BME Tutorial - Part 6

Summary, Challenges

Rainer Breitling, Groningen, NL
David Gilbert, London, UK
Monika Heiner, Cottbus, DE
SUMMARY
Bio Petri Nets, A Bit of History

- Carl Adam Petri, 1962, PhD University of Technology Darmstadt
 -> basic ideas introduced

- early 1970’s
 -> first papers contributing to Petri net theory

- Petri, 1976
 -> application to chemical networks mentioned

- early 1980’s
 -> first monographs on Petri net theory

- Reddy, 1993
 -> first paper on bio application

- late 1990’s
 -> increasing interest for modelling and analysis of bio networks
A BIT OF HISTORY

C. A. PETRI, NOVEMBER 2006

monika.heiner@tu-cottbus.de

PN & Systems Biology

June 2009
A Bit of History

1. TWO kinds of world points:
 - STATES and TRANSITIONS
 - e.g. Substances and Reactions

2. TWO topologies:
 - GIVE and TAKE
 - e.g. Creation and Annihilation

3. TWO kinds of continuity expressible:
 - Mathematical continuity ("connected and compact")
 - Experienced continuity ("connected")
representation of bio networks by Petri nets

- partial order representation -> better comprehension
- formal semantics -> sound analysis techniques
- unifying view -> various abstraction levels
representation of bio networks by Petri nets

- partial order representation -> better comprehension
- formal semantics -> sound analysis techniques
- unifying view -> various abstraction levels

purposes

- animation -> to experience the model
- model validation against consistency criteria -> to increase confidence
- qualitative / quantitative behaviour prediction -> experiment design, new insights
SUMMARY

- representation of bio networks by Petri nets
 -> partial order representation
 -> formal semantics
 -> unifying view
 -> better comprehension
 -> sound analysis techniques
 -> various abstraction levels

- purposes
 -> animation
 -> model validation against consistency criteria
 -> qualitative / quantitative behaviour prediction
 -> to experience the model
 -> to increase confidence
 -> experiment design, new insights

- step-wise model development
 -> qualitative model
 -> discrete quantitative model
 -> continuous quantitative model
 -> discrete Petri nets
 -> stochastic Petri nets
 -> continuous Petri nets = ODEs
CHALLENGES
- **discrete models:** increasing level number = increasing accuracy
CHALLENGE 1

BUT, monotonous liveness holds for substructures only!

[STARKE 1990]
sharing structure = sharing properties

BUT, that’s not always the case! to which extend?

- stochastic and continuous behaviour may differ; why? when?

- relation: discrete & continuous behaviour?
CHALLENGE 2

- sharing structure = sharing properties

 BUT, that’s not always the case! to which extend?
 -> stochastic and continuous behaviour may differ; why? when?
 -> relation: discrete & continuous behaviour?

- two continuous Petri nets, generating the same ODEs,
 but having different qualitative behaviour

```
<table>
<thead>
<tr>
<th>PUR</th>
<th>ORD</th>
<th>HOM</th>
<th>NBM</th>
<th>CSV</th>
<th>SCF</th>
<th>CON</th>
<th>SC</th>
<th>FT0</th>
<th>TF0</th>
<th>FP0</th>
<th>PF0</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>DTP</td>
<td>CPI</td>
<td>CTI</td>
<td>SCTI</td>
<td>SB</td>
<td>k-B</td>
<td>1-B</td>
<td>DCF</td>
<td>DSt</td>
<td>DTr</td>
<td>LIV</td>
<td>REV</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>N</td>
<td>N</td>
<td>-</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
```
Challenge 2

- sharing structure = sharing properties

 BUT, that’s not always the case! to which extend?

 -> stochastic and continuous behaviour may differ; why? when?

 -> relation: discrete & continuous behaviour?

- two continuous Petri nets, generating the same ODEs, but having different qualitative behaviour
CHALLENGE 3

- unbounded qualitative model + time = bounded model
 - \rightarrow stochastic models
 - \rightarrow continuous models / ODEs

$\{ \text{simulation} \}$
Challenge 3

- **unbounded qualitative model + time = bounded model**
 - -> *stochastic models*
 - -> *continuous models / ODEs*

 \(\{\text{simulation}\}\)

- **Should also work for timed Petri nets!**
 - -> *steady state behaviour*

- **What are timed Petri nets?**
 - -> *qualitative --- time --- stochastic - continuous - hybrid Petri nets*
 - -> *modelling power: TURING*
 - -> *analysis power: discrete state space construction (if bounded)*

