From cell biology to Petri nets

Rainer Breitling, Groningen, NL
David Gilbert, London, UK
Monika Heiner, Cottbus, DE

Biology = Concentrations

The simplest chemical reaction

$A \rightarrow B$

- irreversible, one-molecule reaction
- examples: all sorts of decay processes, e.g. radioactive, fluorescence, activated receptor returning to inactive state
- any metabolic pathway can be described by a combination of processes of this type (including reversible reactions and, in some respects, multi-molecule reactions)

The simplest chemical reaction

$A \rightarrow B$

various levels of description:

- homogeneous system, large numbers of molecules = ordinary differential equations, kinetics
- small numbers of molecules = probabilistic equations, stochastics
- spatial heterogeneity = partial differential equations, diffusion
- small number of heterogeneously distributed molecules $=$ single-molecule tracking (e.g. cytoskeleton modelling)

Kinetics Description

Main idea: Molecules don't talk

- Imagine a box containing N molecules.

How many will decay during time t? $\mathbf{k * N}$

- Imagine two boxes containing N/2 molecules each.

How many decay? $\mathbf{k}^{*} \mathbf{N}$

- Imagine two boxes containing N molecules each. How many decay? 2k*N
- In general:

$$
-\frac{d n(t)}{d t}=\lambda * n(t)
$$

$$
\Leftrightarrow \quad n(t)=N_{0} e^{-\lambda t}
$$

differential equation (ordinary, linear, first-order)
exact solution (in more complex cases replaced by a numerical approximation)

Kinetics Description

Probabilistic Description

Main idea: Molecules are isolated entities without memory
Probability of decay of a single molecule in some small time interval:

$$
p_{1}=\lambda \Delta t
$$

Probability of survival in

$$
p_{2}=1-p_{1}=1-\lambda \Delta t
$$ Δt :

Probability of survival for some time t :

$$
p=\lim _{x \rightarrow \infty}\left(1-\lambda \frac{t}{x}\right)^{x}=e^{-\lambda t}
$$

Transition to large number of molecules:

$$
n(t)=N_{0} e^{-\lambda t} \quad \text { or }
$$

$$
\frac{d n(t)}{d t}=-\lambda N_{0} e^{-\lambda t}=-\lambda n(t)
$$

Probabilistic Description - 2

Probability of survival of a single molecule for some time t :

$$
p=\lim _{x \rightarrow \infty}\left(1-\lambda \frac{t}{x}\right)^{x}=e^{-\lambda t}
$$

Probability that exactly x molecules survive for some time t :

$$
p_{x}=\left(e^{-\lambda t}\right)^{x}\left(1-e^{-\lambda t}\right)^{N_{0}-x}\binom{N_{0}}{x}
$$

Most likely number to survive to time t:

Probabilistic Description-3

Markov Model (pure death!)

Decay rate:
Probability of decay:
Probability distribution of n
surviving molecules at time t :
Description:
Time: t -> wait dt -> t+dt
Molecules:

```
n -> no decay -> n
n+1 -> one decay -> n
```

$$
\Lambda(n, t)=n \lambda
$$

$$
p=\Lambda(n, t) d t
$$

$$
P(n, t)
$$

$$
P(n, t+d t)=
$$

$$
P(n+1, t) \Lambda(n+1, t) d t
$$

$$
+P(n, t)[1-\Lambda(n, t) d t]
$$

Final Result (after some calculating): The same as in the previous probabilistic description

Petri Net representation

Some (Bio)Chemical Conventions

Concentration of Molecule $A=[A]$, usually in units mol/litre (molar)
Rate constant $=k$, with indices indicating constants for various reactions ($\mathrm{k}_{1}, \mathrm{k}_{2} \ldots$)
Therefore:

$$
\begin{gathered}
\mathrm{A} \rightarrow \mathrm{~B} \\
\frac{d[A]}{d t}=-\frac{d[B]}{d t}=-k_{1}[A]
\end{gathered}
$$

Reversible, Single-Molecule Reaction

$A \leftrightarrow B$, or $A \rightarrow B \| B \rightarrow A$, or $A \underset{\nabla_{k 2}}{\frac{k 1}{\Delta} B}$ Differential equations:

$$
\begin{aligned}
& \frac{d[A]}{d t}=-k_{1}[A]+k_{2}[B] \\
& \frac{d[B]}{d t}=k_{1}[A]-k_{2}[B]
\end{aligned}
$$

Main principle: Partial reactions are independent!

Reversible, single-molecule reaction - 2

Differential Equation:

$$
\begin{aligned}
& \frac{d[A]}{d t}=-k_{1}[A]+k_{2}[B] \\
& \frac{d[B]}{d t}=k_{1}[A]-k_{2}[B] \\
& \frac{d[A]_{\text {equi }}}{d t}=\frac{d[B]_{\text {equi }}}{d t}=0 \\
& -k_{1}[A]_{\text {equi }}+k_{2}[B]_{\text {equi }}=0 \\
& \frac{[A]_{\text {equi }}}{[B]_{\text {equi }}}=\frac{k_{2}}{k_{1}}=K_{\text {equi }}
\end{aligned}
$$

Equilibrium
(=steady-state):

Irreversible, two-molecule reaction

The last piece of the puzzle

$A+B \rightarrow C$

Differential equations:

$$
\begin{aligned}
& \frac{d[A]}{d t}=\frac{d[B]}{d t}=-\frac{d[C]}{d t} \\
& \frac{d[A]}{d t}=-k[A][B]
\end{aligned}
$$

Non-linear!

