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Abstract:

Petri net based software validation to check the synchronization structure against
some data or control flow anomalies (like unboundedness or non-liveness) has
been a well-known and widely used approach for about ten years. To decrease the
complexity problem and because the simpler the model, the more efficient the
analysis, the validation is usually tried with the help of place transition Petri nets.
However, the modelling with this Petri net class involves two important abstrac-
tions of actual software properties -- the time consumption of any action and the
data dependencies among conflict decisions. Basically, this paper discusses some
problems resulting from these abstractions in the models analyzed which are very
often neglected and have therefore not been well understood up to now.
Furthermore, discussing the pros and cons of the Petri net approach is done by
offering a rough overview of the given background of dependable distributed
software engineering. Suggestions for a related workstation supporting different
net-based methods are outlined.
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1.0  Introduction
Distributed programs are inherently concurrent and asynchronous. Their behaviour often
depends critically on the possibly unpredictable timing of their components. The large
numbers of subtle interactions that can take place among the components of even a
moderately-sized distributed system make it extremely difficult to evaluate certain
properties of the system’s behaviour or to predict its dependability in general.

Therefore, powerful techniques are needed for rigorously analyzing the possible kinds of
behaviour of distributed software systems to assure that they exhibit all and at best only
the properties intended. Because of the complexity of the arguments involved, developers
of dependable distributed systems would greatly benefit from automated tools to aid in the
analysis of the system they are going to create.

Ideally, these tools should be integrated into an environment providing tools to support all
the activities required for developing and maintaining large dependable distributed
software systems. Such an environment, realized by a powerful workstation, should
support a diverse array of methods. In particular, it should offer tools supporting a wide
variety of analysis techniques, since different techniques may have complementary
strengths and weaknesses1.

Equally important, the workstation should offer tools with strong preimplementation
analysis capabilities. By providing feedback on system descriptions that arise early in the
development process (i.e. requirement, design, and specification), such tools can help
developers to detect errors early in that process, when their correction is cheapest.

This paper deals with one of the approaches to desirable analyzing tools, aiming basically
at consistency checks of the synchronization/communication skeleton of any distributed
program. These consistency checks treat properties which have to be fulfilled
independently of the distributed program’s special semantic and timing behaviour.

It is worth noting that the method proposed is discussed as far as possible language-
independently2. Instead of discussing a particular language, we try to derive conclusions
concerning suitable language design from the viewpoint of static analyzability. But the
realization of appropriate experimental environments, making examples of practically
relevant size manageable, forces implementation efforts, and any concrete implementation
is always more or less strongly related to a concrete programming or specification
language.

Communication protocols characterized by their special semantics and vocabulary can be
comprehended as a special application area of distributed programs. So they are able to
play the role of a case study standing for a wider range of applications of distributed
processing. For that reason, some of the ongoing implementations are part of a general
workstation for protocol engineering supporting other validation tools as well
/König 88, 90/.

1.  For a related detailed discussion see e.g. /Groz 85/, /Rudin 86/, /Sajkowski 85/, /Venkatraman 86/.

2.  But up to now restricted to the family of classical imperative languages like Algol 68, Ada, CHILL or any parallel
extension of originally purely sequential languages like ParFortran, ParC, etc.
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In this paper, we will concentrate on the modelling aspect and related problems1,
especially with reference to the synchronization structure’s static analyzability.

Furthermore, the modelling of the synchronization structure of a given distributed
program by Petri nets results in an intermediate program representation from which
further net-based software validation techniques are able to start (compare section 2.2):

• a systematic test approach of distributed software on communication level,

• evaluation of quantitative properties on the basis of time-based nets which are best
obtained by a further semi-automatically driven compression.

Besides these validation techniques, additional net-based approaches relevant to
dependability are known from literature:

• finding suitable checkpoints for recovery to establish fault-tolerant systems which
avoid the domino effect,

• assessing software reliability.

According to our design objective, much attention must be paid to supporting an engineer
in its task of software quality assurance. There are still a lot of problems on the
methodological level. Their theoretical answers and practical solutions by implemented
tools would probably have an enhancing influence on practical suitability of the Petri net
approach and user’s acceptance, respectively.

The paper is organized as follows.

At first, the given background of dependable distributed software engineering is briefly
sketched. The introduced taxonomy allows us to define more exactly what kinds of
problems we expect to become manageable by means of Petri nets and how these net-
based methods must be complemented. Suggestions for a related workstation supporting
different net-based methods are outlined.

Secondly, the main principles and the realization aspect of Petri net modelling are
discussed in two steps: the modelling of one sequential process and the modelling of
communicating sequential processes.

The modelling involves two important abstractions of actual software properties -- the
time consumption of any action and the data dependencies between conflict decisions.
Next, some problems and consequences resulting from these abstractions in the models
analyzed are discussed in more detail. The discussion is basically done by showing
examples which are expected to highlight the main points. At the same time, they are
intended to give the reader an impression of what the interconnection between software
program and Petri net looks like.

Finally, the current status and future intentions of ongoing tool box implementations are
summarized.

1.  For an overview of the whole approach applied to protocol engineering see /Heiner 89/.
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2.0  Overview

2.1  Dependability Terminology
Because of the expected expense of any validation approach based on formal methods,
actual practical applications are likely to be enforced at first for computer systems with
high dependability1 demands for the services provided. For this reason, we pursue the
attempt to establish a taxonomy of dependable computing undertaken within the
“Reliability and Fault Tolerant Computing” scientific and technical community2, in order
to propose clear and widely acceptable definitions for some basic concepts. However, the
following explanations are restricted to those notions necessary to explain the background
for the approach this paper deals with. This includes a restriction to software aspects.

The concepts introduced may be gathered basically into three orthogonal main classes of
attributes (see the beginning of the taxonomy shown in Figure 1):

• the impairments to dependability, which are undesired (unexpected) circumstances
causing or resulting from undependability;

• the measures of dependability, enabling the service quality resulting from the
impairments and the means opposing them to be appraised;

• the means for dependability, which are methods and general principles, perhaps
implemented by tools,

•• to increase the system’s dependability (procurement) or

1.  “Dependability is that property of a computer system that allows reliance to be justifiably placed on the service it
delivers. The service delivered by a system is its behaviour as it is perceived by its user(s)” /Avizienis 86/.

2.  See e.g. /Anderson 81/, /Avizienis 86/, /Randell 78/, /Siewiorek 91/ offering quite a few related references.

-

- errors

- failures

DEPENDABILITY

IMPAIRMENTS MEASURES MEANS

PROCUREMENT ASSESSMENT

- reliability

- availability

- security

- safety

--> Fig. 2

faults

...

...

Figure 1: Taxonomy of dependable computing.
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Figure 3: Computer-aided software validation techniques.
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•• to assess (measure) the attained degree of dependability (assessment).

Achieving a dependable computing system calls for the combined utilization of a set of
procurement methods (Figure 2), which can be classified into:

• fault avoidance -- how to avoid, during the system’s development phase, the
occurrence of faults in the operation phase;

• fault tolerance -- how to tolerate faults during the operation phase by means of
redundancy.

Within the fault avoidance principles, the validation tries to minimize the presence of
faults in the operation phase by methods which are both analytical and (as far as possible)
computer-aided. There is no widely accepted approach for their classification. We favour a
proposal (see Figure 3), which is basically characterized by a clear separation of the
validation methods (main principles) on the one side and the properties to be validated on
the other side. The order in the figure from left to right is influenced by the corresponding
applicability and recommended order of use during the software development process.

Because the validation methods aim at different properties, it is obvious that none of them
alone is able to guarantee complete confidence in the desired total software quality. All
approaches have their advantages and limitations. For this reason, they should not be
viewed as competing techniques. They are, in fact, complementary methods decreasing
the likelihood of software failure. That’s why validation methods, more or less exhaustive
checks of software products, can be comprehended as confidence-building techniques.

Basically, there are two completely different types of validation techniques:

• All testing techniques are based on executing the actual program system in a more or
less realistic environment.

• All other validation approaches have in common that they rely on some formal model
of the real software. These models usually reflect only certain aspects of the modelled
objects in the hope that with this approach problems will become manageable. In other
words, the models abstract all those properties of the software to be analyzed which are
supposed not to be important for the properties under consideration.

Testing deals with any kind of qualitative and quantitative properties. There are a great
number of different testing principles1 which also partly reflect the envisaged properties.
The main advantage of testing consists, in our opinion, in providing useful information
about a program’s actual behaviour in its intended computing environment, while the
model-based validation is restricted to conclusions about the program’s behaviour in a
postulated environment. The most important disadvantages of testing are the following.

• In the software development process, testing can only be used very late, where the
correction of any faults is already more expensive than during the specification or
design phases.

1.  Testing methodology has been a well liked research topic for a long time. A more detailed and comprehensive
discussion of this very extensive topic would go beyond the scope of this paper. For a first overview see e.g.
/Myers 87/, /Basili 87/.
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• Testing is at best able to detect the presence of errors, not their absence, because an
exhaustive testing is almost always impossible. That’s why testing is not able to prove
any properties.

