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On the Application of Markovian Object Nets to
Integrated Qualitative and Quantitative Software

Analysis*

Abstract:

In this paper a Petri net based methodology is outlined for an integrated qualitative and
quantitative analysis of parallel software systems which is based on different (Petri) net represen-
tations of the software system under consideration.
The software validation methodology starts from the source text of a set of communicating
processes which specify the system under development. From this source text skeleton, a Petri net
representation of the general control structure of the system is generated. On this basis a set of
reduction steps is defined for transforming the net into different intermediate representations
allowing the validation of both qualitative and qualitative properties. Particular attention is paid to
the validation of quantitative properties which is performed using a transformation into locally
Markovian Object Nets (MONs). Models of this new class of modular Petri nets are obtained by
property-preserving structural compression and by enhancement with quantitative information.
This information is obtained in the form of frequency and delay parameters by monitoring and
testing the software on the basis of prototypes.
Compared to a previous paper on the same topic /Heiner94/, the methodology as well as its
presentation have been improved. In particular, a new, more comprehensive running example has
been selected and the object net approach is explained in much more detail.
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1 Introduction
Parallel programs are inherently concurrent and asynchronous. Their behaviour often
depends critically on the potentially unpredictable timing of their components. The large
numbers of subtle interactions that can take place among the components of even a
moderately-sized parallel system make it extremely difficult to evaluate the dependability
properties of the system’s behaviour.

Therefore, powerful techniques are needed for rigorously analysing the possible kinds of
behaviour of parallel software systems to assure that they exhibit all and at best only the
properties intended. Because of the complexity of the arguments involved, developers of
dependable parallel systems would benefit greatly from automated tools to aid in the
analysis of the system they are going to create.

Software Validation tries to minimize the presence of faults in the operation phase by
analytical and (as far as possible) computer-aided methods in the pre-operation phase.
Because different validation methods aim generally at different properties, qualitative as
well as quantitative ones, it is obvious that no single one is able to guarantee complete
confidence in the desired total software quality. All approaches have their advantages and
limitations. For this reason, they should not be viewed as competing, but rather as
complementary techniques.

Model-based validation approaches have in common that they rely on some formal
model of the actual software. These models usually reflect only certain aspects of the
modelled objects in the hope that the abstraction will lead to problems of manageable
sizes and that the models will cover a range of viewpoints forming a sufficiently complete
view of the software. In other words, the models neglect all those properties of the
software to be analysed which are supposed not to be important for the properties under
consideration.

A more detailed differentiation of the model-based methods relies on the different
software properties in question:

• Context checking deals with general qualitative properties like freedom from data or
control flow anomalies which must be valid in any system independent of its special
semantics (for that reason, it is sometimes called general verification). These properties
are generally accepted or project-oriented consistency conditions of the static semantics
of any program structure.

• Verification aims at special qualitative properties like functionality or robustness
which are determined by the intended special semantics of the system under
development (to underline this fact, it is sometimes called special verification).

• Evaluation techniques treat quantitative properties like performance and reliability to
predict the software’s timing behaviour in advance, or to assess it afterwards.

While the properties the evaluation deals with are inherently time-based, both context
checking and verification aim at time-less properties which should be valid independently
of time. Unfortunately, that is not always true in the case of parallel programs (see section
4).
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It is well documented that debugging of parallel programs only by means of systematical
run-time tests is hardly possible. This is because some faulty behaviour such as synchro-
nization errors, like total or partial system deadlocks, can be controlled by the current
progress of the processes, which is generally time-dependent and non-reproducible.

Moreover, in /Gait 86/ the experience is reported that some synchronization failures could
not be observed by debugging (without hardware support). This phenomenon of error
masking which is called probe effect and which can be interpreted well in terms of Petri
nets, emphasizes the need for a means of software quality assurance other than testing.

It is an (at least implicitly) common opinion in software development technology that the
relative progress of processes with respect to each other must not have any influence on
the general logical behaviour of the system as a whole.

2 Overview of the Net-Based Methodology
Qualitative as well as quantitative properties involve interactions among the parts of a
parallel system. It is quite widely accepted that these properties are most naturally
analysed in terms of the order (and number) of events. Especially for these problems, Petri
nets offer a suitable mathematical background with an already powerful theory which is
still under development.

