
1/12

Information and Software Technology 36(94)7, pp. 435-441

A Petri Net Based Methodology to Integrate
Qualitative and Quantitative Analysis

Abstract:
An innovative net-based methodology to integrate qualitative and quantitative analysis of distributed
software systems is outlined, and an on-going prototype implementation of a related graphic-oriented
tool kit is sketched. The proposed method combines qualitative analysis, monitoring and testing as
well as quantitative analysis on the basis of a net-based intermediate representation of the distributed
software system under consideration. All transformations (from the distributed software system into a
first Petri net model, and between the different kinds of net models) can be done formally, and
therefore automated to a high degree. The evaluation of quantitative properties is based on so-called
object nets which are obtained by a property-preserving structural compression and quantitative
expansion of the qualitative model. Hereby, the frequency and delay attributes necessary to generate
quantitative models are provided by the monitoring and testing component.

Keywords:
Parallel software engineering, process-oriented imperative languages, software validation,
static analysis, monitoring, testing, performance evaluation, dependability, formal methods,
Petri nets, object nets.

1. Introduction

Qualitative as well as quantitative properties of distributed software systems are basically
characterized by the interactions between the system’s processes. It is widely accepted that these
properties are most naturally analyzed in terms of order and numbers of the events occurring in the
system. For this kind of problems, Petri net theory offers a powerful mathematical background.

The approach to software validation based on Petri nets allows to combine the advantages of high-
level (specification/programming) languages with those of the Petri net theory. Figure 1 shows the
logical architecture of the proposed methodology for net-based software validation. The current
physical architecture of a related tool kit is shown in Figure 2. As a collection of different methods or
tools, respectively, both figures reflect the belief that a thorough software validation can only be
reached by a suitable combination of different techniques complementing each other with respect to
the different properties to be validated.

An important property of the Petri net approach is its extreme generality. It aids developers in a
general way in reasoning about the behaviour of distributed systems. Because of its generality, it can
be applied to distributed systems expressed in a wide variety of specification or programming
languages.

Monika Heiner
GMD/FIRST
Rudower Chaussee 5
D-12489 Berlin
mh@first.gmd.de

Giorgio Ventre
Univ. degli Studi di Napoli
via Diocleziano 328
I-80125 Napoli
ventre@cps.na.cnr.it

Dietmar Wikarski
FhG/ISST
Kurstraße 33
D-10117 Berlin
dietmar.wikarski@isst.fhg.de

Information and Software Technology,
Special Edition on Software Engineering for Parallel Systems; 36(94)7, pp. 435-441.

2/12

A Petri net based methodology: M. Heiner et al.

The semantics of a particular language are captured by a procedure for automatically deriving Petri
net representations for any distributed system expressed in this high-level language. Such a
procedure can be implemented as a dedicated compiler, which is in the following shortly called
Petri net generator. The modelling of distributed systems by Petri nets resulting in an intermediate
representation yields several advantages.

First, tools for analysis and reduction extract information about events and their ordering directly
from this intermediate representation of the system. Therefore, they do not rely on any special
assumptions, but regard general features of distributed systems. They can be applied to any system
once a Petri net representation for the system has been obtained.

Second, due to the generality of the Petri net approach, tools based on Petri nets can be extended to
provide common analysis methods across a number of phases in the software development process
as soon as some formalized description of the distributed system under development is available.
This might be a source of valuable commonality and integration in a software development
environment.

Third, the net-based intermediate program representation serves as a common root from which
different net-based software validation methods, basically on the communication/synchronization
level, are able to start, e.g.

• analysis of qualitative properties like context checking of static semantics and verification of
functional behaviour (see paragraph 2.),

• monitoring and testing (see paragraph 3.),

• analysis of quantitative properties (see paragraph 4.).

These different validation methods require net models which vary partly in their level of
abstraction (e.g. granularity of considered control and/or data flow, delay and branching
information). However, the transformations starting from the common net-based intermediate
program representation can be done to a high degree formally and therefore automated. This
includes especially the innovative approach of an as far as possible formal transformation of the
qualitative model into a quantitative one.