- **How to derive time parameters?**
 - -> *T-invariants give steady state behaviour*
T-invariants

- **T-invariants**
 - integer solutions x of $Cx = 0$, $x \neq 0$, $x \geq 0$ -> multisets of transitions
 - Parikh vector

- **T-invariants = (multi-) sets of transitions = Parikh vector**
 - zero effect on marking
 - reproducing a marking / system state

- **two interpretations**
 1. partially ordered transition sequence
 - of transitions occurring one after the other
 - substance / signal flow
 -> behaviour understanding
 2. relative transition firing rates
 - of transitions occurring permanently & concurrently
 -> steady state behaviour
TRANSFORMATION, Ex1

A + 2 B -> C + 3 D

-> properties as time-free net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y Y Y N N Y Y Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y Y N N N ? N Y N Y N
TRANSFORMATION, Ex1

\[A + 2 \, B \rightarrow C + 3 \, D \]

-> properties as time-free net

- **INA**
 - ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
 - N Y N Y N Y Y N Y Y N Y N Y Y Y
 - CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
 - N Y N N Y N ? N Y Y Y Y N
TRANSFORMATION, Ex1

\[A + 2B \rightarrow C + 3D \]

1 prod_A

2 prod_B

T-INARIANT

\[\rightarrow \text{properties as time-free net} \]

INA

ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y Y N Y Y N N Y N Y Y

CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y N N Y N ? N Y Y Y N

monika.heiner@tu-cottbus.de

June 2009
TRANSFORMATION, Ex1

\[A + 2B \rightarrow C + 3D \]

\[
\begin{array}{c}
\text{prod}_A \\
<6>
\end{array}
\quad
\begin{array}{c}
\text{prod}_B \\
<3>
\end{array}
\]

\[
\begin{array}{c}
\text{r1} \\
<6>
\end{array}
\quad
\begin{array}{c}
\text{cons}_C \\
<6>
\end{array}
\quad
\begin{array}{c}
\text{cons}_D \\
<2>
\end{array}
\]

T-IN Variant

-> properties as time net

INA

<table>
<thead>
<tr>
<th>ORDER</th>
<th>HOM</th>
<th>NBM</th>
<th>PUR</th>
<th>CSV</th>
<th>SCF</th>
<th>CON</th>
<th>SC</th>
<th>Ft0</th>
<th>tF0</th>
<th>Fp0</th>
<th>pF0</th>
<th>MG</th>
<th>SM</th>
<th>FC</th>
<th>EFC</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPI</th>
<th>CTI</th>
<th>B</th>
<th>SB</th>
<th>REV</th>
<th>DSt</th>
<th>BSt</th>
<th>DTr</th>
<th>DCF</th>
<th>L</th>
<th>LV</th>
<th>L&S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
TRANSFORMATION, Ex2

A -> 2 B, A -> 3 C

-> properties as time-free net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tf0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y N Y N N Y N Y Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y Y N N N ? N N N Y N

monika.heiner@tu-cottbus.de
TRANSFORMATION, Ex2

\[A \rightarrow 2 \text{B}, A \rightarrow 3 \text{C} \]

\[\text{prod}_A \]

\[r1 \rightarrow A \]

\[\text{cons}_B \]

\[r2 \rightarrow A \]

\[\text{cons}_C \]

\[\rightarrow \text{properties as time-free net} \]

\[\begin{array}{cccccccccccccccc}
\text{INA} & \text{ORD} & \text{HOM} & \text{NBM} & \text{PUR} & \text{CSV} & \text{SCF} & \text{CON} & \text{SC} & \text{tF0} & \text{tF0} & \text{pF0} & \text{pF0} & \text{MG} & \text{SM} & \text{FC} & \text{EFC} & \text{ES} \\
\text{N} & \text{Y} & \text{N} & \text{Y} & \text{N} & \text{Y} & \text{N} & \text{Y} & \text{Y} & \text{N} & \text{N} & \text{Y} & \text{N} & \text{Y} & \text{Y} & \text{Y} \\
\text{CPI} & \text{CTI} & \text{B} & \text{SB} & \text{REV} & \text{Dst} & \text{BSt} & \text{DTr} & \text{DCF} & \text{L} & \text{LV} & \text{L&S} \\
\text{N} & \text{Y} & \text{N} & \text{N} & \text{Y} & \text{N} & \text{?} & \text{N} & \text{N} & \text{Y} & \text{Y} & \text{N} \\
\end{array} \]
TRANSFORMATION, Ex2