The Petri net based software validation approach is able to combine the advantages of
high-level (specification/programming) languages with those of Petri net theory. Figure 1
shows the logical architecture of the proposed tool kit for net-based software validation
with its components and their interconnections. The tool kit as a collection of different
tools reflects the belief that a thorough software validation can only be reached by a
suitable combination of different techniques which complement each other because each
of them aims at different properties.

An important property of the Petri net approach is its extreme generality. It aids
developers in a general way in reasoning about the behaviour of parallel systems. Because
of its generality, the Petri net framework can be used with parallel systems expressed in a
wide variety of specification or programming languages.

The semantics of a particular language is captured by a procedure for automatically
deriving Petri net representations for any parallel system expressed in this high-level
language. The modelling of parallel systems by Petri nets resulting in an intermediate
representation yields several advantages.

First, tools for analyzing and reduction extract information about events and their ordering
directly from this intermediate representation of the system. Therefore, they do not rely on
any special assumptions, but concern general features of parallel systems and can be
applied to any system once a Petri net representation for the system has been obtained.

Second, due to the generality of the Petri net approach, tools based on Petri nets can be
extended to provide common analysis methods across a number of phases in the software
development process as soon as some formalized description of the parallel system under
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development is available. This might be a source of valuable commonality and integration
in a software development environment.

Third, the net-based intermediate program representation serves as a common root from
which different net-based software validation methods, basically on
communication/synchronization level, are able to start, e.g.

• analysis of qualitative properties like context checking of static semantics and
verification of functional behaviour (see section 3),

• monitoring and analysis of quantitative properties (see section 4 onwards).

Here, net-based monitoring aims at providing quantitative parameters like time (delay)
and frequency attributes which have to be added to the qualitative model in order to form
a quantitative net model. The appropriate control points in the software being tested at
which to establish such counting monitors can be deduced from the quantitative net model
because it determines especially the suitable time abstraction level.

These different validation methods may require net models which vary partly in their level
of abstraction (e.g. granularity of considered control/data flow, quantitative information).
But all transformations (from the parallel software system description into a first
qualitative Petri net model, and between the different kinds of net models) can be done
formally, and therefore automated to a high degree. This includes especially the
innovative approach of an as far as possible formal transformation of the qualitative model
into a quantitative one.

The automation of all transformations also strengthens confidence in the concrete models
for several reasons. First of all, the user is relieved of unnecessary details. Furthermore,
the situation is avoided where the model becomes better than the original program source
text (as happened, for example, in /Balbo 92/).

3 Net-based Qualitative Analysis

3.1  Introduction
Net-based qualitative analysis has been a well-known approach for about fifteen years
/Heiner 80/. But putting it into practice is still a promising challenge because of the
analysis algorithms’ complexity and the fact that the results gained in the analysis phase
are very sensitive to the abstractions done in the modelling phase. A related tool kit
consists basically of the four components Petri net generator, linker, analyser and the error
reporting and interpretation system /Heiner 92/.

The Petri Net Generators in use (PNGPDL /König 85/, /Grzegorek 91/ and PNGC /Czichy
92/) produce (place/transition) Petri net1 representations of the (fine-grained/coarse-
grained) control structure of a given sequential process. Basically, this generation

1.  In this paper, only new technical Petri net terms are introduced formally. For related definitions of general Petri net
notions see e.g. /Starke 90/.
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assembles general Petri net components (see Figure 2) for all relevant linguistic means
according to the syntax tree. Besides this basic functionality, further information is
supplied which allows

• an automatic layout of the generated net afterwards, and

• an assessment of the program’s structural complexity (Number of Acyclic Paths
(NAP), see /Heiner 88/).

After that, the graphical Petri net EDitor PED /Czichy 93/ is used for visualization and
linking of the generated Petri net parts, and for adding any supplements that might be
required, e.g.

• modelling of all control variables and related operations, upgrading the generated
control structure model to a control flow one (the automatization of this step is in
preparation),

• modelling of the system environment behaviour,

• fault models (e.g. message loss or duplication induced by erroneous message channels).