2. Net-based Qualitative Analysis

Net-based qualitative analysis is a well-known approach since more than ten years /Heiner 80/.
But to put it into practice is still a promising challenge, because of the analysis algorithms’
complexity and the fact that the results gained in the analysis phase are very sensitive to the
abstractions done in the modelling phase. A related tool kit consists basically of the following four
logical components: Petri net generator, linker, analyzer and error reporting and interpretation
system /Heiner 92/.

The Petri Net Generators in use (PNGPDL /Koenig 85/, /Grzegorek 91/ and PNGC /Czichy 92/)
produce for a given sequential process Petri net representations of its (reduced/non-reduced)
control structure. Besides this basic functionality, further information is supplied, which allows

• an automatic layout of the generated net afterwards,

• an assessment of the program’s structural complexity (Number of Acyclic Paths /Heiner 88/).

After that, the graphical Petri net EDitor PED /Czichy 93/ is used for visualization and linking of
the generated Petri net parts, and for adding any possibly required supplements, e.g.

• modelling of all control variables and related operations, improving the generated control
structure model to a control flow one (the automatization of this step is in preparation),

• modelling of the system environment behaviour,

3/12

Information and Software Technology 36(94)7, pp. 435-441

• fault models (e.g. message loss or duplication induced by erroneous message channels).

Finally, the filtering capabilities of PED are used to output the particular data structures required by
the analysis tools.

All used analysis tools (INA /Starke 92/, PROD /PROD 92/) have to be understood as implemen-
tations of well-proved theorems of Petri net theory. As a consequence, the results obtained by these
tools can only be in terms of Petri net theory independently of any underlying special semantics of the
net or software under test, respectively.

As an advantage, Petri net theory offers different methods to analyze qualitative aspects of distributed
systems, e.g.

• prototyping by playing the token game,

• static analyses by net reduction, structural analysis or net invariant analysis,

• dynamic analyses by complete/reduced construction of the system’s state space (reachability
graph), possibly followed by

• model checking to evaluate the temporal relationship of logic formulae.

Net-based prototyping aims at simulation of the functional behaviour by playing the token game.
The results gained depend on the abstraction level of the underlying net model. But in any case,
prototyping is only a confidence-building approach unable to replace exhaustive analysis methods.

All static analysis techniques have in common that they avoid the construction of the reachability
graph. While reduction and structural analysis aim at context checking (of general semantic
properties, which have to be fulfilled by any program independent of its special functionality), the
invariant analysis corresponds mainly to verification (of special semantic properties, which are
determined by the intended special functionality). The net based proof of program invariants by
showing the existence of related net invariants shows some similarities to the classical approach of
axiomatic program verification. First, suitable program invariants have to be hypothesized, and
second, the related net invariants have to be found from the (in general non-minimal) basis of
invariants provided by a net analysis tool.

Dynamic analysis techniques have to be used if the static analysis efforts were not successful or if
properties are wanted, which cannot be analyzed statically at all (e.g. freedom of dynamic conflicts,
firing of facts etc.).

In model checking, the reachability graph of a Petri net is interpreted as data base, and temporal logic
is used as query language for asking questions over it. Therefore, all properties which can be
expressed in the used version of temporal logic (CTL - Computation Tree Logic /Clarke 86/) can be
checked. By this way, also very large reachability graphs become manageable.

The error reporting and interpretation phase requires at first the retranslation of the analysis results in
terms of Petri nets into terms of the software under investigation, which can be done automatically
only if all net reductions are carried out very carefully. Decisions about the truth and gravity of any
analyzed failure situations remain the intellectually demanding duty of the software quality assurance
team.

The methods mentioned imply partly the use of higher-level net classes (at least as short-hand
notation of lengthy place/transition nets). But we still try to restrict ourselves to such Petri net classes
which support some type of exhaustive analysis (as opposed to simulation of the functional
behaviour).

4/12

A Petri net based methodology: M. Heiner et al.

3. Net-based Monitoring and Testing

Static analysis techniques for distributed software show the property of allowing an „a priori“
evaluation of the inherent characteristics of an algorithm. The main advantage of adopting such
kind of techniques is that, depending on the properties of the technique itself, information at a high
level of abstraction can be produced about the expected behaviour of the application. This
abstraction capability, however, is also the origin of the main disadvantage of these approaches. A
number of authors have shown in the years how difficult it is for static analysis techniques to
extract parameters related to the behaviour at run-time of a program when such behaviour is not
completely expressed by the source code (see e.g. /Kumar 88/, /Ghosal 91/).

