings of the 3d International
Workshop on Computer-Aided Verification, Springer-Verlag, 1992 (LNCS
#663), pp. 371–382 {137}

[INH96] Iwashita, H.; Nakata, T. ; Hirose, F.: CTL Model Checking Based on
Forward State Traversal. In: Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, IEEE Computer Society, 1996, pp.
82–87 {7, 117, 121, 122, 127}

[Jan83] Jantzen, M.: The Large Markings Problem. In: Petri Net Newsletter 14
(1983), pp. 24–25 {15, 166}

[Jen95] Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, vol. 2. London, UK: Springer-Verlag, 1995 {9}

[Jen96] Jensen, K.: Coloured Petri Nets (2nd ed.): Basic Concepts, Analysis
Methods and Practical use: volume 1. London, UK: Springer-Verlag, 1996
{9}

[Kam95] Kam, T.: State Minimization of Finite State Machines Using Implicit
Techniques, University of California at Berkeley, PhD thesis, 1995 {27,
49}

174

Bibliography

[KJH05] Koch, I.; Junker, B. H. ; Heiner, M.: Application of Petri Net Theory
for Modelling and Validation of the Sucrose Breakdown Pathway in the
Potato Tuber. In: Bioinformatics 21 (2005), Nr. 7, pp. 1219–1226 {5, 50,
166}

[KM69] Karp, R. M.; Miller, R. E.: Parallel Program Schemata. In: J. Comput.
Syst. Sci. 3 (1969), Nr. 2, pp. 147–195 {18}

[Kri63] Kripke, S. A.: Semantical Considerations on Modal Logic. In: Acta
Philosophica Fennica 16 (1963), pp. 83–94 {91}

[Lam80] Lamport, L.: “Sometime” is Sometimes “Not Never”: on the Temporal
Logic of Programs. In: Proceedings of the 7th Symposium on Principles of
Programming languages, ACM Press, 1980, pp. 174–185 {4, 89, 90}

[Lee59] Lee, C. Y.: Representation of Switching Circuits by Binary Decision
Programs. In: Bell System Technical Journal 38 (1959), pp. 985–999 {5,
27, 157}

[LL95] Lewerentz, C. (Hrsg.); Lindner, T. (Hrsg.): Formal Development of
Reactive Systems - Case Study Production Cell. London, UK: Springer-
Verlag, 1995 {166}

[LP85] Lichtenstein, O.; Pnueli, A.: Checking that Finite State Concurrent
Programs Satisfy their Linear Specification. In: Proceedings of the 12th
Symposium on Principles of Programming Languages, ACM Press, 1985,
pp. 97–107 {90}

[LR95] Lautenbach, K.; Ridder, H.: A Completion of the S-invariance Tech-
nique by Means of Fixed Point Algorithms / Universität Koblenz-Landau.
1995 (10–95). – Technical Report {5, 6, 27, 50, 77}

[May81] Mayr, E. W.: Persistence of Vector Replacement Systems is Decidable.
In: Acta Informatica 15 (1981), pp. 309–318 {18}

[MC99] Miner, A. S.; Ciardo, G.: Efficient Reachability Set Generation and
Storage Using Decision Diagrams. In: Proceedings of the 20th Interna-
tional Conference on Application and Theory of Petri Nets, Springer, 1999
(LNCS #1639), pp. 6–25 {5}

[McM92] McMillan, K. L.: Symbolic Model Checking: an Approach to the State
Explosion Problem. Pittsburgh, PA, USA, Carnegie Mellon University,
PhD thesis, 1992 {4, 49, 90}

175

Bibliography

[MF76] Merlin, P. M.; Farber, D. J.: Recoverability of Communication Pro-
tocols - Implications of a Theoretical Study. In: IEEE Transactions on
Communications 24 (1976), Nr. 9, pp. 1036–1043 {152}

[Min93] Minato, S.: Zero-Suppressed BDDs for Set Manipulation in Combinato-
rial Problems. In: Proceedings of the 30th ACM/IEEE Design Automation
Conference, ACM Press, 1993, pp. 272–277 {27, 49}

[ML98] Møller, J.; Lichtenberg, J.: Difference Decision Diagrams. Building
344, DK-2800 Lyngby, Denmark, Department of Information Technology,
Technical University of Denmark, Diplomarbeit, 1998 {27}

[MMB93] Matsunaga, Y.; McGeer, P. C. ; Brayton, R. K.: On Computing the
Transitive Closure of a State Transition Relation. In: Proceedings of the
30th International Conference on Design automation, ACM Press, 1993,
pp. 260–265 {50, 79}