Underlying idea: Reaction probability = Combined probability that both $[\mathrm{A}]$ and $[\mathrm{B}]$ are in a "reactive mood":

$$
p(A B)=p(A) p(B)=k_{1}^{*}[A] k_{2}^{*}[B]=k[A][B]
$$

A simple metabolic pathway

$A \rightarrow B \leftrightarrow \rightarrow C+D$

Differential equations:

$d / d t$	decay	forward	reverse
$[A]=$	$-k 1[A]$		
$[B]=$	$+k 1[A]$	$-k 2[B]$	$+k 3[C][D]$
$[C]=$		$+k 2[B]$	$-k 3[C][D]$
$[D]=$		$+k 2[B]$	$-k 3[C][D]$

Metabolic Networks as Bigraphs

$A \rightarrow B \leftarrow \rightarrow C+D$

	k1	k2	k3
A	-1	0	0
B	1	-1	1
C	0	1	-1
D	0	1	-1

$d / d t$	decay	forward	reverse
$[A]$	$-k 1[A]$		
$[B]$	$+k 1[A]$	$-k 2[B]$	$+k 3[C][D]$
$[C]$		$+k 2[B]$	$-k 3[C][D]$
$[D]$		$+k 2[B]$	$-k 3[C][D]$

Petri nets

atomic actions	\rightarrow transitions	$\rightarrow->$ chemical reactions
input compounds	$\mathrm{NAD}^{+}+2 \mathrm{H}_{2} \mathrm{O}->2 \mathrm{NADH}+2 \mathrm{H}^{+}+\mathrm{O}_{2}$	

Petri nets

http://www-dssz.informatik.tu-cottbus.de/web animation/pn demos flat-nets.html

atomic actions -> transitions -> chemical reactions

$$
2 \mathrm{NAD}^{+}+2 \mathrm{H}_{2} \mathrm{O}->2 \mathrm{NADH}+2 \mathrm{H}^{+}+\mathrm{O}_{2}
$$

input
compounds

Qualitative Petri-Net Modelling \& Analysis

Graphical
representation Snoopy
Qualitative analysis Charlie

- Unbounded, live \& reversible
- Covered by T invariants
- P invariants

Biological description \rightarrow bigraph \rightarrow differential equations

Biological description \rightarrow bigraph \rightarrow ODEs

substance A

substance B

Biological description \rightarrow bigraph \rightarrow ODEs

substance A substance B

A special case: enzyme reactions

$$
E+S \underset{k_{-1}}{\stackrel{k_{1}}{\longleftrightarrow}} E S \xrightarrow{k_{2}} E+P
$$

In a quasi steady state, we can assume that [ES] is constant. Then:

$$
[E S]=\frac{k_{1}[E][S]}{k_{-1}+k_{2}}
$$

If we now define a new constant \mathbf{K}_{m} (Michaelis constant), we get:

$$
[E S]=\frac{[E][S]}{K_{m}} \quad K_{m}=\frac{k_{-1}+k_{2}}{k_{1}}
$$

A special case: enzyme reactions

Substituting [E] (free enzyme) by the total enzyme concentration we get:

$$
\begin{gathered}
{[E S]=\frac{\left(\left[E_{0}\right]-[E S]\right)[S]}{K_{m}}} \\
{[E S]=\left[E_{0}\right] \frac{1}{1+\frac{K_{m}}{[S]}}}
\end{gathered}
$$

Hence, the reaction rate is:

$$
\begin{gathered}
V=\frac{d[P]}{d t}=k_{2}[E S] \\
\frac{d[P]}{d t}=k_{2}\left[E_{0}\right] \frac{[S]}{K_{m}+[S]}=V_{\max } \frac{[S]}{K_{m}+[S]}
\end{gathered}
$$

A special case: enzyme reactions

Underlying assumptions of the Michaelis-Menten approximation:

- Free diffusion, random collisions of infinite number of molecules
- Irreversible reactions
- Quasi steady state

In cell signaling pathways, all three assumptions will be frequently violated:

- Reactions of rather rare molecules happen at membranes and on scaffold structures
- Reactions happen close to equilibrium and both reactions have non-zero fluxes
- Enzymes are themselves substrates for other enzymes, concentrations change rapidly, $\mathrm{d}[\mathrm{ES}] / \mathrm{dt} \approx \mathrm{d}[\mathrm{P}] / \mathrm{dt}$

Cell signaling pathways

Fig. courtesy of W. Kolch

Metabolic pathways vs. Signaling Pathways

(can you give the mass-action equations?)