For example, the adoption of a Petri net based technique for program analysis can find limitations
in its application whenever data-dependencies not reflected in the model characterize the algorithm
under examination.

On the other hand, „a posteriori“ techniques are available for program testing, i.e. based on the
analysis of data collected during real, monitored executions of a program. These techniques,
though capable of extracting with the highest precision information related to the actual behaviour
of an algorithm, are characterized by other limitations. First, in order to have information about the
program behaviour which is general enough, a number of different tests have to be conducted, in
order to produce a sufficient number of case studies. This is particularly true in the case of data-
dependencies or nondeterminism. Second, the huge amount of data produced during the monitored
sessions can be difficult to analyze to extract general informations about the algorithm itself.

On the basis of these considerations we decided to integrate these two techniques in order to
overcome the difficulties that characterize them when used separately. The underlying idea is
based on the fact that a program model produced by a static analysis technique can be notably
improved if „tuned“ by using real data extracted during monitored executions.

We believe that the availability of information related to the actual behaviour (or to some of the
possible behaviours) of a parallel program can be used to resolve some of the ambiguities that can
be generated in a model produced by taking into account only the source code of a program.

As an example, we consider the use of a Petri net based methodology to determine the inherent
parallelism for a distributed application. The solution of such a problem might be helpful in
evaluating the right number of processors to assign to a certain application that has to be executed
on a multicomputer.

The approach proposed in /Ghosal 91/ for the solution of this problem is based on the
determination of the processor working set, i.e. the maximum number of processors that can be
actually used in parallel by a distributed algorithm. This parameter is dependent not only on the
algorithm structure but, in several cases, also on the dimension of the input data and on the
presence of nondeterministic behaviour. However, the technique proposed in /Ghosal 91/ is based
only on the measurement of the speed-up obtained by a program by varying the number of
processors assigned to it. In order to solve the problems related to dependencies on the input data
size, a large number of monitored execution has to be performed by varying the input data
dimension and values.

We believe that also for this example, the adoption of a mixed technique for program analysis can
be extremely helpful. In fact, by simply analyzing the program structure with a Petri net based
approach number of parameters related to its inherent parallelism can be extracted. This
information can then be tuned and completed by integrating it with the data produced by a limited
number of monitored executions, to solve the ambiguities connected to nondeterminism and input
data dependencies.It is our opinion that such procedure of net-based monitoring can effectively
provide quantitative parameters like delay and frequency attributes which have to be added to the
qualitative model in order to form what we call a quantitative net model. Such information can be

5/12

Information and Software Technology 36(94)7, pp. 435-441

selectively collected by positioning appropriate probes in the software to be monitored, using the net
model itself to individuate the most appropriate points to control. In addition to reduce the amount of
information to collect (and analyze), this selectivity also limits the additional load that the monitoring
software can induce on a system.

A similar effect can of course be attained by using proper functional simulation techniques and tools,
capable of simulating efficiently all the different components of a distributed system. For this reason,
the functional simulator (like Galileo /Knightly 92/) can be even integrated as an additional tool
provided by the analysis tool kit.

The integration of a Petri Net based tool and monitoring software can be used also in the testing phase
of a program. The availability of a high-level model of a program based on Petri nets can be exploited
to simplify the testing particularly for what concerns communication and interaction among
processes. We define net-based testing as the activity of integrating qualitative modelling and
quantitative information towards systematic testing of distributed software.

The idea of integrating qualitative analysis and (high-level) debugging has been originally proposed
in /Dahmen 89/ to limit the time-dependent nondeterminism in distributed software, well-known in
the debugging community as probe effect /Gait 86/. The basic idea of such approach is the integration
of net-controlled analysis with a debugging tool based on the instant replay mechanism. Instant
Replay /LeBlanc 87/ is a general approach to high-level debugging making the behaviour of
distributed programs reproducible. A further aim is to reduce the influence of monitoring tools on the
expected behaviour of a program. This last requirement is particularly important in the case of
programs characterized by nondeterminism.