Finally, the filtering capabilities of PED output the particular data structures required by
the analysis tools in use (INA /Starke 92/, PROD /Halme 95/).

The validation of qualitative properties comprises two steps. First, the context checking of
general semantic properties is done by a suitable combination of static and dynamic
analysis techniques from Petri net theory. Afterwards, the verification of well-defined
special semantic properties given by a separate specification of the required functionality
is performed. During this second step, the power of classical Petri net theory is
supplemented by the model checking approach, using temporal logic as a flexible query
language for asking questions about the (complete/reduced) set of reachable states.

All analysis tools used have to be understood as implementations of well-proved theorems
of Petri net theory. As a consequence, the results obtained by these tools are expressed in
terms of Petri net theory, independent of any underlying special semantics of the software
under consideration.

As an advantage, Petri net theory offers different methods for analyzing qualitative
aspects of parallel systems, e.g.

• animation by playing the token game,

• static analyses by net reduction, structural analysis or net invariant analysis,

• dynamic analyses by complete/reduced construction of the system’s state space
(reachability graph), possibly followed by

• model checking to evaluate the temporal relationship of logic formulae.

Net-based animation aims at functional behaviour simulation by playing the token game.
The results gained depend on the abstraction level of the underlying net model. But in any
case, net prototyping by token animation is only a confidence-building approach unable to
replace exhaustive analysis methods.

All static analysis techniques have in common that they avoid the construction of the
reachability graph. While reduction and structural analysis aim at context checking (of
general semantic properties, which have to be fulfilled by any program whatever its
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special functionality), the invariant analysis corresponds mainly to verification (of special
semantic properties, which are determined by the intended special functionality). By
showing the existence of related net invariants, the net-based proof of program invariants
shows some similarities to the classical approach of axiomatic program verification. First,
suitable program invariants have to be hypothesized and second, the related net invariants
have to be found from the (in general non-minimal) basis of invariants provided by a net
analysis tool.

Dynamic analysis techniques have to be used if the static analysis efforts were not
successful or if properties are wanted which cannot be analysed statically at all (e.g.
freedom of dynamic conflicts, reversibility, firing of facts etc.).

In model checking, the reachability graph of a Petri net is interpreted as a database, and
temporal logic is used as query language for asking questions about it. Therefore, all
properties which can be expressed in the used version of temporal logic (CTL -
Computation Tree Logic /Clarke 86/) can be checked. In this way, even very large
reachability graphs become manageable.

Some qualitative software properties to be validated may require the use of higher-level
net classes (at least coloured nets as short-hand notation of lengthy place/transition nets).
The related models are developed by adding further information about the control data
flow to the underlying control structures modelled by place transition nets. But we still try
to restrict ourselves to those Petri net classes which support some type of exhaustive
analysis (as opposed to simulation of the functional behaviour).

3.2  An Example
To make the basic ideas more clear, we will explain our approach using the concise
example of (asymmetric) competing servers: There are two (operating system‘s) processes
providing special asynchronous services (like printing) to the environment, represented
here by a third process, the requests process. To keep the situation as simple as possible,
let‘s suppose two services are available. The corresponding input queues of service
requests are called chan1 and chan2. One of the servers, called service12 process, is able
to provide both services. The other server, called service2, is a dedicated process which is
able to provide only one of the services, but with a higher quality. So the basic intention is
that the server with greater functionality supports the dedicated server if the latter is no
longer able to deal with all incoming requests.

In Figure 3 a sketch of a possible solution is given, written in ANSI C extended by parallel
constructs (“send” and “receive” for asynchronous, indirect communication, “wait event”
for non-deterministic waiting).

By means of this artificially constructed example, we will now demonstrate how to
develop a model whose granularity depends on the validation method selected. In so
doing, we will also be introducing different types of reduction procedures.
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The automatically generated Petri net, modelling the fine-grained1 control structure of
theservice12 process is shown in Figure 4. To highlight the generation principle, the Petri
net components assembled by the Petri net generator according to the given syntax
structure are surrounded with shaded boxes. All node names are controlled by the
appropriate Petri net components (see Figure 2), while the suffix numbers in the node
names refer to source text line numbers. Transitions labelled with “do” model atomic
sequential program parts without any inner communication actions. Thus, the
consumption of time is their only influence on the system’s behaviour.