The model-based validation methods try to avoid one or both of these drawbacks.

• The derivation and analysis of formal models is already applicable in the software’s
preimplementation phases.

• Testing is an inherently dynamic method. But with formal models, there exist usually
static as well as (possibly exhaustive) dynamic methods of analysis. Perhaps the most
distinguishing and significant feature of any static or exhaustive dynamic analysis is the
capability of proving the absence of certain kinds of faults in a program.

An advisable combination of testing and model-based validation should lead to the
consideration that it is evidently very useful to know as much as possible as surely as
possible about a program before its execution.

A more detailed differentiation of the model-based methods relies on the different
envisaged software properties:

• Context checking deals with general qualitative properties like freedom from data or
control flow anomalies which must be valid in any system independent of its special
semantics (for that reason, it is sometimes called general verification). These properties
are generally accepted or in-house consistency conditions of the static semantics of any
program structure.

• Verification aims at special qualitative properties like functionality or robustness
which are determined by the special semantics of the system under development (to
underline this fact, it is sometimes called special verification).

• Evaluation techniques treat quantitative properties like performance and reliability to
predict the software’s timing behaviour in advance, or to assess it afterwards.

While the properties the evaluation deals with are inherently time-based, both context
checking and validation aim at time-less properties which should be valid time-
independently. Unfortunately, that will not always be true in the case of distributed
programs.

From literature it is well known that debugging of distributed programs only by means of
systematical run-time tests is hardly possible. This is because some erroneous behaviour,
such as synchronization errors, like total or partial system deadlocks, can be controlled by
the current progress of the processes, which is generally time-dependent and non-
reproducible.

Moreover, in /Gait 85, 86/ the experience is reported that some synchronization failures
could not be detected by debugging (without hardware support). This phenomenon of
error masking, called probe effect, is well known in the theory of Petri nets (see section
4.2). It emphasizes the need for another way than testing to get assurance of software
quality (e.g. the impossibility of certain system states).

It is an (at least implicitly) common opinion in software development technology that the
relative progress of processes with respect to each other must not have any influence on
the general logical behaviour of the whole system. That’s the reason why context checking
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should always be done first, to prove the absence of any data or control flow anomalies in
the program structure in a time-independent manner. On the basis of this confidence, a
validation of the program’s functionality becomes really meaningful.

There is also the aspect of practicability, recommending the separation of subquestions
which are far more likely to be mastered. Therefore for the time being we will concentrate
on context checking of general semantic properties in parallel program structures.

A number of description techniques for analyzing general semantic properties in
distributed systems have been investigated, e.g. finite state machines /Castanet 85/,
/Eckert 85/, /Sidhu 86b/, Petri nets /Diaz 82/, temporal logics /Karjoth 87/, constrained
expressions /Dillon 84/, some algebraic approaches, and different hybrid ones. A formal
comparison of some of these can be found in /Venkatraman 86/.

In addition to the Petri net approach, finite state machines are also favoured, for both
approaches provide the formal background required for exhaustive state exploration by
dynamic analysis. Beginning at an initial state, all reachable system states are generated.
The resulting structure is usually represented by a so-called reachability graph of system
states. This method has the great advantage of practicability, but suffers, however, from a
number of shortcomings.

It generates potential behaviour in an exhaustive rather than a directed manner. This
creates two problems for a software developer concerned with a specific behavioural
property.

• First, these techniques usually report vast numbers of potential behaviours when
applied to realistically large and complex designs. The developer is then left with the
task of sorting out and interpreting the reported behaviours to determine which, if any,
are relevant to the property under investigation.

• Second, the exhaustive nature of state exploration makes them particularly susceptible
to the combinatorial problems inherent in analyzing distributed software systems.

Nevertheless, the power of this type of analysis for software validation objectives is
illustrated in literature, see e.g. /Sidhu 86a/ where some failures in the NBS class 4
transport protocol were uncovered by using exhaustive state exploration.

Moreover, a finite state machine-based workstation of protocol engineering is sketched in
/Rudin 86/. The tool kit provided comprises tools for context checking, verification, and
evaluation.

While the finite state machines are completely dependent on dynamic analysis, the theory
of Petri Nets also promotes, besides a lazy state evaluation1 by reduced reachability graph
construction, some static analysis methods to circumvent the problems mentioned above

• structural analysis,

• net invariants,

• property-preserving reduction.

1.  Avoiding the generation of states not needed for the validation of a given property.
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The reachability graph analysis -- although the most customary one -- is only one of
several methods within Petri net theory.

The layered architecture often used in modelling suggests a further useful classification of
validation approaches (see Figure 4):

• The horizontal validation investigates interconnections between processes within one
layer according to process system specification.

• The vertical validation investigates interconnections between processes of adjacent
layers according to service specification.

Because interactions between neighbouring layers are evidently based upon assertions
about the behaviour of one layer, first the horizontal validation, and then the vertical
validation have to be considered.

Petri nets are a suitable model for both validation directions. Especially important is the
fact that parts of system components can already be analyzed when the essential behaviour
of the environment has been modeled.

Most of the validation methods still have an experimental character and need further
investigation. Some reasons must be mentioned: the absence of defining reports and
manuals, similar to programming languages; the absence of support by organizations or
governments.

Another important reason is the degree of acceptance of the methods by the user. The
preference for, or refusal of a given tool depends essentially on the user’s individual and
professional experience as well as what he/she was taught. Software validation requires an
adequate mathematical education.

Figure 4: Horizontal and vertical validation within a layer architecture.

layer n+1

layer n

layer n-1

horizontal validation

vertical
validation
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Summary:

• Validation methods can be classified according to the properties they aim at and
according to the orientation of the considered process interactions within one’s layer
architecture.

• The different validation methods do not compete, but complement each other.

• A recommended order of validation methods takes into account that

•• validation should be applied as early as possible,

•• the proper functionality is a prerequisite for an evaluation of quantitative
properties, and

•• the expected functionality can only be guaranteed in any case if all consistency
conditions of context checking have been fulfilled.

• A thourough software validation is expensive and requires an adequate mathematical
foundation.

2.2  Net-Based Tool Kit
Qualitative properties (above all general properties such as mutual exclusion, deadlocks,
liveness, livelock, and self-synchronization, but also functional aspects of process
interactions) involve interactions among the parts of a distributed system. It is quite
widely accepted that these properties are most naturally analyzed in terms of the order
(and number) of events. Especially for these problems, the Petri nets offer a suitable
modelling background with an already powerful theory which is still under development.

The approach of Petri net-based software validation is able to combine the advantages of
high-level (specification/programming) languages with those of Petri nets theory. Figure 5
shows a proposed tool kit for net-based software validation with its components and their
interconnections.

An important property of the Petri net approach is its extreme generality. It aids
developers in a general way in reasoning about the behaviour of distributed systems.
Because of its generality, the Petri net framework can be used with distributed systems
expressed in a wide variety of specification or programming languages1.

1.  Disclaiming completeness, see e.g. for
Ada: /Shatz 85/, /Shenker 86/,
Algol 68: /Heiner 80/,
INMOS-C: /Czichy 92/,
CCS: /Goltz 88/, /Taubner 89/,
CHILL: /Steinmetz 87a/,
Lotos: /Barbeau 90/,
OCCAM: /Botti 90/, /Carpenter 87, 88/, /Joosen 91/, /Steinmetz 87a, 87b/, /Tyrell 86/,
PDL: /König 85a/, /Grzegorek 91/,
PEARL: /Plessmann 87/,
PL/1: /Herzog 76/,
SDL: /Lindquist 87/, /Fischer 88/.
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The semantics of a particular language are captured by a procedure for automatically
deriving Petri net representations for any distributed system expressed in this high-level
language (refer the Petri net generator in section 3.4). The modelling of distributed
systems by Petri nets resulting in an intermediate representation yields several advantages.

First, tools for analyzing and reduction extract information about events and their ordering
directly from this intermediate representation of the system. Therefore, they do not rely on
any assumptions, but regard general features of distributed systems and can be applied to
any system once a Petri net representation for the system has been obtained.

Second, due to the generality of the Petri net approach, tools based on Petri nets can be
extended to provide common analysis methods across a number of phases in the software
development process as soon as some formalized description of the distributed system
under development is available. This might be a source of valuable commonality and
integration in a software development environment.

Third, the net-based intermediate program representation serves as a common root from
which different net-based software validation methods are able to start.

• Context checking (see section 2.3).

• Some kinds of verification by prototyping /Bruno 86/, as well as by static analyses with
the help of net invariants /Lautenbach 90/ or (un-) reachability of certain system states
/Ochsenschläger 88/.

• A systematic test approach of distributed software on communication level.

A concept to integrate qualitative modelling and distributed debugging is proposed in
/Dahmen 89, 91/, consisting basically in a net-controlled modification of the “instant
replay” mechanism1. An approach with some quite similar basic ideas can be found in
/Caillet 89/.

• Evaluation of quantitative properties on the basis of time-based nets which are best
obtained by a further semi-automatically driven compression of the qualitative model
/Wikarski 88, 90/. Time and frequency attributes necessary to generate a quantitative
model should be provided by test and monitoring.