The proposal, originally proposed for controlling shared memory data structures, has been extended
to distributed memory architectures (e.g. /Dahmen 89/, /Mazzeo 92/, /Wheil 91/). When a distributed
program is executed the relative order of inter-process communication events is recorded (record
mode), for each process, in a so-called process history tape (shortly process trace). To reduce the
probe effect, only information to identify a communication event is recorded, and not the event itself.
The program can then be re-executed (replay mode), by using the process history tapes to enforce the
execution order of the communication events to be the same as previously recorded. In this way the
behaviour of the program has been made reproducible without the need of recording information
related to a global time.

The approach we propose is a net-based methodology for a systematic test of a distributed program
combining the information produced by a non-intrusive monitor tool with the information we do have
due to the Petri net model generated for the purpose of quantitative analysis. The combination works
in two opposite directions.

• The instant replay technique monitors and records the process execution traces. One method to
evaluate these traces (process history tapes) is to visualize in the corresponding (sub-) reachability
graph of the process system’s Petri net model, which system state has been reached and via which
execution path the system has been gone through.

The reproducibility of the program execution and its independence from time ensures that this kind
of analysis can be interrupted or suspended without endangering the correctness of the procedure.

• On the other hand, having the Petri net model, we are able to synthesize a new “process history
tape” and to use it to induce a specific behaviour in a distributed program,

i.e. to enforce the process system

- to follow a certain execution path
supporting a systematic and maybe complete test expressible by an appropriate complexity
measure, or testing whether anomalies reported by qualitative analysis are actually faults or
non-faults, and

6/12

A Petri net based methodology: M. Heiner et al.

- to reach a certain system state
where, for example, another debugging session might be started from. This allows to verify
the behaviour of a system in a particular system state by forcing the system to reach it and
then by letting him evolve freely.

Finally, Petri net theory can be used to explain efficiently the basic principles the instant-replay
method is based on (for related details see /Dahmen 89/).

4. Net-based Quantitative Analysis

A recently widely used class of formal models for quantitative analysis (i.e performance and
reliability prediction based on a formal model) of distributed software systems are timed and
stochastic Petri nets. Hereby, one of the most popular and powerful classes is that of Generalized
Stochastic Petri Nets (GSPN, see e.g. /Ajmone 84/). A useful straightforward generalization to
allow also deterministic delays of transitions are Deterministic and Stochastic Petri Nets (DSPN,
see e.g. /Ajmone 87/). The corresponding modelling and evaluation tools GreatSPN /Chiola 91/
and DSPNexpress /Lindemann 94/ are intended to be used (as one possibility) for quantitative
analysis in the given tool set. Hereby, the main advantage of the new tool DSPNexpress compared
with the proved GreatSPN (which allows a timed interactive simulation of DSPN) is the
availability of an efficient numerical algorithm for computing steady-state solutions of DSPN.

Unfortunately, GSPN, DSPN and the other known classes of timed and stochastic Petri nets
assume information about a global state and thus, also a global time axis. These assumptions are
closely connected with the (global) „must“ firing rule. That is, any transition, if enabled, is forced
to fire: either immediately or after certain prescribed -- possibly stochastic -- amount of time. In
the case of conflicts between transitions, they are solved either according to (global) priorities or
according to given (global) weights interpreted as probabilities. A consequence of such a net
semantics (in particular, of the global „must“ firing rule) is that qualitative properties of an
untimed net model (boundedness, liveness) are in some cases not preserved in a timed or
stochastic net model with the same structure.

As an example, consider the net depicted in Figure 3. In the untimed case, this net is live, but has
the unbounded place s. After changing the firing rule to the „must“- one, the transition t becomes a
dead one, but the place s will be bounded. The change of the firing rule in this model may be also
considered as a change to a (discrete) timed net, whereby all transitions are interpreted as a timed
transition with the delay of one.

To avoid this effect of changing qualitative properties by introducing time into nets, an alternative,
new class of net models is intended to be used in our approach. The key idea of this class, called
locally Markovian Object Nets (MON) /Wikarski 92/, is to decompose a Petri net into such
subnets (so-called objects), which exhibit among others the following property: Any two
transitions being in a static conflict, together with all of its preplaces, belong to the same object.

The behaviour of a MON is determined by the following transition rules.