A -> 2 B, A -> 3 C

- **T-INARIANT1**
- **T-INARIANT2**

-> properties as time-free net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y N Y Y N Y Y N N Y N Y Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y N N Y N ? N N Y Y N

monika.heiner@tu-cottbus.de
TRANSFORMATION, Ex2

A -> 2 B, A -> 3 C

-> properties as time net

INA
ORD HOM NBM PUR CSV SCF CON SC Ft0 tF0 Fp0 pF0 MG SM FC EFC ES
N Y N Y Y Y N Y Y N N Y N Y Y Y
CPI CTI B SB REV DSt BSt DTr DCF L LV L&S
N Y Y N N N ? N Y Y Y N

monika.heiner@tu-cottbus.de
transient state
steady state

s6 (A,2B,C)
\[t(r2)=3 \]
\[t(cons_C)=1 \]

prod_A start
r1 start
cons_B start, cons_C end

s7 (0,B,C)
\[t(prod_A)=2 \]
\[t(r1)=5 \]
\[t(r2)=2 \]
\[t(cons_B)=2 \]

prod_A end
r1 end
cons_B end, cons_C

s8 (A,B,3C)
\[t(r1)=3 \]

prod_A start
r2 start
cons_B start, cons_C

s9 (0,0,2C)
\[t(prod_A)=1 \]
\[t(r1)=1 \]
\[t(r2)=4 \]
\[t(cons_B)=1 \]

terminal SCC
RG(Ex2), TERMINAL SCC

- contains all transitions
 -> always running
 -> start / end
 at different time points

- contains all minimal T-invariants

- timing diagram

- relative transition firing rates

 prod_A : 1 + 1
 r1 : 1 r2 : 1
 cons_B : 2 cons_C : 3

6 time units
CTI, but not CPI

transient state
- initial behaviour to reach steady state
- not REV
- generally, not DCF

steady state behaviour
- terminal scc
- here, BND
- here, DCF
However, this does not always work!
COUNTEREXAMPLE 1

1-working time for all transitions;
FC, there are no deadlocks, traps, p-invariants, besides the pseudo-P-invariant \((A, co_A)\);

wBND & LIVE for the given initial marking
COUNTEREXAMPLE 2

producer

consumer

weakly bounded

producer

consumer

not weakly bounded

[DESEL 2006], weakly bounded Petri nets; awpn ’06
CHALLENGE 3 - TIME-DEPENDENT BOUNDEDNESS

- **given:** time-free Petri net
 - \Rightarrow unbounded
 - \Rightarrow live (supposed to be)

- **wanted:** corresponding time-dependent Petri net
 - \Rightarrow (weakly) bounded
 - \Rightarrow (still) live
CHALLENGE 3 - TIME-DEPENDENT BOUNDEDNESS

- **given:** time-free Petri net
 - \rightarrow unbounded
 - \rightarrow live (supposed to be)

- **wanted:** corresponding time-dependent Petri net
 - \rightarrow (weakly) bounded
 - \rightarrow (still) live

- **questions**
 - \rightarrow for which structures does it work / does it not work ?
 - \rightarrow are there sufficient / necessary conditions ?
 - \rightarrow which time intervals make the net bounded ?
 - \rightarrow which time intervals preserve a transition sequence's realizability ?

- **consistency criterion for (steady state) bio networks !?**
live under certain timing constraints
Challenge 4 - Time-dependent Liveness

The red transition brings liveness under any timing
CHALLENGE 4 - TIME-DEPENDENT LIVENESS

- **given:** time-free Petri net
 - -> non-live

- **question**
 - -> under which conditions are there time restrictions, making this Petri net live?
CHALLENGES, SUMMARY

- increasing level number = increasing accuracy
 \textit{BUT, monotonous liveness holds for substructures only!}

- sharing structure = sharing properties
 \textit{BUT, that's not always the case!} to which extend?
 -> stochastic and continuous behaviour may differ; why? when?
 -> relation: qualitative & continuous behaviour?

- unbounded qualitative model + time = bounded model
 \textit{BUT, that's not always the case!}
 -> (structural) criteria for time-dependent boundedness?

- non-live qualitative model + time = live model
 \textit{BUT, how to do it in general the case?}
 -> (structural) criteria for time-dependent liveness?
FURTHER READING

- **Your paper to one or the other of the challenges ?**
THANKS!

HTTP://WWW-DSSZ.INFORMATIK.TU-COTTBUS.DE/BME/PETRINETS2009