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Systems Biology: Interaction in Networks
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Methionine Biosynthesis in S.cerevisiae
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Metabolic Pathways
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—> general biochemical pathways, — animals,

higher plants, — unicellular organisms
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Metabolic Pathways vs Signalling Pathways

Metabolic . .
(initial substrate) Signalling cascade
S Input Signal
X
E1— J J
S’ S1 > P1
E2 ' J l
S2 - P2
SII J
E3 — J
S3 > P3
L Output

(final product)

Classical enzyme-product pathway Product become enzyme at next stage



Networks

. Gene regulatlon
* Protein-protein interaction

e Metabolic
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Systems Biology

 Modelling: design and construction of models of existing
biological systems, which explain observed properties and
predict the response to experimental interventions

wetlab formalizing

experiments observed understanding
/’ behaviour ﬂ

natural model
biosystem (knowledge)

L_ predicted

wetlab behaviour model-based

experiments experiment design



Systems Biology — some definitions

e Systems biology is the study of all the
elements in a biological system (all genes,
MRNAs, proteins, etc) and their relationships
one to another in response to perturbations.

e Systems approaches attempt to study the
behaviour of all of the elements in a system
and relate these behaviours to the systems or
emergent properties
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A Framework for Systems Biology
(Ideker, Galitski & Hood, 2001)

Define all of the components of the system

Systematically perturb and monitor
components of the system

Reconcile the experimentally observed
responses with those predicted by the model

Design and perform new perturbation
experiments to distinguish between multiple
or competing model hypotheses



Synthetic Biology - Design & Build it!

Genetic Engineering Synthetic Biology
* Single gene manipulation * Genetic circuit design
* Gene transfer  Standard parts — BioBricks™
* Ad-hoc research * Modelling and simulation
* Open

Supporting technology: DNA synthesis
* Photographic bacteria - UCSF iGEM 2004 Team

david.gilbert@brunel.ac.uk BME Intro 15



Top-Down- The “North American” model
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Bottom-Up — The “Far-Eastern” Model

Introduce to the vesicle only what is needed
for your uses

e Synthetic DNA

e Refactored organelles

e Membrane pores

Creation of artificial life!



A drug manufacturing plant

® “Audacious plan” New Scientist, May 2006
® Engineer e.coli / yeast to synthesise the anti-malarial artemisinin
® $42.6 million, Bill & Melinda Gates Foundation

® Plant difficult to grow and only yield minute
guantities of drug per kilo

® Artemisinin is expensive

» Engineer cheaper alternative and
save the world!

Artemisia annua
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Simple sugar
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Levels of Abstraction
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Registry of Parts

http://parts.mit.edu/

BBF continues work on the
standard

david.gilbert@brunel.ac.uk

Systems

-@- Measurement 2

—@— Measurement (Under Development) 2

{Proiect} Projects(empty)

Devices
—@— Reporters 2 -ﬁ.-— Protein Generator 2
—b— Inverters 2 =@} Composite Devices 2
—ﬂl— Signalling 2 -@— Measurement 2
Parts

—@— Ribosome Binding Sites 2 -@mg- Protein Coding 2

=& Regulatory 2 —@— Terminators 2

SR RNA 2 ‘\’ Conjugation 2

e DNA 2
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Pollutant

A
7/

Electrical Output

Microbial Fuel Cell
i Ty ! > ecenes > [

* From pathogenic Pseudomonas aeruginosa
e Can act as electron mediator
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Synthetic Biology

design construction

desired model synthetic
behaviour (blueprint) biosystem

verification ¢ verification ¢

predicted observed
behaviour behaviour




MKQ—MKKK
Model S

MKK P-MKK

A model N

MAPK P-MAPK

. n_/
— formal representation of the real world

— simplified abstract view of the complex reality.

e =

A simulation: implementation of a model over time.

To design: the process of originating and developing a plan for
a product

A design: (Final) plan, e.g. model,
description, for the product




Analysis & Reasoning

A model may be used to permit (automated)
reasoning about the object / system modelled.

* Predictive modelling: the use of a model to
predict the behaviour of a system.

— E.g. predict the effect of drugs on an organism
— E.g. predict the effect of an inhibitor on a pathway



Validation & Verification

* Validation — ‘You built the right product?’.

— Product / system accomplishes its intended
requirements.

— Model / simulation are accurate representations of
the real world

* Verification - ‘You built the product right?’.
— System complies with its specification

— Model / simulation accurately represent the
specifications



Synthetic Biology development cycle

Model / check
£ construct

D
k=i :
> validate

zzzzzzzzzzz

modify l
construct

verify

construct

verify
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Molecules/Levels . .
g Qualitative

Time-free

Approximation
Molecules/Levels Concentrations
Stochastic rates . > . Deterministic rates
csL, PLTLcStOChaStIC < Continuous 7,
Approximation

DiscreteState Space Continuous State Space

Gilbert, Heiner and Lehrack. A Unifying Framework for Modelling and Analysing
Biochemical Pathways Using Petri Nets.” Proc CMSB 2007



Case study: small model network

RKIP inhibited ERK pathway

Protein
(concentration)

Cho et al, CMSB03

Reaction
+ rate

MEK-PP
david.gilbert@brunel.ac.uk BME Intro 29



Qualitative Analysis

Partial order run
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Stochastic Definition

Table 1 The reaction equation, rate function, and rate constants for each reaction (transition). For
better readability we use the abbreviations s1 ... s11 for the involved species. All reactions employ
mass action kinetics. Backward reactions constants are by two orders of magnitude smaller than
for the forward reactions.