1. Conflicts between enabled object-local1 steps of transitions are solved according to given
probabilities.

2. „Internal“ transitions (such which are not directly connected with places of other objects) are
governed by the so-called object-local „must“-firing rule, and „external“ transitions (such
transitions which are connected to places of other objects) follow the usual „may“ firing rule.

1. Hereby, „object-local“ means „global with respect to an object“- in contrast to „global with respect to the whole
net“ as above.

7/12

Information and Software Technology 36(94)7, pp. 435-441

Objects may be considered as a new type of locality in a net, which is greater than the traditional one
(a transition), but usually less than the whole net. The real-world entities corresponding to the places
and transitions of the same object are assumed to be observable in common. Therefore, steps of
transitions may be equipped with object-local probabilities (or relative frequencies, resp.) of conflict
solution between steps and with object-local “time“, which is based on the object-local „must“-firing
rule. More precisely, given a marking of an object, a maximal set of concurrently enabled internal
transitions (i.e. a maximal step) must be fired immediately when this marking has been reached.
Hereby, conflicts between steps have to be solved in accordance to given probabilities or weights of
the steps. On the other hand, all external transitions follow the usual firing rule, i.e. if enabled, they
may fire, but need not to do so. As a consequence, the qualitative net properties once obtained for the
global net behaviour (which is determined by the external transitions) will be preserved also in the
case of its quantitative evaluation after this introduction of the object-local must firing rule into
objects of a net.

To make this idea more transparent, consider once more the net of Figure 3. An admissable
decomposition into objects is given by declaring the transitions t, t1, t2, t3, t5, t7, t8 as external ones
and the complement as internal ones. The corresponding objects are characterized by the sets of
transitions (t, t1, t2), (t3), (t4,...,t7) and (t8,...,t12). As it can be seen easily, by changing the firing rule
for all the internal transitions t4, t6 and t9,...,t12 to the „must“ one, the liveness and boundedness
properties of the net do not change.

Due to the (to some extent) free choice to decompose a given net into objects, local time scales can be
chosen in accordance to the possibilities of common observation of events. Moreover, due to the
possibility to see „time“ as quantitative abstractions of the behaviour of objects, the size of each
object may be chosen according to the required or necessary time abstraction of the model.

The information obtained by observing or testing the local behaviour of objects (in particular: the
relative frequencies of conflict decisions in favour to certain sets of concurrently enabled transitions,
given the state of the object) is used to simulate and thus to predict the global system behaviour on the
basis of local information. In view of the inherently distributed character of the model (which is able
to reflect adequately the distributed character of the modelled system), the most appropriate use of
object nets for quantitative evaluation of distributed systems is as a conceptual model for a distributed
MON simulator instead of the use of classical methods of (global) analytical solvers or simulators
(see Figure 2).

5. Final Remarks

Validation methods can be classified according to the properties they aim at. The different methods do
not compete, but complement each other. A recommended order of validation methods takes into
account that

• validation should be applied as early as possible,

• proper functionality is a prerequisite for an evaluation of quantitative properties,

• the expected functionality can only be guaranteed in any case if all consistency conditions of
context checking have been fulfilled.

We believe that some of the validation methods and tools, which are currently only separately
available, can be successfully combined to provide an integrated software development environment.
Petri nets provide an adequate common basis for such a tool kit that extensively supports different
methods of dependable distributed software engineering, because Petri nets are a suitable
intermediate representation for

• different phases of software development cycle,

8/12

A Petri net based methodology: M. Heiner et al.

• different languages, and

• different validation methods.

Our investigations are greatly influenced by the goal of providing a workbench which can be
applied by an engineer engaged more in software quality assurance than in Petri net theory. But, a
thorough software validation is expensive and requires an adequate mathematical foundation.

In our opinion, the level of practicability of a method like this is strongly influenced by the level of
an engineer-like preparation of the tool kit provided. To fill the gap between theory and
application, a prototype implementation of a graphic-oriented tool kit supporting the proposed
validation methodology is under development. First results are available for SUN workstations
with X11R4/Motif Interface /Czichy 93/.

6. References

/Ajmone 84/:
Ajmone Marsan, M.; Balbo, G.; Conte, G.:
A Class of Generalized Stochastic Petri Nets for the Performance Analysis of Multiprocessor Systems;
ACM Trans. Computer Syst. 2(84)1, pp. 93-122.