[MP92] Manna, Z.; Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems – Specification. Springer–Verlag, 1992 {87}

[MR95] Montanari, U.; Rossi, F.: Contextual Nets. In: Acta Informatica 32
(1995), Nr. 6, pp. 545–596 {10, 22}

[Noa99] Noack, A.: A ZBDD Package for Efficient Model Checking of Petri Nets
(in German) / Branderburgische Technische Uinversität Cottbus. 1999. –
Technical Report {44, 47, 55, 62, 63, 71, 78}

[PCP99] Pastor, E.; Cortadella, J. ; Pena, M. A.: Structural Methods to Im-
prove the Symbolic Analysis of Petri Nets. In: Proceedings of the 20th In-
ternational Conference on Application and Theory of Petri Nets, Springer-
Verlag, 1999, pp. 26–45 {49, 77}

[Pel94] Peled, D.: Combining Partial Order Reductions with On-the-fly
Model-Checking. In: Proceedings of the 6th International Conference on
Computer-Aided Verification, Springer-Verlag, 1994 (LNCS #818), pp.
377–390 {4, 90, 146, 152}

[Pet62] Petri, C. A.: Kommunikation mit Automaten, Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, PhD thesis, 1962 {3, 9}

[Pet81] Peterson, J. L.: Petri Net Theory and The Modeling of Systems. Engle-
wood Cliffs, Massachusetts,: Prentice Hall, Inc., 1981 {9}

[Pnu77] Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the
18th IEEE Symposium on the Foundations of Computer Science, IEEE
Computer Society Press, 1977, pp. 46–57 {4, 89}

176

Bibliography

[Pnu80] Pnueli, A.: The Temporal Semantics of Concurrent Programs. In: The-
oretical Computer Science 13 (1980), Nr. 1, pp. 45–60 {4, 89, 93}

[PRCB94] Pastor, E.; Roig, O.; Cortadella, J. ; Badia, R. M.: Petri Net Anal-
ysis Using Boolean Manipulation. In: Proceedings of the 15th Interna-
tional Conference on Application and Theory of Petri Nets, Springer, 1994
(LNCS #815), pp. 416–435 {5, 49, 61, 166}

[PW03] Priese, L.; Wimmel, H.: Petri Netze. Springer, 2003 (Theoretische
Informatik) {18, 166}

[RBS00] Ravi, K.; Bloem, R. ; Somenzi, F.: A Comparative Study of Symbolic
Algorithms for the Computation of Fair Cycles. In: Proceedings of the 3d
International Conference on Formal Methods in Computer-Aided Design,
Springer-Verlag, 2000, pp. 143–160 {127, 139, 140}

[Rei86] Reisig, W.: Petrinetze — Eine Einführung. Springer–Verlag, 1986 {9}

[Rid97] Ridder, H.: Analysis of Petri Net Models with Decision Diagrams (in
German), Universität Koblenz-Landau, PhD thesis, 1997 {55}

[RK97] Ruf, J.; Kropf, T.: Symbolic Model Checking for a Discrete Clocked
Temporal Logic with Intervals. In: Proceedings of the IFIP WG 10.5
International Conference on Correct Hardware Design and Verification
Methods, Chapman & Hall, Ltd., 1997, pp. 146–163 {152}

[RLH96] Rausch, M.; Lüder, A. ; Hanisch, H.M.: Combined Synthesis of Lock-
ing and Sequential Conrollers. In: Proceedings of the 3d International
Workshop on Discrete Event Systems, 1996, pp. 133–138 {166}

[Rud93] Rudell, R. L.: Dynamic Variable Ordering for Ordered Binary Decision
Diagrams. In: Proceedings of the ACM/IEEE International Conference on
Computer-Aided Design, IEEE Computer Society Press, 1993, pp. 42–47
{46}

[SB00] Somenzi, F.; Bloem, R.: Efficient Büchi Automata from LTL Formulae.
In: Proceedings of the 12th International Conference on Computer-Aided
Verification, Springer–Verlag, 2000 (LNCS #1855), pp. 248–263 {106,
107, 114}

[SE05] Schwoon, S.; Esparza, J.: A Note on On-The-Fly Verification Algo-
rithms. In: Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Springer, 2005
(LNCS #3440), pp. 174–190 {108}

177

Bibliography

[SP02] Solé, M.; Pastor, E.: Traversal Techniques for Concurrent Systems.
In: Proceedings of the 4th International Conference on Formal Methods in
Computer-Aided Design, Springer-Verlag, 2002, pp. 220–237 {61, 62, 63,
64}