Besides these validation techniques, further net-based approaches2 relevant to
dependability are known from literature:

• finding suitable checkpoints for recovery to establish fault-tolerant systems which
avoid the domino effect /Tyrell 86/, /Carpenter 88/,

• assessing software reliability /Hura 81/.

1.  “Instant Replay” /Leblanc 87, 88/ is a general debugging approach making distributed program behaviour
reproducible. Executing the original program, the relative order of inter-process communication is filed into a so-
called process history tape for each process (record mode). Only information that identifies the messages is traced,
and not the messages themselves. During the replay mode, these tapes are used to enforce exactly the same process
execution order. No global time is needed. Some related topics are discussed in /Heiner 88b/ and /Dahmen89/.

2.  /Pätzold 89/ contains a more general investigation of related literature about the use of Petri nets both as to design and
analysis of distributed programs.
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Summary:

• Petri nets provide an adequate common basis for a general workstation that extensively
supports different methods of dependable distributed software engineering.

• Petri nets are a suitable intermediate representation for

•• different languages,

•• different phases of software development cycle, and

•• different validation methods.

2.3  Petri Net Framework for Context Checking
The components of a tool kit for net-based context checking are connected together in the
so-called Petri net framework which has basically four components: the Petri net
generator, linker, analyzer, and the error reporting and interpretation system. All parts are
influenced by the available and exploited possibilities of Petri net reductions. We briefly
describe below the approach to modelling and analyzing used in the Petri net framework
(see Figure 6).

Figure 6: The Petri net framework.

error reporting and
interpretation

Petri net
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The starting point for this cyclic technology in software development is an editor, which
assists in creating a System of Distributed Processes (SDP).

To get some answers to questions concerning interesting static properties of the
programmed system, it must be compiled and translated into Petri nets. This will be done
with the help of the Petri net generator.

In the case of separate compilation of system parts, the corresponding Petri net parts must
be put together by the linker, too.

The result of the former steps is a so-called Control Structure Net (CSN - an interesting
subclass of Petri nets) with some unknown properties (CSN?). This is the input into the
Petri net analyzer. The analyzer is a generic name for a collection of tools implementing
specific analysis techniques applicable to Petri nets. Among the tools comprising the
analyzer, the available procedures for checking structural properties are of special
importance. The analyzer proves the existence (or nonexistence) of some special
properties of the Petri net under investigation. (The character “!” in “CSN!” stands for
known properties.)

In the case of error reporting by the analyzer, now the difficult task of error
interpretation has to be started. The difficulties result on the one hand from the need for
retranslation of the analysis results in terms of Petri nets into terms of the programming
source under investigation, and on the other hand from the need for decisions about the
truth and gravity of the failure situation for the actual behaviour of the real system.

Basically, there are three different possibilities to interpret an error reported by the Petri
net analyzer.

• The error can be traced back to missing information in the model.

• The error has been caused by the abstractions applied during modelling.

• An actual error (undesirable program behaviour) has been found.

While the former task of the retranslation of analysis results is obviously automatable, the
later one of the evaluation of analysis results is still an open question and remains the
intellectually demanding duty of the programming team and software quality assurance
team, respectively. Ideally, the complete Petri net framework is hidden in a black box
/Shatz 85/, so that the user does not need any special knowledge of mathematics. But
living up to this ideal is difficult, and it seems to be an unreachable one.
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3.0  Modelling with Petri Nets

3.1  Preliminaries
The understanding of this text requires only elementary knowledge of the basic notions of
Petri net theory. In the following, this knowledge is assumed1. No special introduction
into the modelling and analysis power of Petri nets is provided. Explanations for some
fundamental notions are provided in footnotes.

The modelling of a distributed program’s communication structure by finite Petri nets is
an inherently static approach to software validation.

• The advantage of avoiding the program’s execution involves the disadvantage that the
modelling can exploit only those facts which are statically analyzable within the
program source’s context2. Moreover, it seems to be worth limiting the expense of a
(static) data flow analysis.

• To get finite Petri nets, manageable by modelling and analysis, we are forced to restrict
the modelling to programming concepts which are statically finite (i.e. independent of
any execution).3

For these reasons, it is obvious that the more dynamic the language, the greater the gap
between the model’s and original program’s behaviour. The static analyzability should be
taken into consideration early, i.e. during the design of a new language or the selection
among available ones, especially for those languages dedicated to applications with high
dependability demands4.

Besides, to keep the models as small as possible, it makes sense to abstract as many as
possible of those software properties which are supposed (or at best proven) to be
unimportant for the properties under consideration. Therefore we try to restrict ourselves
to a time-less and (control) data-independent modelling of the communication structures5,
neglecting

• any special time assumptions about the progress of the processes relative to each other,
and

• any data value dependencies among control flow branches.

Related consequences are discussed in the next chapter in more detail.

1.  A reader not familiar with Petri nets see e.g. /Baumgarten 90/, /Reisig 85/, or /Starke 90/.

2.  For an overview of resulting restrictions as to what can be analyzed statically by Petri nets see /Joosen 91/.

3.  The consequences for modelling of CCS or TCSP by the restriction to finite Petri nets have been discussed on a rather
formal background in /Goltz 88/, /Taubner 89/.

4.  In /Hoare 73/ the opinion is emphasized that two of the most important aspects of high-level programming are
simplification of program checking and improvement of error detection.

5.  Like many other approaches in literature, see e.g. /Carpenter 87/, /Diaz 82/, /Herzog 76/, /Joosen 90, 91/, /Shatz 85/,
/Shenker 86/, /Steinmetz 87b/.
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Furthermore, it is known that the simpler the model, the more efficient the analysis. That’s
why we prefer using the class of ordinary (hence homogeneous) place transition nets1,
offering the richest choice of analysis possibilities -- static as well as dynamic ones.

At first, the objective is to exhaust the bounds set by Petri nets2, and only afterwards to
transfer, if necessary, to more suitable higher net classes for well-defined reasons and for
well-chosen questions.

The main modelling principles of the processes within one layer (horizontal validation)
are discussed in two steps,

1. the modelling of one sequential process, and then

2. the modelling of communicating sequential processes.

Up till now, we have restricted ourselves to a static set of processes -- a restriction often
used in the application area of (real-time) automation techniques, which makes many
problems more manageable.

There are at least three important modelling aspects which are not investigated in this text.

• In a layer system architecture, the behaviour of a process set within one layer is
typically stimulated by interconnections with the layer above. For this reason, some
appropriate basic assumptions about the environment must be made to validate the
processes within one layer.

In the case of communication protocols, all known assumptions about the behaviour of
the upper layer are described in the service specification. Therefore, the modelling of
environment behaviour needed for protocol validation (horizontal validation) can be
extracted from the generated Petri net representation of service specification by a
suitable reduction.

• Timer and time-out mechanisms are extensively used by communication protocols to
improve fault tolerance. An adequate modelling of time-out mechanisms by Petri nets
is not trivial and can best be discussed in connection with the supposed fault model of
the communication medium /Grzegorek 92/.

• Especially in real-time applications, priorities are extensively used to force certain
scheduling policies in case of concurrent resource sharing. Even though it is usually
supposed that a distributed program’s behaviour will not be affected by scheduling
policies, it seems to be worth investigating it in more detail.

3.2  Modelling of Sequential Processes
For each process (i.e. for each protocol part in the case of communication protocols) a
Petri net is constructed by using transitions to represent statements and places to represent
control points.

1.  A place transition net is called homogeneous, if all (existing) edges have the same weight, and it is called ordinary, if
all (existing) edges have the weight 1.

2.  In the following, the term “Petri net” stands shortly for ordinary place transition nets, if nothing else is noted.
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More precisely, a sequence of general statements not including synchronization/commu-
nication statements (e.g. send/receive statements, wait statements) is represented by a
single transition. With this modelling, the termination1 of any synchronization-free
statement sequence is assumed. The corresponding assumption in the Petri net model is
the finite firing duration of any transition.

The Petri net representation of statements of the control structure, which does include
synchronization/communication statements, is refined in such a way that it reflects all
structurally possible threads of control. The result is called a synchronization skeleton.

The structure of the resulting synchronization skeleton may best be described in an
engineer-like manner by giving the pair “reduced grammar - Petri net components” which
have many strong relations among each other.

• The reduced grammar reflects only those context-free aspects of the language under
consideration controlling the modelling. All other parts of the (full) grammar are
skipped or marked as terminal symbol (by “@”). Obviously, this procedure can be
applied very easily to any given language. In keeping with language independency,
Figure 7 refers to an hypothetical reference language including all typical patterns of
control structures2 used in current imperative languages. A procedure mechanism has
been excluded only for reasons of simplicity.

• Basically, there exist Petri net components for each metanotion of the reduced
grammar (see Figure 8). Additionally, there are components for

•• the physical end of the process body which is used by the stop statement,

•• simple_statement@ which is required for the non-reducing operation mode of the
Petri net generator.

To support cross-referencing between Figures 7 and 8, suggestive labels have been
added. These Petri net components can be combined according to the same
composition rules (serialization, nesting) as are described by the rules of the grammar.