/Ajmone 87/:
Ajmone Marsan, M.; Chiola, G.:
On Petri Nets with Deterministic and Exponentially Distributed Firing Times;
in: G. Rozenberg (Ed.) Advances in Petri Nets 1986, LNCS 266, Springer Berlin 1987, pp. 132-145.

/Chiola 91/
Chiola, G.:
GreatSPN 1.5 Software Architecture;
in Proc. 5th Int. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation, Torino, Italy, 2/1991, pp. 117-132.

/Clarke 86/
Clarke, E. M.; Emerson, E. A.; Sistla, A. P.:
Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications;
ACM Trans. on Programming Languages and Systems 8(86)2, pp. 244-263.

/Czichy 92/
Czichy, G.:
Implementation of a Petri Net Generator for INMOS C Programs (in German);
Techn. Report of Practical Studies, GMD/FIRST, Berlin 2/1992 .

/Czichy 93/
Czichy, G.:
Design and Implementation of a Graphical Editor for Hierarchical Petri Net Models (in German);
Diploma Thesis, TU Dresden und GMD/FIRST, 6/1993.

/Dahmen 89/
Dahmen, J.; Heiner, M.:
An approach to Systematic Testing of Distributed Software (in German);
Proc. Problemseminar “Programmiersysteme für Mikrorechner”, Bad Saarow, 11/1989, Informatik-Informationen-Reporte 5(1989) 11, pp. 67-
81.

/Gait 86/
Gait, J.:
A Probe Effect in Concurrent Programs;
Software Practice and Experience 16(86)3, pp. 225-233.

/Ghosal 91/
Ghosal, D.; Serazzi, G.; Tripathi, S.K.:
The Processor Working Set and Its Use in Scheduling Multiprocessor Systems;
IEEE Transaction on Software Engineering 17(91)May, pp. 443-453.

/Grzegorek 91/
Grzegorek, M.:
Further Development of a PDL/D Compiler (in German);
Techn. Report of Practical Studies, IIR/AdW, Berlin 1/1991.

9/12

Information and Software Technology 36(94)7, pp. 435-441

/Heiner 80/
Heiner, M.:
A Contribution to Deadlock Analysis Based on a Language-guided Programming Methodology (in German);
Ph. D. Thesis, TU Dresden, 9/1980.

/Heiner 88/
Heiner, M.:
A Complexity Measure of Distributed Programs;
Proc. 2nd Int. Seminar on Modelling and Performance Evaluation, Wendisch-Rietz, 11/1988, Informatik-Reporte/IIR 17/88, pp. 72-83.

/Heiner 92/
Heiner, M.:
Petri Net Based Software Validation, Prospects and Limitations;
ICSI-TR-92-022, Berkeley/CA, 3/1992.

/Knightly 92/
Knightly, E.W.; Ventre, G.:
Galileo: a Tool for Simulation and Analysis of Real-time Networks;
ICSI-TR-93-008, Berkeley/CA, 3/1993.

/Koenig 85/
Koenig, H.; Heiner, M.; Onisseit, J.:
Defining Report of the Protocol Description Language PDL (in German);
Techn. Univ. of Dresden, Dep. of Informatiques, Research Report TU 08 RS-L/LN-K5/015, 1985.

/Kumar 88/
Kumar, M.:
Measuring Parallelism in Computation-Intensive Scientific/Engineering Applications;
IEEE Trans. on Computers 37(88)Sept., pp. 1088-1098.

/Leblanc 87/
Leblanc, T.; Mellor-Crummey, J. M.:
Debugging Parallel Programs with Instant Replay;
IEEE Trans. on Computers 36(87)4, pp. 471-482.

/Lindemann 94/
Lindemann, C.:
DSPNexpress: A Software Package for the Efficient Solution of Deterministic and Stochastic Petri Nets;
to appear in Performance Evaluation, 1994.

/Mazzeo 92/
Mazzeo, A.; Savy, C.; Ventre, G.:
A High Level Monitor for Parallel Systems;
in Messina, P.; Murli, A. (eds): Parallel Computing: Problems, Methods, and Applications; Elsevier Science Publishers, 1992, pp. 531-542.