[Spr01] Spranger, J.: Symbolic LTL Verification of Petri Nets (in German),
Branderburgische Technische Uinversität Cottbus, PhD thesis, 2001 {5,
7, 129, 131, 141, 143, 145, 146, 149, 151}

[ST98] Strehl, K.; Thiele, L.: Symbolic Model Checking Using Interval Dia-
gram Techniques / Computer Engineering and Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH) Zurich. 1998. – Technical Report
{5, 6, 27, 33, 55}

[ST03] Sebastiani, R.; Tonetta, S.: “More Deterministic” vs. “Smaller” Büchi
Automata for Efficient LTL Model Checking / Informatica e Telecomu-
nicazioni, University of Trento. 2003 (DIT-03-041). – Technical Report
{110, 114}

[Sta90] Starke, P. H.: Analyse von Petri-Netz-Modellen. Stuttgart, Teubner,
1990 {9, 16, 20}

[Sto36] Stone, M. H.: The Theory of Representations for Boolean Algebras. In:
Transactions of the American Mathematical Society 40 (1936), pp. 37–111
{155}

[Tar55] Tarski, A.: A Lattice-theoretical Fixpoint Theorem and its Applications.
In: Pacific Journal of Mathematics (1955), Nr. 5, pp. 285–309 {100}

[Tar72] Tarjan, R.: Depth-First Search and Linear Graph Algorithms. In: SIAM
Journal on Computing 1 (1972), Nr. 2, pp. 146–160 {79, 108}

[Tho90] Thomas, W.: Automata on Infinite Objects. In: Handbook of Theoretical
Computer Science Volume B: Formal Models and Semantics. Elsevier
Science Publishers, 1990, Chapter 4, pp. 133–191 {106}

[Val91] Valmari, A.: A Stubborn Attack On State Explosion. In: Proceed-
ings of the 2nd International Workshop on Computer-Aided Verification,
Springer-Verlag, 1991, pp. 156–165 {4, 90, 152}

[Var96] Vardi, M. Y.: An Automata Theoretic Approach to Linear Temporal
Logic. In: Proceedings of the 8th Banff Higher Order Workshop Conference
on Logics for Concurrency : Structure versus Automata, Springer-Verlag,
1996, pp. 238–266 {90, 104, 107}

178

Bibliography

[Var01] Vardi, M. Y.: Branching vs. Linear Time: Final Showdown. In: Pro-
ceedings of the 7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Springer-Verlag, 2001 (LNCS
#2031), pp. 1–22 {89}

[VHHP95] Varpaaniemi, K.; Halme, J.; Hiekkanen, K. ; Pyssysalo, T.: PROD
Reference Manual / Helsinki University of Technology, Digital Systems
Labora tory. Espoo, Finland, 1995 (B13). – Technical Report. – 56 S
{5}

[VW86] Vardi, M. Y.; Wolper, P.: An Automata-Theoretic Approach to Au-
tomatic Program Verification. In: Proceedings of the 1st Symposium on
Logic in Computer Science, 1986, pp. 332–344 {90, 104}

[VW94] Vardi, M. Y.; Wolper, P.: Reasoning About Infinite Computations. In:
Information and Computation 115 (1994), Nr. 1, pp. 1–37 {107}

[WVS83] Wolper, P.; Vardi, M. Y. ; Sistla, A.P.: Reasoning About Infinite
Computation Paths. In: Proceedings of the 24th IEEE Symposium on the
Foundations of Computer Science, 1983, pp. 185–194 {110}

[XB98] Xie, A.; Beerel, P. A.: Efficient State Classification of Finite State
Markov Chains. In: Design Automation Conference, 1998, pp. 605–610
{6, 50, 79, 82, 87, 151}

[XB99] Xie, A.; Beerel, P. A.: Implicit Enumeration of Strongly Connected
Components. In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, IEEE Press, 1999, pp. 37–40 {50, 79}

[YBO+98] Yang, B.; Bryant, R. E.; O’Hallaron, D. R.; Biere, A.; Coudert,
O.; Janssen, G.; Ranjan, R. K. ; Somenzi, F.: A Performance Study
of BDD-Based Model Checking. In: Proceedings of the 2nd International
Conference on Formal Methods in Computer-Aided Design, 1998 (LNCS
1522), pp. 255–289 {44, 46}

[YHTM96] Yoneda, T.; Hatori, H.; Takahara, A. ; Minato, S.: BDDs vs. Zero-
Suppressed BDDs: for CTL Symbolic Model Checking of Petri Nets. In:
LNCS #1166 (1996), pp. 435–449 {5, 55}

179