To make possible a completely free context-independent combination ability
(serialization, nesting), each of these components fulfills the following design criteria:

• Each component starts with a place.

• Each component ends with a transition.

The only exception is made by the component for the physical end of the process body
which must, of course, end with a place (see place Pstop in Figure 8).

Two further conventions of graphical representation are applied, but only to enhance
readability:

1.  Non-termination can be interpreted as a control flow anomaly. In due of the different effects causing non-termination,
it is very useful to distinguish between termination decisions within one sequential process and for a set of parallel
processes.

2.  The statements next and exit are only allowed within loops, compare section 4.3.
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Figure 7: Reduced grammar of reference language.

process ::= process_id@ “:” process

statement_sequence

#process process_id@ .

statement_sequence ::= statement_sequence “;” statement

| statement .

statement ::= if_statement

| case_statement

| loop_statement

| jump_statement

| send_statement

| receive_statement

| wait_statement

| simple_statement@ .

if_statement ::= if if_expression@

then statement_sequence

[ else statement_sequence ]

#if .

case_statement ::= case case_expression@ of

case_label@ ”:” statement_sequence

{ “|” case_label@ “:” statement_sequence }*

[ default “:” statement_sequence ]

#case .

loop_statement ::=  [ loop_ label@ “:” ]

loop [ loop_expression@ ]

statement_sequence

#loop [ loop_ label@ ] .

jump_statement ::= next loop_label@

| exit loop_label@

| stop .

 send_statement ::= send message@ [ to process_id@ ] .

receive_statement ::= receive message@ [ from process_id@] .

wait_statement ::= wait

message@ [from process-id@ ] “:” statement_sequence

{ “|” message@ [from process-id@ ] “:” statement_sequence }*

#wait .
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Figure 8: Petri net components for the reference language.
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• The cross-hatched transitions, and only these, can be refined according to the
grammar’s recursiveness. (Refinable transitions appear in the Petri net components
exactly at those points where in the recursive grammar the metanotion
“statement_sequence” appears.)

• Synchronization places (introduced in the next section) are highlighted by striping-
hatching.

It is obvious that the modelling of one process always results in a state machine (SM) if
we ignore any connections to synchronization places.

Within a state machine1, it is structurally impossible for an existing token to disappear or
to multiply. So, each sequential process (state machine), once started, has the remarkable
property of containing exactly one token in only one place. Therefore, all places within a
single-threaded state machine are a priori safe2.

This single token can be interpreted as a program counter. If the state machine is strongly
connected3, this token circulates forever through the whole program, representing the
infinite control flow of the modelled program and making the Petri net model live.

Structured sequential processes consisting of an infinite loop at the outermost nesting level
and without any jumps are, per construction, strongly connected. This illustrates how
compact control structures and restricted use of goto support simple Petri net structures,
which can decrease the amount of analysis substantially.

3.3  Modelling of Communication Patterns
In the previous section, we developed a fixed set of (isolated) sequential processes each
modelled by a state machine. If these processes communicate with each other, the state
machines have to be composed according to the used communication patterns. The Petri
net model of the communication patterns depend on properties of the language constructs
for process communication. Figure 10 gives an overview of these properties which we
suppose to be relevant for our purposes.

Basically, the connection between state machines can be realized via places or via
transitions (see Figures 9 and 11).

• Obviously, the connection via transitions damages the state machine structure
drastically, because it is an inherent property of the communication transitions
(modelling the rendezvous synchronization avoiding any auxiliary communication
medium) that they have more than one preplace and postplace (each one of a different
process).

• In case of all other than rendezvous synchronization features, the state machines are far
more loosely connected via synchronization places (modelling the communication
medium).

1.  In a state machine, each transition has, per definition, exactly one preplace and one postplace.

2. Safe stands shortly for 1-bounded.

3.  A directed graph is called strongly connected if there exists a directed path between each pair of nodes.
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We get a net class called communicating state machines1 (CSM). How far the structure
of communicating state machines is from a state machine structure depends again on
the process patterns used to deal with the addressing and waiting scheme (see
Figure 14).

In the modelling of the communication medium, the synchronization places also reflect
some of their properties.

• The synchronization places can have a certain capacity as in the case of the semi-
asynchronous synchronization type. Then they are a priori k-bounded to the given
capacity k of the communication medium. The Petri net structures we get are locally
conservative.2

• The synchronization places can be safe, guaranteed by the construction principle, as in
the case of the synchronous or remote invocation synchronization type. The Petri net
structures we get are globally conservative.3

• Otherwise (asynchronous synchronization type), it is an interesting question whether or
not an upper bound of the token numbers can be found by analyzing the net behaviour.

A customized Petri net analysis tool for communicating state machines could be made to
exploit the a priori knowledge stemming from the applied construction principles in order
to minimize the representation and implementation of reachable markings.4 At the same
time, this would result in a more compressed and interpretation-oriented representation
which might have a positive influence on the user’s acceptance.

1.  Similar net classes can be found in literature. E.g. in /Reisig 82/ the “buffer synchronized state machines” are
introduced, in /Kuse 86/ the “stream-connected concurrent processes”, in /Fengler 91/ the “systems of coupled state
machines”, in /Souissi 91/ the “deterministic systems of sequential processes”, and in /Peng 91/ the “communicating
finite state machines”.

2.  A Petri net is called locally conservative if there exists a constant sum of tokens for all reachable markings. No
transition affecting the total number of tokens in the net is allowed.

3.  A Petri net is called globally conservative if there exists a constant weighted sum of tokens for all reachable
markings. Obviously, such a weight vector can be constructed very easily for the corresponding subset of CSM by
setting the weight

•for each sequential place (non-synchronization place) to 1, and

•for each synchronization place to -1.

4.  Obviously, each reachable marking can be represented uniquely by the current control point (marked place) of each
process and the current marking of all synchronization places.

Figure 9: Basic principles of process connection.

SMi SMj SMi SMj
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PROCESS COMMUNICATION

SYNCHRONIZATION (of sender)

ADDRESSING

WAITING (of receiver)

- asynchronous (no-wait-send, the general case
requires infinite buffer)

- semi-asynchronous (delay, if finite buffer full)

- synchronous (delay until message has been received)

- remote invocation (delay until a response has been
 given)

- rendezvous (delay until message has been
 exchanged, no buffering, direct transfer)

- direct (one-to-one communication:
 sender and receiver know each other)

- semi-direct- (many-to-one communication:
by-sender only the sender knows the receiver,

 not vice versa)

- semi-direct- (one-to-many communication:
by-receiver  only the receiver knows the sender,

 not vice versa)

- indirect (many-to-many communication:
 via common global objects like
channels, mail boxes, monitors)

- deterministic (the choice of the message to receive
 occurs independently from the progress
 of neighbouring processes)

- non-deterministic (receiving is influenced by the available
 messages provided by neighbouring
 processes)

Figure 10: Classification of language constructs for process communication.
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Figure 11: Petri net components for process synchronization.
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Figure 12: Petri net components for process addressing.

direct
(only
static channel conflicts1)

semi-direct-by-sender
(only
 static channel conflicts)

semi-direct-by-receiver
(dynamic channel conflicts
 possible)

indirect
(dynamic channel conflicts
 possible)

SMs SMr

SMs1

SMsi

SMr

SMs

SMr1

SMrj

SMsi

SMs1 SMr1

SMrj

The pre-process SMs can send from different control points, and the
post-process SMr can receive from different control points.

1. Conflicts are discussed in section 4.2.
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Figure 13: Petri net components for process waiting.

deterministic
(confusion1 impossible)

non-deterministic
(confusion possible)

receive

syn

receive1 receivek

syn1 synk

...

Figure 14: A simplified view1 of
 the influence of communication patterns on the net structure class.

\ addressing
waiting\

direct /
semi-direct-by-sender

indirect /
semi-direct-by-receiver

deterministic EFC2 ES3

non-deterministic ES CSM

1. Provided, pre- and postprocesses do not access the same communication object from different control
points.

2. A net is called Extended Free Choice net (EFC) if for all pairs of places, which do have a common
posttransition, the posttransition sets are equal.

3. A net is called Extended Simple net (ES) if for all pairs of places, which do have a common
posttransition, the posttransition set of the one place is a subset of the posttransition set of the other
place. In /Best 86/, extended simple nets are called asymmetric choice nets.

1. Confusion is discussed in section 4.2.
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Figure 15: A simple protocol in three variants /Diaz 82/.
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Figure 16: A modified simple protocol in three variants.
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A careful design of the Petri net components is an important prerequisite for getting usable
analysis results. The influence of modelling on analysis has been discussed in /Diaz 82/
with the help of a quite simple connection protocol. The given verbal problem
specification is the following.

Example 1:

There are two communicating processes. Process1 or process2 can open a connection by
sending messages A or B. Only process1 can disconnect by sending message C to
process2.

Applying three different communication patterns to the (seemingly) same problem, it is
illustrated in /Diaz 82/ that the thoughtless choice of interaction mechanism may lead to
completely different analysis results (see Figure 15). But in fact, the Petri net models
describe really different realizations of the original problem.