# reaction equation rate function v; rate constant ¢

stochastic deterministic
rl sl +s2 — s3 cr-sl-s2 ch=ci1-fs c1 =0.53
2 s3 — sl +s2 cy- 83 ch =0 ¢y = 0.0072
3 s3+s9 — 4 c3- 83 -89 s =c3fs c3 = 0.625
4 s4 —  s3+5s9 cy- s4 cy = c4 cs = 0.00245
5 s4 — sl +s5+s6 cs- s4 C5 = Cs cs = 0.0315
16 s5+s7 — s8 ce S5 - 87 Ce = Co - [ ce = 0.8
r7 s8 —  s5+5s7 c7- s8 ¢ =cy c7 = 0.0075
r8 s8 —  s7+5s9 cg- S8 cg = C3 cg =0.071
9 s6 +s10 — sll co- s6 - s10 Co=C9- [ co =0.92
rl0 sll —  s6+5s10 C10- sl1 C/IO = C10 Cl0 — 0.00122
rll sll —  s2+5s10 ci1-sll Clll =C11 ci1 = 0.87

¢ The stochastic and deterministic rate constants are equivalent for first-order reactions. f; is a
scaling factor to map the given mass in the continuous concentration onto a finite number of levels
(i.e tokens), with N being the highest level number, i.e. f; = mass/N.



From qualitative to continuous

af-1* RKIP

dm3/dt = m1

ERK-PP

Raf-1*/RKIP
m9

k11

k8 k3 k4

Raf-1*/RKIP/ERK-PP

ERK RKIP-P RP



dm3/dt=+rl
+r4
-r2
-r3

ERK-PP

m9

m7

MEK-PP

ml

RKIP

Raf-1*/RKIP

Raf-1*/RKIP/ERK-PP

RKIP-P/RP

RP



dm3/dt =+ k1*m1*m?2
+r4
-r2
-r3

ERK-PP

m9

m7

ml

RKIP

Raf-1*/RKIP

Raf-1*/RKIP/ERK-PP
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dm3/dt =+ k1*m1*m?2
+ k4*m4
- k2*m3
- k3*m3*m9

ERK-PP

m9

m7

ml

RKIP

Raf-1*/RKIP

Raf-1*/RKIP/ERK-PP
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Concentration (Levels)

Concentration (Levels)

Stochastic & Deterministic Behaviour
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BioModel Engineering

* The science of designing, « A systematic approach for designing,
constructing and analyzing constructing and analyzing computational
computational models of biological models of biological systems.
systems * Some inspiration from efficient software

« A systematic and powerful extension engineering strategies.
of earlier mathematical modeling : o

* Not engineering biological systems per se,
approaches but

* Applied in systems biology and — describes their structure and
synthetic biology. behavior,

* Takes place at the interface of — in particular at the level of
computing science, mathematics, intracellular molecular processes,
engineering and biology. — using computational tools and

techniques in a principled way.

Rainer Breitling, David Gilbert, Monika Heiner, Richard Orton (2008). A structured approach for the engineering of biochemical network
models, illustrated for signalling pathways. Briefings in Bioinformatics

David Gilbert, Rainer Breitling, Monika Heiner, Robin Donaldosn (2008)
An introduction to BioModel Engineering, illustrated for signal transduction pathways, Proc WMC9, LNCS



Why model?

Simplistic answers:
— Because it’s there...
— Why not?

Technical answer:
— “The benefit of formal mathematical models is that they can show whether

proposed causal mechanisms are at least theoretically feasible and can help to
suggest experiments that might further discriminate between alternatives.” (Franks
& Tofts, 1994)

Realistic answers:

A computer model can generate new insights
A computer model can make testable predictions

A computer model can test conditions that may be difficult to study in the
laboratory

A computer model can rule out particular explanations for an experimental
observation

A computer model can help you identify what’s right and wrong with your
hypotheses (could/is the proposed mechanism correct)



How to model...Overview

Identification

: < Yes i
Analysis N Validation Definition

‘Execution’

david.gilbert@brunel.ac.uk BME Intro
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> W N

Building computational models

ldentification
Construction

Execution, Animation, Simulation

. Analysis & interpretation

Management & development



1: Identification

Identify the biological pathway to model (what)

— RKIP
— EGF and NGF activated MAPK

Or, more importantly, identify the biological question to answer
(why)

— What influence does the Raf Kinase Inhibitor Protein (RKIP) have

on the Extracellular signal Regulated Kinase (ERK) signalling
pathway?

— How do EGF and NGF cause differing responses in ERK
activation, transient and sustained, respectively?



