
Proc. RELECTRONIC ’95, Budapest, pp. 181-186; October 1995

1 / 6

Petri Net Based
Software Dependability Engineering

Monika Heiner

Brandenburg University of Technology Cottbus
Computer Science Institute

Postbox 101344
D-03013 Cottbus

Germany

mh@informatik.tu-cottbus.de
Tel/Fax: (+ 49 - 355) 69 - 2794

Abstract:
Methods of software dependability engineering can be divided into two groups -
methods to improve the software dependability and methods to predict the reached
degree of software dependability. Among those methods, which aim at the
improvement of software dependability, the Petri net based validation techniques
to avoid faults during the development phase have attract a lot of attention in the
last years. Within this framework, Petri net models play the role of a common
intermediate software representation, from which different validation techniques
are able to start - qualitative as well as quantitative ones. Based on this experience,
the approach to integrate different methods on a common representation is
extended by a formal method to derive Petri net models suitable for a structure-
oriented reliability prediction.

1 Motivation
Starting from the taxonomy of dependability introduced in /Avizienis 86/, methods of
software dependability engineering can be divided into two groups - methods to improve
the software dependability by fault avoidance or fault tolerance (procurement) and
methods to predict the reached degree of software dependability (assessment). Among
those methods, which aim at the improvement of software dependability, different kinds of
Petri net based validation techniques to avoid faults during the development phase have
attract a lot of attention in the last years. A classification of software validation techniques
should separate the validation methods (main principles) on the one side and the properties
to be validated on the other side /Heiner 92/. These software validation techniques should
then be embedded in a process model to develop software with high dependability
demands. A suitable order of validation methods takes into account that

• validation should be applied as early as possible,



2 / 6

Petri Net Based Software Dependability Engineering

• the proper functionality is a prerequisite for an evaluation of quantitative properties,
and

• the expected functionality can only be guaranteed in any case if all consistency
conditions of context checking have been fulfilled.

Within this general framework a Petri net based methodology of software dependability
engineering can be outlined. The approach combines qualitative analysis (1), monitoring
and testing (2) as well as quantitative analysis in terms of performance evalu-
ation/prediction (3) and reliability prediction (4) on the basis of a common Petri net-based
intermediate representation of the parallel/distributed software system under consider-
ation.

A sketch of the main principles which are common to the first three points is given in the
next section, while the last point is discussed in the next but one section.

2 Net Based Methods to Improve Dependability
Different validation methods may require net models which vary partly in their level of
abstraction. This variety comprises not only such typical quantitative parameters as delay
and branching information (which are obviously necessary in case of quantitative
analysis), but also the granularity of considered control and/or data flow, i.e. the degree of
details concerning structural information. Therefore, in order to integrate qualitative as
well as quantitative analysis on a common intermediate software representation, an
important feature of a related methodology is the ability of a controlled structural
reduction, combined with compression of any quantitative parameters.

In /Heiner 95/, a method is outlined how to develop these models step-by-step:

• qualitative models

•• control structure models as place/transition nets
(Any branching information is neglected. Every structurally possible path of the
model is considered to be realizable in the software. The set of execution paths of
the model is greater or equal as the software’s execution path set.)

•• control flow models as coloured nets
(All control variables determining the actually control flow are added to the
control structure model. So, the control flow model is generally much greater than
the control structure one. But model and software have the same set of execution
paths.)

• quantitative models

•• performance models as timed, interval or stochastic Petri nets
(depending on the type of performance measures to be evaluated)

•• reliability models as stochastic Petri nets

All transformations (from the parallel software system description into a first qualitative
Petri net model, and between the different kinds of net models) can be done formally, and
therefore automated to a high degree.



Proc. RELECTRONIC ’95, Budapest, pp. 181-186; October 1995

3 / 6

Obviously, the individual validation techniques are essentially influenced by the analyzing
possibilities available for the corresponding net classes.

(1) The validation of qualitative properties comprises two steps. At first, the context
checking of general semantic properties (basically liveness properties) is done by a
suitable combination of static and dynamic analysis techniques of (classical) Petri net
theory. Afterwards, the verification of well-defined special semantic properties (among
them safety properties) given by a separate specification of the required functionality is
performed. During this second step, the power of classical Petri net theory is
supplemented by the model checking approach, using temporal logic as a flexible query
language for asking questions over the (complete/reduced) set of reachable states.

(2) The objectives of the monitoring and testing component are twofold. Besides the
provision of the quantitative attributes according to the user-driven time abstraction level,
the net-based testing method supports a systematic test of parallel systems. Techniques to
derive automatically dedicated test suites and to measure the test coverage obtained are
important features of this systematic testing.

(3) The validation of quantitative properties has to be based on quantitative net models.
The frequency and maybe also delay attributes necessary to transform qualitative models
into quantitative ones are provided by the monitoring and testing component or, in simple
cases, calculated from the basic instruction sequences. The available Time Petri net classes
differ essentially in the provided time concept (timed nets: constant delay, interval nets
(usually called time nets): interval delay, stochastic nets: different kinds of probability
distributions of the delay, or combinations of them). The choice of a suitable net class
should be guided by the well-known engineer’s basic principle to keep everything as
simple as possible. So the answer depends on the properties to be validated.

As long as there are hard deadlines to meet definitely, e.g. as it should be the case for
systems with predictably timing behaviour, the exact evaluation by timed or interval nets is
unavoidable. If average or probability distributions of performance measures like load,
throughput, utilization etc. are wanted, then the application of stochastic Petri nets
becomes useful.