(a) In the case of rendezvous synchronization, the processes make an agreement in
advance whether message A or B should open a connection.

(b) In the case of asynchronous synchronization, each process may concurrently open a
connection without regarding its neighboured process.

(c) In the case of remote invocation, only one process is allowed to open a connection
because of the requested acknowledgment. But if the other process does not hold this
(implicit) rule, then the system will run into a classical deadlock situation.

The different analysis results disappear if the underlaying process patterns describe the
same basic protocol behaviour, e.g. as demonstrated in Figure 16.

The crucial point is that the communication patterns represent an abstract view of the
lower level within an hierarchical communication system. In a bottom-up design, the
models of the processes’ interaction mechanisms have to be derived from the behaviour of
the lower level. In our case, the lower level is the language-oriented operating system
layer realizing the process management and interaction features.

3.4  Realization of Modelling
There are some evident reasons for an automated mapping of the relevant program
structure onto a Petri net model, especially one of the expected size of Petri net models.
Besides, the model validation can be concentrated on the validation of generation
procedure.

The procedure applied to generate Petri nets automatically depends on an essential general
precondition the language used has to fulfill.

• There are no implicit interactions (synchronization, communication) between
distributed processes made by sharing global variables. (If the language definition does
not already enforce this principle, then it must be supplemented by in-house project
standards.)
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• Instead, all process interactions are realized explicitly by dedicated language means.
The scanning of the relevant communication primitives requires special syntactical
units which are treated as basic elements like message, send, receive, wait.

If these prerequisites are fulfilled by a given language, the Petri net generator needs
appropriate Petri net components to map the relevant control flow for all communication
primitives and control structures contained in the language (see Figure 8).

These Petri net components are composed according to the result of the parser -- the
syntax tree. This means that within a general scheme of a compiler structure the Petri net
generator appears as a particular semantic synthesis /Heiner 80/.

Obviously, the effort required to write a Petri net generator can be essentially reduced by
using the front-end of a conventional compiler, if a sufficiently good description of the
internal interface between compiler’s front-end and back-end is available.

Besides the basic functionality to generate a Petri net, the Petri net generators in use
/Grzegorek 91/, /Czichy 92/1 supply further information on layout and program
complexity as well as operation options.

(a) Layout:

During the Petri net generation, all nodes (places, transitions) are supplemented by x- and
y-coordinates which allow an automatic layout of the generated Petri net afterwards. But
because the Petri net generation is done separately for each process, this automatic layout
generation covers only one process. Graphical process composition has to be done (up to
now) manually by means of a suitable graphic editor.

(b) Program Complexity2:

We favour a complexity measure called Number of Acyclic Paths (NAP) introduced in
/Nejmeh 88/. In characterizing it briefly, the following aspects are worth mentioning.

• It is a finite measure of a sequential program‘s execution possibilities.

•• It yields the number of structurally possible paths by neglecting any data depen-
dencies between decision points. So, it overstates the number of realizable paths in
the case of certain program structures.

1.  They are based on experience gathered in /Heiner 80/ and /Wehrsdorfer 89/.

2.  Program complexity can be interpreted as the difficulty experienced programmers have in understanding a program to
test or modify it. Research on software metrics received much attention in the mid 1970s (see e.g. /McCabe 76/,
/Rodriguez 87/, /Shepperd 88/).

Since this time, the dream of finding objective measures of software products has created a wide range of complexity
metrics proposing ways of identifying “complex” code with sufficient confidence. All these complexity measures
have in common that they are intended to

•predict software costs,

•evaluate programming effort,

•estimate program understanding,

•calculate testability.

For a more detailed discussion see /Heiner 88b/.
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•• It yields the number of “linearly independent” paths through a program by
counting a single iteration of each loop.

Because of these restrictions, the NAP complexity reflects exactly the number of paths
in the Petri net model.

This complexity metric is most closely related to some maximum strength, but finite
testing efforts. The decision to use this complexity measure is based on the assumption
that software with more execution paths is more difficult to understand and test than
software with fewer execution paths and therefore exhibits an higher complexity.

• It can be simply calculated during compilation or afterwards by means of an attributed
abstract syntax tree. The NAP complexity is additive for nesting of statements, and is
multiplicative for consecutive statements.

• It supports software complexity assessment at the function, subunit or unit level by
being applicable on any abstraction level of algorithm structure.

(c) Options

The Petri net generators’ operation mode can be controlled by different options providing
additional helpful features (defaults are underlined).

• reducing/non-reducing mode:

Because the graphical impression of the program structure is sometimes also useful for
a separate sequential program, the reduction to the synchronization skeleton can be
switched off causing any program statement to be modelled by a transition.

• comment/no-comment mode:

In the case of comment mode, information supporting cross-referencing to the source
text is provided (identifiers, source line numbers). This may be helpful in retranslating
Petri net-based analysis results back to source text level.

Summary:

• The costs of static analysis and the range of results are to a high degree dependent on
the used control structures and communication concepts.

• A restriction to a well-chosen combination of language means can possibly simplify the
corresponding class of generated Petri net structures to subclasses with remarkable
properties the analysis can make use of.

• An offered or enforced modularization supports a decomposition and reduction of the
analysis.
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4.0  Modelling and Abstraction

4.1  Introduction
The approach of Petri net based software validation is characterized essentially by
modelling the synchronization structures of parallel processes by Petri nets. This is done
in order to conclude from the properties of the Petri net the properties of the actual
behaviour of the parallel processes in a real environment.

During the modelling two important abstractions happen -- the information about the time
consumption of any action (sequential parts or synchronization/communication
statements) and the information concerning data dependencies between conflict decisions
are neglected.

• With respect to the abstraction of time consumption, the conclusion drawn from the
properties of a Petri net concerning the properties of the corresponding program class is
similar to that drawn from the properties of a given Petri net concerning the properties
of any correspondingly timed Petri net (which has the same structure, but each
transition possesses a time constant giving the duration of firing).

But it is known from Petri net theory that there is generally no justification for this
deduction, because time constraints can restrict the reachability set.

• Similar conditions hold relating to the abstraction of data dependencies between
conflict decisions. E.g., if two consecutive IF-statements decide their branching by the
same Boolean expression, then there exist four structurally possible execution paths,
but only two data-dependent possible paths (provided no variable of the Boolean
expression will be changed in the meantime).

To summarize the consequence, static analysis of program structures by means of Petri
nets considers, in general, more execution paths of the whole system than are actually
possible if all (time and data) dependencies between conflict decisions are taken into
account:

R program ⊆ R pn .

Because of this, two different types of properties have to be distinguished:

EX-property:

Properties which are fulfilled if there exists at least one system execution (path in the
reachability graph) with some special condition are called EX-properties. If an EX-

program pn

prop(program) prop(pn)<=========

modelling

conclusions
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property is not fulfilled in the reachability set of the underlying place transition Petri net,
then it is impossible to fulfill it for any subset of this reachability set.

not prop ( pn ) ==> not prop ( program )

Typical examples:

• boundedness: BOUND ( pn ) ==> BOUND ( program )
If there is no unbounded state reachable in the reachability graph of the underlying
place transition Petri net, then no unbounded state is reachable for any subset of this
reachability graph.

• freedom of deadlock: not DEAD ( pn ) ==> not DEAD ( program )
If there is no dead state reachable in the reachability graph of the underlying place
transition Petri net, then no dead state is reachable for any subset of this reachability
graph.

ALL-property:

If the fulfillment of a property depends on all (or a certain set of) possible system
executions (paths in the reachability graph) with some special condition, then this property
is called ALL-property. If an ALL-property is fulfilled in the reachability set of the
underlying place transition Petri net, then this does not apply generally for any arbitrary
subset of this reachability set, because it is possible that the subset can cut such execution
paths, which are essential for the fulfillment of the property under consideration. But the
reverse deduction applies. If all paths needed for a given property are already included in
some set, then they are still included in any superset.

prop ( pn ) <== prop ( program )

Typical example:

• liveness: LIVE ( pn ) <== LIVE ( program )
If the underlying place transition Petri net is live (each transition has the chance to fire
infinitely often), then this must not be true for any arbitrary subset of its reachability
graph.

Consequently, if an EX-property is fulfilled in the Petri net model (e.g. there exists a
deadlock state), then it has to be shown that this state is actually realizable in the modeled
object. But, if an ALL-property is fulfilled in the Petri net model (e.g. all transitions are
live), then this means, for the time being, nothing for the modeled object.

In the following, we are at first going to make the problems more evident and secondly, to
discuss some possible consequences resulting from both of these abstractions in the
models analyzed.
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4.2  Abstraction of Time Consumption

4.2.1  Discussion
With respect to the abstraction of time consumption, the conclusion drawn from the
properties of a Petri net concerning the properties of the corresponding program class is
similar to that drawn from the properties of a given Petri net PN concerning the properties
of any correspondingly timed Petri net TPN (which has the same structure, but each
transition possesses a time constant giving the duration of firing).