Generally, the output of the generator can be optimized by reduction of those parts of the
general Petri net components which are not used in the given context (e.g. unused break
places of loop components, end branches of infinite loops). This is done during a first
weak reduction step2(in this case done by hand). The correspondence to the source text is
fully preserved. The results which we obtain for our three processes are given in Figure 5
and Figure 6.

Please note the following drawing convention. Shaded nodes are so-called fusion nodes.
They serve as connectors: all fusion nodes with the same name are physically identical.
Thus, they will be merged when analysing control or data structures. Usually,
communication objects are represented by such fusion nodes to avoid immoderate edge
crossing.

The coarse structure given in Figure 7 provides an overview of the whole process system,
where the corresponding fusion nodes (chan1, chan2) have been merged. It shows the top
level of a hierarchically structured Petri net which we get as the result of the linking step.
During linking, all (private) nodes of one process are uniquely prefixed to preserve node
name uniqueness within the total system. Each of the macro transitions (represented as
nested double boxes) includes the behaviour of one process on the next lower level (i.e.
the net structures of Figure 5 and Figure 6, but with prefixed node names).

The basic core of the communication structure for qualitative analysis (communication
skeleton for short) is given in Figure 8. We obtain this skeleton as the final result of a firm
reduction procedure to abstract from all internal process behaviour with state machine
structure which does not take part in the processes’ interactions. The communication
skeleton comprises mainly all those transitions which model communication language
primitives. These communication transitions may be supplemented by further transitions
which are required to form the right (coarse) control flow structure.

In the case of our process system, the two basic properties of general semantics
(boundedness, liveness) can be decided very fast by strong reduction, whereby only the
candidates for unboundedness, the communication places, are excepted from reduction.
After several steps of applying general property-preserving reduction rules /Starke 92/ we
get a net in the form of a sequential text description which can be visualized as shown in
Figure 9. This net is obviously live and unbounded. To concentrate on the special topic of

1.  If we are interested in qualitative analysis only, we would generate the coarse-grained control structure right away.
Here, any sequential program parts which do not include process interaction primitives are reduced to one transition.

2.  This optimization could also be done automatically by a more sophisticated Petri net generator, which is in
preparation.
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this paper, we will apply no further qualitative analysis methods to the running example at
this point.

Figure 10 summarizes the order and interrelations of the reduction steps.

4 Net-based Quantitative Analysis: Overview
The basic idea of our approach to net-based integration of qualitative and quantitative
analysis is to enhance an ordinary (qualitative) Petri net model with quantitative
information in order to use the enhanced net with the same net structure also for the
prediction of quantitative properties of the system under consideration. Here, quantitative
properties are expressed by such system characteristics as delays by synchronization or
transmission, throughputs of channels or processors, and probabilities for meeting
deadlines or for being in some predefined state.

Such an approach is in contrast to conventional ones, which require separate modelling
procedures to obtain such approved models as queueing networks or stochastic Petri nets.

Queueing networks: Besides the disadvantage of the additional effort to build a new
model, this class of models imposes strong limitations on the system structure. More
precisely, in terms of nets, the structure is required to be of free-choice type.

Generalized Stochastic Petri nets (GSPN), like the related class of Deterministic and
Stochastic Petri nets (DSPN) /Marsan 87/, seem to fit well into the desired framework,
but they have another disadvantage: in the general case neither liveness nor boundedness
properties of the primary qualitative net model are preserved when considering the GSPN
or DSPN with the same underlying Petri net. The deeper reason for this unfortunate
property of GSPN and DSPN is the change of the firing rule. In a usual, untimed Petri net,
the so-called "may (sometime)"- firing rule is applied: if a transition is enabled, it may fire,
but doesn’t have to do so. In GSPN and DSPN, as generally in the case of timed and
stochastic nets, the "must (immediately after delay)"-firing rule has to be applied: any
transition, when enabled, must fire immediately after a prescribed - possibly stochastic or
equal-to-zero - amount of time ("delay"). Due to the "must"-firing rule1, maximal sets of
enabled transitions have to be fired simultaneously so that some transitions may never get
the chance to become enabled.