*  Construct topology

e  Check literature

2: Construction

Define all the proteins/molecules involved
Define the reactions they are involved in
Where do you draw the model boundary line?

What is known about the pathway and proteins?
What evidence is there that protein A binds directly to protein B?

Protein C also binds directly to protein B: does it compete with protein A or do they bind to
protein B at different sites?

Trust & Conflicts: it is important to recognize which evidence to trust and which to discard
(talk to the people in the wet lab)

* Simplifying assumptions

Many biological processes are very complex and not fully understood
Therefore, developing a model often involves making simplifying assumptions

For example, the activation of Raf by Ras is very complicated and not fully understood but it
is often modelled as:

* Raf + Ras-GTP = Raf/Ras-GTP -> Raf-x + Ras-GTP
Although this is a simplification, it is able to explain the observed data



3: Execution, Animation, Simulation

» Relatively straightforward step - many software tools
available for token game (animation), to simulate
differential equation based models, stochastic models, ...

BioNessie

* For example:

— BioNessie

— Matlab

— Copsai / Gepasi
— CellDesigner
— Jarnac

— WinScamp
— gillespie2

— Snoopy
— Many many more

MATLAB

ey satlllL
(EUO PASI

elease 4.0.18




4: Analysis & Interpretation (1)

Validation: Do the model results match the
experimental data?
— Yes: validation
— No: back to definition and check for errors
* Simple typos
* Wrong kinetics
* Over simplifications of processes
* Missing components from the model
* Incorrect parameter data



4: Analysis & Interpretation (2)

Prediction:

— What do the results imply or suggest? What do they tell us that is
new and that we did not know/understand before?

— What predictions can we make? (when modifying by drugs,
conditions, knockouts, knockdowns,...)

Sensitivity analysis - identify the key steps and components in the
pathway as well as monitoring how robust the system is:

— Vary an initial concentration or rate by a small amount and see
what affect it has on the system as a whole: small changes in a key
value are likely to have a large affect

— How robust is the system to changes?
Knockout/knockdown experiments

— k/o components — (initial concentration :=0,...) to identify which
components are essential and which are redundant

— k/o reactions (rate :=0,...) to identify essential and redundant
reactions in the system






. .

) verification
Construction technical <« >

requirement
system specification

. -




M

validation

known

Understanding biological 4///' properties
system \
unknown

behaviour properties

prediction

M




Synthetic Biology development cycle
\ \ osyte

validate

construct

verify

construct

verify
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5: Management & Development

Identifying building blocks / submodels (modules)
Database

— models, model components

— behaviours,

— properties, ...

Model Version control system

Component reuse

Model checking:
Maintaining (temporal logic) properties



Model Searching

Peaks at least once

(rises then falls below 50% max

concentration)
P._,[ ErkPP <=0.50*max(ErkPP) A d(ErkPP) >0 U

Brown Schoeberl
( ErkPP = max(ErkPP) A F( ErkPP <= 0.50*max(ErkPP))) ] s
* Brown s s 8]
£ 8 £ 7
* Kholodenko 4 -
¢ SChoeberI % o T T T T T T T % : T T T T T T T T
° u} 10 20 30 40 50 B0 ° 0 500 1000 1500 2000 2500 3000 3500
Time Time
Rises and remains constant
Levchenko Kholodenko
(99% max concentration) 27 ]
P,_,[ErkPP <= 0.50*max(ErkPP) A ( d(ErkPP)>0) U § §- g
( G(ErkPP >= 0.99*max(ErkPP)) ) | Y N
« Levchenko = | ®
= IJI 1DID QDIEI SDID ADID SEIID DI 1D:JD QDIUD SDIDD ADIDD SDIDD
Time Time

Oscillates at least 4 times
P._.[ F(d(ErkPP)>0 A F(d(ErkPP)<O A ...)) ]

* Kholodenko



BioNessie —BioModel Engineering environment

Xuan Liu
SBML (Systems Biology Markup Language) enabled.

Intuitive easy-to-use interface for biochemists & modellers. Input biochemical equations.

File storage in XML, SBML, text & graphics
Platform Independent — Java

Parallel processing - Efficient exploitation of available compute resources — multiple core and

multiple CPUs, as well as Grid computing
Editor, simulator, and analyser

Model version control

Kinetic law library creation & management
Fast efficient ODE solver (stiff & non-stiff)
(Stochastic solver)

Parameter scanning

Sensitivity analysis

Parameter estimation using a genetic algorithm
Advanced model checking (MC2 using PLTL)
Module composition

Relational database connectivity

www BioNessie.org



BME: Systems & Synthetic Biology

Systems Biology: design and
construction of models of
existing biological systems,
which explain observed
properties and predict the
response to experimental
interventions

natural model
biosystem (knowledge)
L predicted

wgtlab behaviour model-based
experiments

wetlab formalizing
experiments observed understanding
/’ behaviour ﬂ

experiment design

Synthetic Biology: used as part
of a general strategy for
designing and constructing
synthetic biological systems
with novel functionalities.

design construction

)

desired model synthetic
behaviour (blueprint) biosystem
verification * verification *

predicted observed
behaviour behaviour
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