Time constraints can result in a restriction of the reachability set because of the different
construction rules (see the comparison given in Figure 17). To be exact, due to the time
restriction, the actual possible firing sequences in a given timed Petri net are a subset of
the reachability set associated with the time-less Petri net (at a given initial marking m0).

R TPN(m0) ⊆ R PN(m0)

So, there is unfortunately no general justification for conclusions with respect to ALL-
properties like liveness; rather it is true:

LIV( PN ) <=/=> LIV( TPN )

The problem of time consumption can thus be rephrased: How applicable are the results of
net analysis to real systems? We look for results for all possible time restrictions in order
to gain independence from the imprecise time inscription of the net.

It is a common opinion in software development technology that the relative progress of
processes with respect to each other must not have any influence on the general behaviour
of the whole system. The following discussion has to be understood as a direct
consequence of this assertion.

TPN PN

prop(TPN) prop(PN)<=========

modelling

conclusions

PN TPN

firing without time

general firing rule

single step

firing duration

earliest firing rule

maximal step

Figure 17: Comparison of Petri nets and timed Petri nets.
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In connection with the context checking intended two cases have to be distinguished.

1. not LIV( PN ) --> LIV( TPN ) ?

A non-live Petri net becomes live by the influence of timing. This phenomenon of error
masking is known as probe effect /Gait 85, 86/ and can be observed during debugging
(without hardware support) of distributed software.

2. LIV( PN ) --> not LIV( TPN ) ?

A live Petri net becomes non-live by the influence of timing. In context with software
interpreted Petri nets, this case is not as comprehensible as the former one. Instead of
this, the static analysis is based on the (so far implicit) guess that there are interesting
subsets of Petri net structures which are time-independently live (shortly time-
invariant).

The influence of timing upon liveness of a net was firstly discussed, as far as we know, in
/Godberson 79, 82, 83/. He pointed out that there is no difference in the behaviour of
timed Petri nets and an equivalent Petri net in the case of conflict-free nets. In the
meantime, there are further results available.

In /Starke 87b/, it has been proven that Petri nets are time-independently live if they are
live and (general) extended free choice. In /Starke 88/, this result is generalized to
extended simple nets. In /Bause 89/ a similar result is presented for simple net structures
of a Petri net extensions by queuing places.

To explain the usefulness of these results concerning software analysis, let‘s now have a
somewhat closer look on the problem.

Obviously, the following statements apply:

• The Petri net mapping of a process set without interconnections produces state
machines. In the case of strongly connected state machines, the given tokens (program
counters) loop forever, their movement can be delayed only (see section 3.2).

• This delay is realized by dependencies from additional places, the so-called
synchronization places (highlighted by striping-hatching in the graphical
representation).

• The only possibility to get some time dependencies can be reduced to the situation
where some (receiving) transitions of different processes (state machines) are in
conflict via synchronization places (shortly channel conflict).

Two transitions are involved in a (static) conflict if they do share at least one preplace. If
one of these common preplaces is a synchronization place, then the conflict is called
channel conflict, else control flow conflict.

The degree of possible conflicts in CSM can be classified structurally in more detail by the
language means available for communication (see Figure 10).

(a) ADDRESSING

(a1) direct addressing:

Sender and receiver know each other. Each synchronization place has exactly one
preprocess and exactly one postprocess.
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(a2) semi-direct-by-sender addressing:

Only the sender knows the receiver, not vice versa. Each synchronization place has
possibly many preprocesses, but exactly one postprocess.

(a3) semi-direct-by-receiver addressing:

Only the receiver knows the sender, not vice versa. Each synchronization place has
exactly one preprocess, but possibly many postprocesses.

(a4) indirect addressing:

Sender and receiver do not know each other. Each synchronization place has possibly
many preprocesses and many postprocesses.

Static channel conflicts are possible for all addressing types. But only dynamic conflicts1

are really interesting for context checking. The situation that two transitions, which are
involved in a dynamic channel conflict, belong to the same state machine is generally
possible according the context-free grammar, but seems to be senseless because it
produces obviously a probabilistic program behaviour. The context checker will report
such situations as warning (but time dependencies can not happen). Only in the cases (a3)
and (a4), dynamic channel conflicts between (receiving) transitions of different state
machines are possible.

(b) WAITING

(b1) deterministic waiting:

In the case of this type of waiting, within state machines it is structurally impossible
to circumvent channel conflicts. A channel conflict is unable to influence the choice
among paths within one state machine (and for this reason, they can‘t change
liveness property). All conflict decisions to choose a path depend only on local data
values (not explicitly included in the model); they are independent from the relative
progress of other processes. If a process has decided to wait for some information, it
has no other way out then by receiving the needed information. To change liveness
property we need time-dependent conflict decisions choosing between paths of a
state machine.

(b2) non-deterministic waiting

Non-deterministic waiting2 means that the choice of the message to receive (and at
the same time, the choice of the control path to follow) depends on the relative
progress of neighbouring processes.

We obtain the chance of time-dependent conflict decisions if channel and control
flow conflict overlap in a confusing way.

1.  Two transitions are involved in a dynamic conflict, if the are involved in a dynamically realizable conflict (i.e. there
exists a reachable marking where both transitions have concession), and one transition loses its concession by the
firing of the other.

2.  E.g. SELECT statement in Ada, RECEIVE CASE action in CHILL, WAIT EVENT action in PDL.
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A confusing conflict is a situation, where channel and control flow conflict overlap (see
Figure 18). Three transitions t1, t2, t3 are involved in a confusing conflict, if

• t1 and t2 are in channel conflict, and

• t2 and t3 are in control flow conflict.

For the transition (t2), which is at the same time involved in two conflicts of different type,
the danger of time dependency consists. Figure 19 shows an example of a time-
dependently live CSM. The transitions are labeled with (one example of possible) firing
durations, which prevent one transition from firing for all the time.

Figure 18: Confusing combination of channel and control flow conflict.

t1 t2 t3

time-
dependently
live

2

1

1

1

1 1

1

Figure 19: Example of a time-dependently live (timed) CSN.



ICSI TR-92-022

Modelling and Abstraction 37

4.2.2  Conclusions
Let’s summarize the discussion above (see Figure 20).

• The term time dependency describes the situation that the process control flow may
depend on the relative progress of neighbouring processes. In terms of Petri net theory,
it means that there exists an inscription of firing duration changing the liveness
property.

• Time dependency requires dynamic channel conflicts. Dynamic channel conflicts may
happen, if more than one process is waiting for the same message.

• Time dependency becomes possible, if channel and control flow conflict establish a
confusion. Confusing conflicts require the non-deterministic waiting scheme.

It has been shown informally:

• Without the possibility for non-deterministic waiting there is no chance for time
dependency for all types of communication in due of the standardized conflict
structures.

• The combination of non-deterministic waiting together with indirect or semi-direct-by-
receiver communication bears the danger of time dependencies. This statement is
proven by an example (see Figure 19).

As a side-effect, we obtained new local structures whose appearance in a Petri net model
should produce a warning to the programmer. At least as long as more precise criteria to
check the timing behaviour are not available.

For a further improvement of the technology of distributed software development it would
be interesting to describe the border-line between time-dependent and time-independent
synchronization structures in more detail.

Maybe there are further standard structures which have to be refused. Or the dangerous
timing relations in synchronization structures which are potentially time-dependent can be
characterized more precisely. Necessary conditions for time-independently live Petri nets
could be useful steps in this direction.

Figure 20: The influence of communication patterns on the conflict structures.
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Summary:

• Time independency has been proven for extended simple nets.

• Beyond it, it is claimed that, in the case of communicating state machines, time depen-
dency requires a certain type of confusion.

4.3  Abstraction of Data Dependencies

4.3.1  Discussion
To make the situation regarding data dependencies clearer, let‘s discuss Example 2.

Example 2:

Suppose, we have designed a given problem as a finite state automaton with three states
and four state transitions as shown in Figure 21.

After that, we apply an often used procedure for coding a state-oriented specification by a
classical imperative programming language (see Figure 23)1. A variable STATE is
introduced which controls the choice between the alternatives of a case-statement; each
value of the discrete type of STATE corresponds to one alternative reflecting one state.
The state transitions are realized by an assignment at the end of each state, followed by a
repeated execution of the pattern. Obviously, that’s only a sophisticated way to express
jumping. The control flow of this first program solution, E2V1, which we get following
this procedure, reflects the intended state transitions only if the data values of the control
variable STATE are taken into account.

1.  Within example 2, the syntax of the Protocol Description Language PDL /König85a/ is used. But there is no special
knowledge required. If desired, see /Heiner 89/, /König 90/ for a short introduction.

B
s1/action1

s2/action2

s3/action3

s4/action4

B

A

C

Figure 21: State automaton of problem specification.

{action1 action3*, action2 action4*}
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The corresponding Petri net model of the synchronization skeleton together with the
program solution is shown in Figure 23 and the state automaton with the same set of state
transitions in Figure 22.