As an example, consider the net depicted in Figure 8. In the untimed case, this net is live,
but has the unbounded places chan1 and chan2. After changing to the “must”-firing rule
the transition S12.receive.16 becomes a dead one and the places chan1 and chan2 become
bounded. Notice that the change of the firing rule in this model has the same effect on its
liveness and boundedness properties as a change to a discrete timed net (see, e.g. /Starke
90/), where all transitions are timed ones with the same constant delay.

Another problem of net-based analysis (both quantitative and qualitative) is the size of the
nets in the case of more or less realistic programs. This requires the possibility of

1.  For short, we will write in the following for "must (immediately after delay)"-firing rule, also in the case of a zero-
delay, just "must"-firing rule" and for "may (sometime)"- firing rule just "may-firing rule".
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abstraction of subnets. Even in the case of constructing the net model manually, where
such an abstraction is done by intuition, a concept of hierarchical abstraction and
aggregation is desirable. But when the models are constructed automatically (as is the case
in our approach) such a concept is unavoidable.

To solve these problems in an appropriate way, our approach uses a new, alternative
concept of enhancing Petri nets with modularization and quantitative information. This
concept is embodied in a new class of net models called locally Markovian object nets
/Wikarski 92/, /Wikarski 94/, which combines the solution of both problems, i.e. the
maintenance of qualitative properties also in the quantitative model and an appropriate
abstraction concept. Additionally, it provides subnet abstraction by structured time
parameters which may be used immediately for the quantitative evaluation of the system
under examination.

5 Object Nets
The most general principles of the object net approach are

• the modularization of a given net in order to decompose it into (net) modules and

• an abstraction of the module‘s behaviour by (net) objects using some appropriate
formalism, e.g. Markov chains /Wikarski92/, logical formulae /Whitworth 93/ or some
other method (e.g. solution of conflicts by interaction with the environment of an
executed net). In the case presented below, an abstraction by Markov chains is used
together with a further abstraction by so-called defective discrete phase (DDP)
distributions /Ciardo 95/.

In the following sections the concept and its applicability to net-based quantitative
evaluation will be dealt with in more detail.

5.1  Canonical Modularization of Petri Nets: Net Modules
The common basic entity of modular nets and object nets is a new type of locality - net
modules (and, after behavioural abstraction, net objects, see section 5.2) which is next
greater than that of the usual type of locality in nets - transitions. Transitions describe
which elementary changes are possible for given local states, i.e. markings of places, of a
net. Net modules are those subnets of a Petri net which are explicitly equipped with
interfaces and represent connected1 changes (in some sense: local processes) of a given
net. Net objects are net modules with behavioural abstractions (see below).

The guiding principle for declaring subnets of a net as its modules is the ability to locally
solve conflicts which may arise between sets of concurrently enabled transitions of a
module, i.e. without referring to the markings of other modules of the net. For the enabling
of transitions there exist two different definitions. Below we consider only the more usual
of the two which is sometimes called "weak enabling"2. A transition is enabled3, if all of

1.  E.g. by a common observer or by a common interpreter, e.g. a processor with common memory.
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its preplaces are marked. Based on this definition, two transitions are potentially in
conflict if they share a common preplace.

Formally, a net module is defined as follows:

A subnet NM = [SM, TM, FM] of an ordinary net N=(S,T, F) is called (net) module of N, iff

1. For any transition t of the subnet NM it holds that any transition of the net N which is
potentially in conflict with t is also part of the subnet.

2. Any place s of N which may influence the enabling of a transition of NM also belongs
to this subnet.

Given an ordinary Petri net PN = [N, M0], where N is a net and M0 is the initial marking,
the pair MN = {PN, NMi, i ∈ I} with NMi ∩ NMj = ∅ , N = ∪ iNMi ∪  Eo, Eo ⊆  T x S is
called modular net, iff the NMi, i ∈ I, are modules of N and form, together with Eo, a
partition of N.