In /Heiner 94/, an example is given how to obtain the quantitative model from the
qualitative one by quantitative expansion and property-preserving structural compression
using the so-called locally Markovian Object Nets (MONs) as stochastic net class.
Conflict clustering within the underlying net and a concept for time abstraction of
sequential software parts are crucial points of this transformation. General rules are given
in those paper for a suitable decomposition of Petri nets into objects or to find suitable
time abstractions, respectively.

3 Net Based Method to Predict Dependability
Based on this experience, we are now going to extend the approach to integrate different
methods on a common representation by introducing an approach to structure-oriented
reliability prediction inspired by /Roca 88/. This is intended as a first step in the direction



4 / 6

Petri Net Based Software Dependability Engineering

to incorporate further dependability measures too. Again, the model which we need as
reference point for the evaluation to be done, should not be built from the scratch, but
instead of this, the dependability model should be derived to a high degree automatically
from that net models which we do have due to our validation efforts. Because we already
know, how to map software onto (place/transition) Petri nets, we have then altogether a
formal method to derive systematically Petri net models suitable for dependability
prediction of the software under consideration.

The quantitative parameters are now, in case of dependability prediction (see Figure 1),

• the probability of entering and executing successfully a given path and

• the (average) time to execute a given path.

The execution time can again be measured by the testing and monitoring component or, in
special cases, calculated from instruction sequences. The probability of unsuccessfully
executing a path (i,j) depends on the proportion of bugs in the total program. This
proportion could be assessed from experience, e.g. by testing software of the same
characteristics and size developed by the same programming team.

The method proposed consists basically of a set of rules describing the allowed structural
reductions and the corresponding transformation rules of the quantitative parameters
within any well-structured sequential substructures (see Figure 2).

Provided there are no information about the probability distributions of any inputs, then
the assumption is justified that the probability of entering the path (i,j) is equal for all
program branches. In that case, the total failure (hazard) rate z of the given software can be
computed immediately for a well-structured sequential program which has been
completely

p
k
ij

k 1=

n

∑ 1<

p
k
ij

k 1=

n

∑ 1=

in failure free case:

in case of failure

probability of unsuccessfully executing the path (i,j)

1 p
k
ij

k 1=

n

∑–notation:
pij - probability of entering the path (i,j)

and executing the path successfully,
tij - (average) time to execute the path (i,j)

ji

p
1

ij

p
n

ij

t
n

ij

t
1

ij

Figure 1: Input parameters of reliability evaluation.



Proc. RELECTRONIC ’95, Budapest, pp. 181-186; October 1995

5 / 6

Generally, in case of parallel programs, the failure rate has to be evaluated by suitable
stochastic Petri net evaluation tools. But a structural reduction combined with
compression of quantitative parameters, done before as strong as possible, may reduce the
computational costs essentially.

4 Final Remarks
The evaluation of the stochastic software model by conventional stochastic Petri nets tools
requires a model transformation to maintain the right conflict solution strategy (see
Figure 3). At first, the branching of control flow has to be decided, and afterwards the time
consumption (of any sequential program parts) may take place. Obviously, this
transformation comes along with introducing a lot of immediate transitions causing again
many transient reachability states. Because these transient states are useless from the
practical point of view it would be worth thinking over how to avoid them.

i k

j

pik
pkj

tik t
kj

i

i

j
p'ij

p'
ij

p''ij t''
ij

t'ij

t'ij

t
iip

ii

j

tij t'ij
pii tii⋅
1 pii–
---------------+=

pii

p'ij
1 pii–
---------------=

tij

p'ij t'ij⋅ p''ij t''ij⋅+

p'ij p''ij+
--------------------------------------------=

pij p'ij p''ij+=

tij tik tkj+=

pij pkj pik⋅=

i

pik

tik j

Figure 2: Structural compression within
sequential parts.

zbe

1 pbe–

tbe
-----------------=

b

pbe

etbe

reduced to by .



6 / 6

Petri Net Based Software Dependability Engineering

The intended extension to other dependability measures requires more sophisticated fault
models, which have to be added as environment assumption to the total evaluation model.
To support the user, a library of appropriate Petri net components for different fault models
would be useful.

5 References
/Avizienis 86/

Avizienis, A.; Laprie, J.-C.:
Dependable Computing: From Concepts to Design Diversity;
Proc. of the IEEE 74(86)5, pp. 629-638.

/Heiner 92/
Heiner, M.:
Petri Net Based Software Validation - Prospects and Limitations;
Techn. Report ICSI Berkeley/CA, TR-92-022.

/Heiner 94/
Heiner, M.; Wikarski, D.:
An Approach to Petri Net Based Integration of Qualitative and Quantitative Analysis of Parallel Systems;
Techn. Report BTU Cottbus, I-09/1994.

/Heiner 95/
Heiner, M.:
Petri Net Based Software Dependability Engineering - a Case Study;
to appear as Tutorial materials at ISSRE ’95 (The 6th Int. Symposium on Software Reliability
Engineering), Toulouse, Oct. 1995.

/Roca 88/
Roca, J. L.:
A Method for Microprocessor Software Reliability Prediction;
IEEE Trans. on Reliability 37(88)1, pp. 88-91.

Figure 3: Transformation into stochastic model.

immediate transitions

deterministically delayed transitions, no reservation of marks

notation:

p'ij

p'ij

i ij jp''ij
p''ijt''ij

t''ij

t'ij t'ij

deterministically delayed transitions with reservation of marks