Evidently, we have got a set of structurally possible paths which is (relatively) much
greater than the set of data-dependently realizable paths. If we want to avoid this gap, we
have to model the structure of the state automaton carefully by a slightly more demanding
translation. The translation method used should correspond to structured programming
practice and its familiar nested program structures. The states have to be embedded in the
control flow in such a way that control flow and state transitions coincide. There is neither
a need for an auxiliary control variable nor for jumping. We get a second solution, E2V2,
whose control flow reflects the state transitions in a straightforward manner.

Again, the corresponding Petri net model of the synchronization skeleton together with its
program origin is shown in Figure 24, and the state automaton with the same set of state
transitions is already included in Figure 21. This time, there is no difference with respect
to the number of execution paths. This means, that the second programming
(transformation) style is at least more adequate for a static analysis than the first one1.

To generalize this little, apparently artificially constructed example, the question arises as
to wether it is possible to assess a given programming style with respect to its suitability
for static analysis. In the context of our discussion a programming style is called
“suitable” if it enforces as far as possible such program structures whose structurally
possible path sets are exactly the same as the data-dependently realizable path sets. Such
program structures are called, in the context of the envisaged validation method, well-
structured ones. So let’s address a question already very popular in the programming
community for about two decades: What are well-structured programs?

1.  In /Bochmann 87/ it is pointed out that the “structured” specification style forces the designer to consider the different
circumstances more explicitly than the transition-oriented one.

BB

A

C

Figure 22: Supposed state automaton specification which would correspond to version 1.

{action1, action3, action2, action4}*

s1/action1 |
s2/action2 |
s3/action3 |
s4/action4
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loop

case

wait

#wait

#case

#loop

action1 action2 action3 action4

s1 s2 s3 s4
(A) (B) (C)

Petri net model of solution E2V1:

Program of solution E2V1:

PROTOCOL PART E2V1 (ENTITY SE) ! head of the protocol part,
MESSAGE S1,S2,S3,S4 FROM SE ! the name of the partner is SE
BEGIN

STATE:=A; ! the type of STATE enumerates
LOOP ! all state names.

CASE STATE OF
A: WAIT EVENT ! state A

S1 <-- SE: ACTION1; ! the message S1 arrives from SE
STATE:=B;

 | S2 <-- SE: ACTION2;
STATE:=C;

#WAIT
| B: WAIT EVENT ! state B

S3 <-- SE: ACTION3;
! STATE:=B;

#WAIT
| C: WAIT EVENT ! state C

S4 <-- SE: ACTION4;
! STATE:=C;

#WAIT
#CASE

#LOOP ! infinite loop
END

Figure 23: Version 1 of Example 2 (E2V1).
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loop

#loop

action2

action4

s1

s3

s2

s4

(A)

(B) (C)

Petri net model of solution E2V2:

action3

action1

loop

#loop

Program of solution E2V2:

PROTOCOL PART E2V2 (ENTITY SE)
MESSAGE S1,S2,S3,S4 FROM SE
BEGIN

WAIT EVENT ! state A
S1 <-- SE: ACTION1;

LOOP
WAIT EVENT ! state B

S3 <-- SE: ACTION3;
#WAIT

#LOOP
| S2 <-- SE: ACTION2;

LOOP
WAIT EVENT ! state C

S4 <-- SE: ACTION4;
#WAIT

#LOOP
#WAIT

END

Figure 24: Version 2 of Example 2 (E2V2).
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At very first glance, the problem seems to be solved by the rules of the theory of structured
programming1 which suggests, roughly said: “If you avoid GOTO, then you will get good
programs!”. But looking more carefully, we have to realize that there are no (explicit)
GOTO’s at all in program sketch E2V1. Instead, it represents a typical pattern of implicit
GOTO’s.

In /Jonsson 89/, there are given several such GOTO-free goto patches. All of these have in
common that they avoid explicit goto statements by using flags, auxiliary variables,
repetition of code or other types of programming tricks. It can be shown easily by
examples that these goto patches result in more complex program structures with a greater
amount of data dependencies between control flow branches. As already mentioned
above, this is equal to a decrease of static analyzability.

To demonstrate that under certain circumstances, the stubbornness of total goto avoidance
leads to more complex programs with respect to NAP complexity combined with an
increasing gap between structurally possible and data-dependently realizable path sets,
let’s discuss a problem introduced in /Rubin 87/ as the next example.

Example 3:

Let X be an N x M matrix of integers. Write a program that will print the number of the
first all-zero row of X, if any, else the information “no”2.

Forgetting all programming patterns learned from the structured programming paradigm,
consider the quite simple looking graphical solution shown in Figure 25 with a NAP
complexity equal to four. (Incidentally, it is supposed that there is no solution with less
complexity.) But an adequate translation into programming language’s structured control
statements comes along with some troubles.

The reason can be traced back to the fact that both loops in the graph of Figure 25 have
two exits, but the loop structure enforced by the rules of structured programming provides
only one (compare Figure 26).

Of course, the graphical solution could be coded by low-level statements like
i := 1; loop (i <= n) ... goto ... ; i := i+1 #loop ...

Or by means of one-exit loops in connection with some auxiliary variables or flags which
are checked on the actual result of the loop after leaving the loop. This results evidently in
a greater complexity (for this example we get the factor 3.5!); compare E3V1 in
Figure 273.

Both solutions are roundabout ways at the expense of program clarity. What we are
looking for are compact loop structures which relieve the programmer as far as possible of
boring details as well as enforce well-structured programs according to the original idea of
the theory of structured programming. The program structure should reflect directly the set

1.  There is quite a lot of related literature, see firstly e.g. /Dijkstra 65/, /Dijkstra 68/, /Baker 72/, /Wirth 74/. A well-
chosen and annotated collection of the most important papers up to 1978 is prepared in /Yourdon 79/.

2.  For obvious reasons, the original problem has been expanded by an expected negative response.

3.  Within example 3, the reference language (see figure 7) is used.
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start

i = 1(1)n

j= 1(1)m

x[i,j] ≠ 0

write (i) write(“no”)

stop

Figure 25: Graphical solution to Example 3.

0

1

Figure 26: Loop structure of the theory of structured programming.
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Figure 27: “Structured” solution to Example 3.

Program sketch of solution E3V1:

Boolean no_row_found := true,
all_zero;

check_row: loop (all i and no_row_found)
all_zero := true;
check_number: loop (all j and all_zero)

if x[i,j] ≠ 0
then all_zero := false ! abnormal termination of check_number loop

#if
#loop check_number;
if all_zero ! normal termination of check_number loop

then
write(i);
no_row_found := false ! abnormal termination of check_row loop

#if
#loop check_row;
if no_row_found ! normal termination of check_row loop

then
write(“no”)

#if

Reduced Petri net model of solution E3V1 (NAP = 14).

T14T12

T13

P8

T11T2
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Figure 28: Favoured solution to Example 3.

Program sketch of solution E3V2.

check_row: loop all i
check_number: loop all j

if x[i,j] ≠ 0
then next check_row ! abnormal termination of check_number loop

#if
#loop check_number;
write(i); ! normal termination of check_number loop
stop; ! abnormal termination of check_row loop

#loop check_row;
write(“no”) ! normal termination of check_row loop

Petri net model of solution E3V2 (NAP = 4).
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T12T3

P11P9
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T8T7
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P3

P2

T1

P1check_row

loop

write(“no”)

check_number

loop

if

else then

next

write(i)

P10

T10
stop

T0
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of possible execution paths. The understanding of the program logic does not require the
execution of the program by a trace protocol.1

To reach this objective, we need adequate basic control structures where theoretical
demands and practical solutions coincide. For that purpose, we introduce a “multi-level
multiple two-version exit loop”2 completed by the general program stop to avoid
sophisticated sequences of goto patches:

• multi-level exit feature3:

The structured goto statement must show which loop is being exited. For that purpose
labels are introduced which have to appear at the beginning and the end of the loop
brackets (showing at the same time that it is used as a multiple exit loop.)

• multiple exit feature:

The number of abnormal loop terminations is not restricted.

• two-version exit feature:

Two variants of abnormal loop termination are seen to be necessary4:

exit from the loop’s current iteration ->  NEXT loop_label

exit from total loop -> EXIT loop_label

• STOP ->  to hold the program at all

All three structured goto statements are, of course, only syntactic sugar. But compared
with the possibly unrestricted use of goto statements, any special exit loop construct
imposes a constraint on the control flow. Using these constructs clarifies program logic
and supports manageable correctness proofs as well as code optimization /Bochmann 73/.
Motivated by the aim of strong static analyzability we come to similar conclusions about
an advisable set of structured goto statements, but from a different direction.

Now the solution shown in Figure 28 becomes possible which corresponds directly to the
graphical solution in Figure 25 and shares its NAP complexity 4.

To summarize, it is suggested that exactly such problem situations enforce more complex
program solutions if they are constrained by the restricting rules of “strong” structured
programming (each component has exactly one entry and one exit) which would require
some conditional exit or stop statements to describe adequately some further (exceptional)
loop exits to leave or continue some loops or to stop the whole program.

1.  The objective of clear program logic has been strengthened by the fact that programs with unrestricted use of goto
statements are hard to optimize, and a correctness proof of them can get quite complicated.