Any minimal module of a net is called basic module or basic object1of this net. It can be
shown that for a given net the set of basic modules is uniquely determined. Therefore, any
module may also be seen as a composition of its basic modules.

Formally, the basic modules of a given net are defined as the sets of transitions obtained
by the transitive hull operation to the potential conflict relation (these sets of transitions
are also so-called conflict clusters) plus all preplaces of these transitions. For example, the
basic modules in the net of Figure 13 consist of the sets of transitions {S2.receive.9,
S12.receive.10, S12.receive.16}, {R.send.9}, {R.send.11}, {S12.end.wait.24} together
with the respective preplaces and all arcs of the net which connect the places of a module
with its transitions.

A rationale for this definition is the fact that the potential conflict relation is not transitive.
For example, the pairs of transitions {S2.receive.9, S12.receive.16} and {S12.receive.10,
S12.receive.16} are in a potential conflict, but the pair {S2.receive.9, S12.receive.10} is
not. On the other hand, the firing of one of the transitions S2.receive.9, S12.receive.10 or
S12.receive.16 influences the enabling of the two remaining transitions. Furthermore, the
set of transitions remaining enabled may vary depending on which transition fires.
Therefore, we require that every set of transitions formed by applying the transitive hull
operation to the potential conflict relation of a given net must be completely contained in
one module.

A similar proceeding, resulting in a different shape of modules, is possible in the case of
"strong enabling" which for general Petri nets is characterized by limited capacities of
places. In the case of a capacity of one for every place of a net, a transition is enabled if all
of its preplaces are marked and none of its postplaces is marked. Therefore, two
transitions are now in conflict if they share a common preplace or a common postplace.
Thus, the postplaces of transitions must be taken into account when obtaining the set of
potential conflicts.

2.  The complementary case of "strong enabling" will be mentioned at the end of this paragraph.

3.  In the case of ordinary Petri nets.

1.  Both terms are equivalent, because any net object abstraction from a basic module (see section 5.2) has the same form
as the considered basic module - in contrast to (general) net modules and net objects.
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5.2  Net Modules with Behavioural Abstraction: Net Objects
Now, we will consider the behaviour of net modules in more detail in order to obtain
behavioural abstractions of net modules which will be called net objects.
The local behaviour of a Petri net is determined by the enabling and firing rules of its
transitions. The general local rule of the behaviour of a Petri net is: If a transition is
enabled, it may or must1 fire. In the case of ordinary nets as considered in this paper, firing
means to simultaneously take one token from every preplace and to put one token on
every postplace. In contrast to ordinary Petri nets with the "may" firing rule, the local
firing rule to be considered in the following applies to the sets of possible steps of
transitions of a module. In accordance with the intuitive meaning of an object (as well as
with its meaning in object-based programming), modules with such a module-wide (=
module-local = object-local) firing rule will be called (net) objects.

The pragmatics of net objects corresponding to net modules of a given Petri net is as
follows. On one hand, when considering the net as a model derived from the observed
behaviour of some system, the real-world entities corresponding to the places and
transitions of the same net module are assumed to be observable simultaneously. In
particular, the simultaneous occurrence of real-world events corresponding to different
transitions of one net module is assumed to be observable - in contrast to the usual net
pragmatics where this is considered to be impossible. On the other hand, when the net
model is used prescriptively (e.g. when simulating the previously observed behaviour by
the token game), the simultaneous firing of several transitions of one object is assumed to
be possible as well. However, for transitions of different objects, simultaneous firing is
assumed to be unobservable and therefore not allowed in a simulation.

Together with the guiding syntactical principle of putting transitions connected by the
transitive hull of the conflict relation into one module, the behaviour of object nets is
completely object-locally determined: all conflicts arising in an object net may be solved
autonomously by object-local rules according to some internal algorithm which may be
based on probability distributions obtained from the observation of corresponding
frequencies in the real world. In our case, these probability distributions are assumed to be
based on the monitoring of tests or other executions of the parallel software system under
examination. Thus, in contrast to usual Petri nets, object nets allow a locally controlled
automatic execution of a given net.