Metabolic

Signaling cascade
(initial substrate)

Classical enzyme-product pathway

Product become enzyme at next stage

Metabolic pathways vs. Signalling Pathways

Cell signaling pathways

Figure 1. Signal transduction pathways in Paracoccidioides brasiliensis. Cell adhesion (orange), pheromone response (green), calcium/calmodulin (pink), cell integrity (blue), high osmotic growth stress response (brown), and TOR (purple) pathways are depicted.
university of groningen bioinformatics centre

Cell signaling pathways

university of groningen bioinformatics centre

Cell signaling pathways

Cell signaling pathways

- Common components:
- Receptors binding to ligands
- R(inactive) $+L \rightarrow R L$ (active)
- Proteins forming complexes
- P1 + P2 \rightarrow P1P2-complex
- Proteins acting as enzymes on other proteins (e.g., phosphorylation by kinases)
- P1 + K \rightarrow P1* + K

MA1: Mass action for enzymatic reaction

$$
E+A \underset{{ }_{2}^{2}}{\stackrel{h}{\leftrightarrows}} E \mid A \xrightarrow{k_{3}} E+B
$$

- A: substrate
- B: product
- E: enzyme
- ElA substrate-enzyme complex

MA2 model

$$
A+E \underset{k_{2}}{\stackrel{k_{1}}{\leftrightarrows}} A\left|E \xrightarrow{k_{3}^{\prime}} B\right| E \underset{k^{\prime} 2}{\stackrel{k_{1}^{\prime}}{\leftrightarrows}} B+E
$$

MA3 model

Cell signaling pathways - feedback loops

Cell signaling pathways - feedback loops

Fig. courtesy of W. Kolch

Feedback loops in Petri Nets

(a)

(b)

(c)

(d)

Feedback loops in Petri Nets

(a)

Feedback loops in Petri Nets

...and added inhibitor

Many PN modelling challengings remain...

- Lack of parameters
- Qualitative vs. Continuous PN
- Small molecule numbers
- Deterministics vs. Stochastic models
- Spatial heterogeneity
- ???

Cell signaling pathways

Fig. courtesy of W. Kolch

Stochastic vs. Continuous

Stochastic model checking Two Reaction Model

- First a simple model of two reactions:
$A \xrightarrow{0.01} B$
$\mathrm{C} \underset{0.1}{\rightarrow} \mathrm{D}$
- Assess property:
$P=?[\quad A=\$ X\{A=D\}]$
- "What is the probability that, when A and D first equal each other, they both have $\$ \mathrm{X}$ number of molecules?"

Two Reaction Model

Property:
$P=?[A=\$ X\{A=D\}]$

Time

Two Reaction Model

- Set reactants to 10 molecules (model bound to 10 molecules)
- Simulate with Gillespie 1,000 times and model check each output
- Number of simulations which are true over total number of simulations is the probability.
- Also checked the continuous model and the answer is the solid line.

Two Reaction Model

Spatial heterogeneity

- concentrations are different in different places, $n=f(t, x, y, z)$
- diffusion superimposed on chemical reactions:

$$
\frac{\partial n(t)_{x y z}}{\partial t}=-\lambda n(t)_{x y z} \pm \text { diffusion }
$$

- partial differential equation

Spatial heterogeneity

- one-dimensional case (diffusion only, and conservation of mass)

$$
\frac{\partial n(t, x)}{\partial t} \Delta x=\text { inflow }- \text { outflow }
$$

$$
\text { outflow }=-K \frac{\partial n(t, x+\Delta x)}{\partial x}
$$

$$
\text { inflow }=-K \frac{\partial n(t, x)}{\partial x}
$$

inflow outflow

Spatial heterogeneity - 2

$$
\frac{\partial n(t, x)}{\partial t} \Delta x=K \frac{\partial n(t, x+\Delta x)}{\partial x}-K \frac{\partial n(t, x)}{\partial x}
$$

Transition to differential equation to get diffusion equation :

$$
\frac{\partial n(t, x)}{\partial t}=K \frac{\partial^{2} n(t, x)}{\partial x^{2}}
$$

Shorthand for three dimensions :
$\frac{\partial n(t, x, y, z)}{\partial t}=K \nabla^{2} n(t, x, y, z)$
Combination with chemical reaction :

$$
\frac{\partial n(t)}{\partial t}=-\lambda n(t)+K \nabla^{2} n(t)
$$

Acknowledgements

David Gilbert, Brunel University, London

Monika Heiner, Cottbus University, Germany

Robin Donaldson, Glasgow University

Netherlands Organisation for Scientific Research

Systems Biology of Microorganisms

пй $=$$\frac{\text { bostc }}{\text { besearchology and biological sciences }}$

The Groningen Bioinformatics Centre (Netherlands) is expanding its young and successful team.

Several PhD and Postdoc positions are available for creative bioinformaticians with an interest in Systems Biology, Metabolomics, Proteomics, Quantitative Genetics, Network Reconstruction, Dynamic Modelling...
-For more information and to apply...
-...visit www.rug.nl/gbic
-...e-mail r.breitling@rug.nl
-...talk to Rainer Breitling at Petri Nets 2009