/PROD 92/
PROD - User Manual;
Helsinki Univ. of Technology, Digital Systems Laboratory, 1992.

/Starke 92/
Starke, P. H.:
INA - Integrated Net Analyzer, Manual (in German);
Berlin 1992.

/Wheil 91/
Wheil, W. et al.:
PRELUDE: A System for Portable Parallel Software;
Technical Report, MIT/LCS/TR-519, Massachusetts Institute of Technology, Laboratory for Computer Science, October 1991.

/Wikarski 90/
Wikarski, D.:
Object Nets - A Canonical Class of Models for Behaviour Simulation and Structure Synthesis of Distributed Systems?
in Proc. 3rd Int. Seminar on Modelling, Evaluation and Optimization of Dependable Computer Systems, Wendisch Rietz, 11/1990,
Informatik-Informationen-Reporte 6(90)12, pp. 91-100.

/Wikarski 92/
Wikarski, D.:
Locally Markovian Object Nets - The Conceptual Model;
Proc. Int. Seminar on Concurrency, Programming and Specification (CSP 92), Humboldt-University Berlin, Berlin 11/1992, pp. 182-189.

10/12

A Petri net based methodology: M. Heiner et al.

re
qu

ire
m

en
ts

an
al

ys
is

re
qu

ire
-

m
en

ts
sp

ec
ifi

-
ca

tio
n

de
si

gn
ex

ec
u-

ta
bl

e
co

de

im
pl

em
en

ta
tio

n
ph

as
e

de
si

gn
ph

as
e

sp
ec

ifi
ca

tio
n

ph
as

e

em
pi

ric
 te

st
an

d
de

bu
g

pa
ra

m
et

er
s

ge
ne

ra
l c

on
cl

us
io

ns
ab

ou
t g

en
er

al
 s

em
an

-
tic

pr
op

er
tie

s

ge
ne

ra
l c

on
cl

us
io

ns
ab

ou
t q

ua
nt

ita
tiv

e
pr

op
er

tie
s

fo
rm

al
tr

an
sf

or
m

at
io

n

ge
ne

ra
l c

on
cl

us
io

ns
ab

ou
t s

pe
ci

al
 s

em
an

-
tic

pr
op

er
tie

s

qu
al

ita
tiv

e
m

od
el

qu
an

tit
at

iv
e

m
od

el

m
on

ito
rin

g
an

d
te

st
in

g

re
co

rd
ed

tr
ac

es

sy
nt

he
si

ze
d

tr
ac

es

ex
pe

rie
nc

es
of

 p
ro

pe
rt

ie
s

co
nt

ex
t c

he
ck

in
g

ve
rifi

ca
tio

n

ev
al

ua
tio

n

de
la

y
&

fr
eq

ue
nc

y
at

tr
ib

ut
es

vi
su

al
iz

at
io

n

sy
nt

he
si

s

in
fo

rm
al

 m
od

el
 o

f s
ys

te
m

un
de

r
de

ve
lo

pm
en

t

fo
rm

al
tr

an
sf

or
m

at
io

n

F
ig

ur
e

1:
 O

ve
rv

ie
w

 o
f

th
e

ne
t-

ba
se

d
m

et
ho

do
lo

gy
.

11/12

Information and Software Technology 36(94)7, pp. 435-441

PNGC PNGPDL

Petri Net Generators

qualitative Petri net analyzers

Petri Net EditorPED

*.pnk

*.c *.pdl

*.ped

.net.mif *.pnt

PROD

PAN/INA

graphic and DTP programs

PostScript

Frame
Maker

utilities

hardcopy

with filters

*.ps

Figure 2: Physical Architecture of Net Based Tool Kit:

quantitative Petri net analyzers

analysis
protocols

MON

GreatSPN

Simulator

quantitative

graphical

analysis
protocols

qualitative

*.bin

.tra.dfa

test and monitoring

.mon.spn

Galileo*

DSPNexpress

12/12

A Petri net based methodology: M. Heiner et al.

t9

t11

t10

t8

t12

t3

t5

tt1 t2

t7

t6

t4

s10

s11

s12

s9

s13

s

s3
s4

s1 s2

s8

s7s6

Figure 3: An example net.