5.3  Locally Markovian Object Nets (MONs)
The basic idea of locally Markovian object nets (MONs for short) is the following:
Based on a decomposition of a net into net modules and a subsequent qualitative
behavioural abstraction of the net modules by net objects as described in the previous
section, the assignment of marking-dependent probabilities to the possible steps (of
transitions of these objects) is used for a quantitative abstraction of the behaviour of the
objects and thus for an overall quantitative evaluation of the object net. Moreover, by
applying the "must"-firing rule to certain sets of transitions, a further behavioural

1.  The application of both "may" and "must" firing rules within one net will be considered in the next section.



ISST-Berichte 29/95

Object Nets 13

abstraction is possible while preserving the qualitative properties of the net with the
"may"-firing rule applied to all of its transitions. Let us consider this approach in more
detail.

As stated in section 4, the use of the “must” firing rule in timed and stochastic Petri nets
can lead to changes of the qualitative properties compared to the same net with the usual
“may”-firing rule. For Markovian object nets we assume that both firing rules can be used
for different transitions of one net, depending on the type of the basic object to which a
transition belongs. If, for example, the “may”-firing rule is set for all transitions of the first
basic object of the net in Figure 13 (S2.receive.9, S12.receive.10 and S12.receive.16)1,
while the “must”-firing rule applies for all the remaining transitions of this net, then the
liveness and boundedness properties of this net are not altered compared to the same net
with the “may”-firing rule applied to all transitions.

Generally, it can be shown that the firing rule of all transitions belonging to basic objects
of free-choice type may be changed from "may" to "must" without effecting the liveness
and boundedness properties of the net.

In order to use this property for an appropriate qualitative behavioural abstraction of net
modules, the "must" and "may"-firing rules are assigned to its transitions in the following
way: For all input transitions of a module - these are the transitions following the input
places of a module - the "may"-firing rule is applied. All other transitions - they may be
subdivided into output and internal transitions of the modules dependent on having input
places as successors or not - are governed by the "must"-firing rule. Here, the internal
behaviour of a module becomes characterized by a state machine where the states are the
reachable markings and the state machine transitions are the possible ("module" or
"object") steps, i.e. all possible sets of concurrently enabled transitions of the module.
Based on local observations of the behaviour of the real-world entities corresponding to
the state machines of the net objects, probabilities are assigned to the steps of transitions
which are in conflict in the given object state. These probabilities determine the solution
of conflicts between the possible steps. Note that this object-local probabilistic firing rule
may restrict the previously applied "may"-firing rule by forcing some transitions to fire
simultaneously (with a certain probability). If for each state with several poststates there is
given a probability distribution over all poststates, the behaviour of the object is
characterized by a Markov chain. A module with such a behavioural abstraction will be
called Markovian object.

Object nets with the object-local probabilistic firing rule are called locally Markovian ones
because their behaviour is on the one hand only locally determined (i.e. with respect to a
single object) and on the other hand does not depend on past markings but rather only on
the current marking. The latter property also characterizes (stochastic) Markovian
processes, but with respect to a global state - an assumption which is dropped here.

Given the Markovian property, the probability distribution of the number of occurrences
of internal steps from the firing of an entrance transition till the firing of an output
transition may be taken as a characterization of the behaviour of the considered net
module. So, an abstraction has been built which allows the former Petri net to be seen as a

1.  This is the only basic object which is not of the free-choice type.
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set of "weakly" (in view of the "may" firing rule between the objects) interacting objects
called locally Markovian object net.

6 Application of MONs to Quantitative Analysis
The application of MONs to a quantitative evaluation of parallel programs while
preserving qualitative properties is based on the combined use of the following findings.

1. If the "may"-firing rule is applied to all transitions of a MON - in this case the terms net
object, net module and basic object are equivalent - and the probabilities for all possible
steps of transitions are positive, then the liveness and boundedness properties of the
MON do not change compared to those of the underlying net.