2.  Different proposals with similar intentions have been published (see e.g. /Bochmann 73/, /Evans 74/, /Jonsson 89/).
But none of them exactly match our demands.

3.  The necessity of multi-level exits for well-formed programs is proven by mathematical studies of structured
programming, refer /Peterson 73/. Two results of this paper are sharpened in /Fenton 91/.

4.  NEXT and EXIT can be understood as multi-level versions of C’s single-level exit statements continue and break,
respectively.
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4.3.2  Conclusions
Data dependencies among consecutive path decisions restrict the analytical power of Petri
nets with regard to software validation.

In practice, we have to appreciate that the static analyzability of program structures is
strongly influenced by the programming paradigms used. We introduced the term “well-
structuredness” to qualify program structures which are especially suitable for a static
analysis.

Furthermore, arguments have been made against the thoughtless identification of (well-)
structured programming with goto-less programming. Instead of this, structured GOTO‘s
are considered to be more adequate in some circumstances to express the control flow in a
straightforward manner without introduction of goto patches.

But a software quality measure to evaluate a given program in advance with respect to its
static analyzability has not yet been found.

A way out could possibly be to improve the Petri net model of the synchronization
skeleton by adding more detailed model components reflecting the current values of all
control variables1. The difference between the structurally and the logically possible
reachability set would become smaller. But on the other hand, the reachability graph
would be overcrowded with useless states and transitions.

A second alternative could be the application of an higher Petri net class, e.g. some kind of
predicate transition nets /Burkhardt 89/, to incorporate all information needed for data-
dependent conflict decisions. But this change to higher expressiveness would have to be
paid for by a smaller collection of analysis possibilities.

A third alternative, a combination of Petri net based static analysis with some kind of
symbolic execution, is worth thinking over /Young 88/, at least to show that an undesirable
system state of some EX-property is actually reachable.

Summary:

• A program’s well-structuredness and static analyzability corollate.

• Structured programming is not equal to goto-less programming.

• Goto’s are sometimes able to express more directly the control flow than it would be
possible according the strong rules of one-entry/one-exit structured programming.

• The avoidance of goto’s by goto patches leads in these cases to

•• more complex programs (concerning the NAP complexity)

•• the situation that the structurally possible path set becomes greater than the
logically possible path set.

• We are still looking for a method to assess the static analyzability of a given program in
advance in order to chose the right model class for validation.

1.  A variable is called control variable if it appears in the expression of a branching statement (in Figure 7: if_statement,
case_statement, loop_statement).
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5.0  Reduction of Petri Nets
It is our experience that great attention has to be focussed on a permanent reduction of the
size of resulting Petri nets in order to save computing resources (memory as well as time).

For this reason, we have accepted the expenditure of separate compilation with subsequent
linking. Only the relevant parts of the processes under investigation have to be linked.
Open external references like synchronization connections are reported by the linker and
must be resolved in a suitable way by the user.

Furthermore, only the synchronization skeleton is produced by the Petri net generator

A drawback of automated Petri net generation lies in some inevitable inefficiencies
resulting from context-free assembling of universal net-building components. To
overcome this disadvantage we have to continue with a reduction of the automatically
generated nets.

For this purpose, the analyzer in use provides a set of local reduction rules based on
/Ullrich 77/ and /Berthelot 86/. These rules preserving liveness and boundedness possess
the important property that conditions for their application depend only upon local net
structures. By this fashion, we can reduce the set of reachable states without knowing the
complete one.

However, an uncontrolled application of these transformations destroys the synchro-
nization structure, and an error interpretation, if necessary, on source text level is
completely impossible. Therefore, a supplementing reduction set preserving the synchro-
nization structure has been realized. The basic idea of a corresponding general
implementation consists in the exception of nodes from reduction. This means, a reduction
rule can be applied only, if no “excepted” node will be involved. Evidently, all synchro-
nization places and all sending or receiving transitions have to be excepted. Our
experience has proven that the value of the Petri net framework has been significantly
enhanced by this supplement.

But, if the resulting total net cannot be mastered efficiently by available computing
resources, then it is advisable to repeat this principle in slightly different manner. We have
to concentrate on a protocol portion we want to analyze. All processes out of this portion
are reduced consecutively whereby only their synchronization places are excepted. By this
reduction, we get a consistent minimized description of the environment of the protocol
portion under investigation.

Last not least, if in spite of all these precautions the computing resources are not sufficient
for analyzing a given net, then we have reached the point where we have to reduce without
any restrictions. However, the application of such a reduction should be kept as very last
way out in due of the difficult error interpretation.

Unfortunately, there exist no general rules controlling a suitable sequence of the single
reduction steps. Such rules would be very useful because the success of reduction
(concerning the size of the reduced net) depends in the most cases on the chosen sequence
of reduction steps.
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6.0  Summary

6.1  Implementation Status
The current implementation status of the Petri net framework is summarized in Figure 29.

All of our protocol engineering examples start with PNGPDL /Grzegorek 91/. PNGC
/Czichy 92/ is basically a portable kernel realizing the mapping of ANSI-C, but is open to
any extensions by parallel language concepts. A very small subset of Inmos-C has been
integrated.

Both Petri net generators output an edge-oriented Petri net representation which has to be
converted into input data structures of the utilities used afterwards.

As analysis tool, the Petri net machine PAN /Starke 87a/ has been used extensively up to
now. As a useful supplement, a customized graphical Petri net editor dedicated to the
special purposes and demands of the net-based software validation process is under
development on the basis of DESIGN/OA. The designed properties of the graph editor are
especially expected to support the retranslation of Petri net-oriented analysis results back
to software-oriented ones.

The total result of the whole validation process is, at least currently, a more or less
unstructured set of single step analysis results in terms of the general Petri net theory. The
choice and sequence of user-driven analysis steps depend heavenly on experience and
conjectures of the tool user.

6.2  Some Hopes for the Future
Our investigations are greatly influenced by the goal of providing a workbench which can
be applied by an engineer engaged more in software quality assurance than in Petri net
theory.

In our opinion, the level of practicability of a method like this is strongly influenced by the
level of an engineer-like preparation of the tool set provided. To fill the gap between
theory and application, a lot of work has still to be done in the future to support engineers
in handling the underlying model in an effective and easy way.

In this connection, four remarks to Figure 30, “Implementation intentions”, seem to be
worth mentioning.

1. The use of further complementing analysis tools, e.g. Product net machine
/Ochsenschläger 91/ is under investigation. But we still try to restrict ourself to such
Petri net classes which allow also some type of exhaustive analysis (as opposed to
functional simulation).
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Figure 29: Implementation status.
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2. All used analysis tools have to be understood as general implementations of well-
proved theorems of Petri net theory. As a consequence, the results gained by these tools
can only be in terms of general Petri net theory free from any underlying special
semantics of the nets under test.

On the other hand, we do have a lot of detailed information about special properties of
the nets to be analyzed because we know where the nets come from and how the trans-
lation procedure works.

Furthermore, it becomes useful to raise several additional questions in connection with
software-interpreted Petri nets, questions which cannot be expressed by the fixed set of
analysis possibilities stipulated by general analysis tools1.

To close this gap, we intend a further knowledge-based component called “software-
oriented analysis” to compress the Petri net-oriented results into software-oriented ones
as well as to add further flexible possibilities to raise questions about the collected
analysis data. At the same time, such a component may be helpful for the validation of
special semantic properties.

3. To exploit the modelling power of Petri nets as a tool of reasoning out problems, a
significant improvement of the user interface is necessary and seems to be reachable
step-wise in two directions:

• A graphical representation of analysis results, as far as possible,

either statically, after termination of an analysis step,

or dynamically, in real-time accordance with analysis progress.

• An interpretation of analysis results on source text level would be useful, especially
with regard to error localization. Two approaches seem to be possible.

Firstly, all necessary source text information (denotations of program states, process
and communication object identifiers) are taken over into the Petri net model. The
results of Petri net analysis are expressed in terms of these notions. (For an example
of a corresponding reachability graph representation of SDL programs see
/Fischer 88/.)

Secondly, the relation between source text structure and Petri net structure is
recorded as well in order to retranslate the analysis results into source text level
(annotated listing).

4. The interpretation of analysis results, preferably with the help of well-prepared result
representations, is still supposed to be a human activity.

6.3  Final Remarks
The Petri net based software validation as an analytical approach suffers from the
disadvantage that it is always done a posteriori. Independent of the validation success, the
following advantages of the approach are seen.

1.  E.g., if there are dynamic channel conflicts in the net.
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Any validation method directs the programmer to rethink the program design.

Furthermore, the lessons learned trying the validation can be turned into useful hints
concerning how to construct distributed programs in general, and help us to understand
better the problems inherent in distributed programs.

We hope these are little steps in the right direction to extend the so-called theory of
structured programming (of sequential systems) to a theory of structured programming of
(dependable) distributed systems, providing a discipline to design a priori distributed
programs with certain useful properties like dependability or correctness -- whatever this
could mean.

But any design discipline can guarantee proper properties only if it is applied properly. So
finally, a thorough validation process including excessive testing efforts is still necessary
anyway.
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