2. If the underlying Petri net is bounded, so is any MON based on this Petri net, regardless
of which module partition is selected (and thus which transitions become governed by
the "must"-firing rule). If, on the other hand, the underlying Petri net is unbounded, it is
generally undecidable whether an object net remains unbounded by applying the
"must"-firing rule to some of its transitions. For special cases, however, (un)bounded-
ness may be decided.

3. If the "must"-firing rule is applied just to all transitions of modules with free-choice
structure (in the following called fc-modules for short) of a modular net which is live
when applying the "may"-firing rule to all of its transitions, this new modular net
(modified according to the firing rule) will also be live.

4. Applying the “must”-firing rule to all transitions of fc-modules as described in Point 3.
and interpreting all arising transition steps as transitions of a new net, this new net will
have the structure of a state machine with the set of states equal to the set of reachable
markings of the module. As a module with an abstraction of its behaviour is called
object (cf. section 5.2 and section 5.3), this state machine will be called sm-object in
the following.

5. Provided that (in the general case state dependent) probability distributions for the
solution of conflicts are given and the probabilities for conflict solutions depend only
on the current markings of the concerned objects, the behaviour of the (now:
Markovian) sm-objects may be quantitatively characterized by DDP (defective discrete
phase) distributions /Ciardo 94/.

6.1  Parameter Estimation and Simulation Experiments
Consider a Petri net which is decomposed into its non-fc basic objects (= non-fc basic
modules) and arbitrary fc-modules and assume that for each reachable object marking a
probability distribution over the possible steps of transitions is given. It can be shown that
the resulting Markovian object net with the "must"-firing rule applied to the steps of
transitions of the fc-modules and the "may"-firing rule to those of the non-fc basic objects
has the same liveness and boundedness properties as the one with "may"-firing rule
applied to all of its transitions.
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This result can be used for the quantitative evaluation in the following way.

First, all necessary probabilities are obtained by counting the numbers of events
corresponding to the conflicting steps of transitions by means of monitoring or by another
type of estimation. For the fc-modules with the “must”-firing rule, these values are used as
parameters of defective discrete phase (DDP) distributions as described in section 6.2.

Second, on the basis of the non-fc basic objects with the obtained marking-dependent
probabilities and of DDP type time abstractions of the fc-modules, controlled simulation
experiments are carried out in order to obtain those system parameters which ensure the
boundedness, liveness and timeliness ("punctuality") of the system behaviour in a
probabilistic sense.

Here, the simulation experiments may be carried out in a parallel or distributed way. The
corresponding DDP delays may be sampled by a random number generator instead of the
detailed simulation execution of the fc-modules. The "control parameters" of the
simulation are delay and firing probability parameters of the non-fc basic objects which
ensure that all local markings which are reachable in the untimed case will be reached in
the simulation. For each of these markings, the firing is realized according to the object-
local probabilistic firing rule.

As a result of the controlled simulation experiments we obtain conditional results
depending on the firing delays and probabilities which can be used for an appropriate
calibration/dimensioning of the system. Here, the introduction of local control or delay
mechanisms into the real system may be necessary in some cases to ensure the required
(quantitatively specified) boundedness and liveness properties.

As an example, consider once more our three party client/server system in Figure 8.

Using the known analytical results of Petri net theory, it cannot be decided whether this
net is time-independently live (see /Starke 90/).

Assuming the "must"-firing rule and constant delays for all transitions, one can easily
show that the previously live transition S12.receive.16 becomes a dead one when (1) the
cycle time1 of the service12 process is smaller than or equal to that of the requests process
and (2) the cycle time of the service2 process is smaller than or equal to that of the
service12 process. Due to (1), the service12 process is always already waiting for a
request (i.e. place s12 is marked) when the requests process has generated a new chan1
request which is then immediately processed. Due to (2), the transition S2.receive.9 will
permanently "steal" the token from the place chan2 before transition S12.receive.16 can
get a chance to become enabled (because the service12 token is again in s12).

On the other hand, the weakly reduced net models of the service2 and service12 processes
contain inner cycles whose duration may vary arbitrarily in dependence on the number of
times the cycles are run through (see Figure 6 and Figure 6a). Therefore its cycle times
cannot be modelled by the timed nets with constant delays as described above. When
assigning probabilities to the transitions in conflict - the posttransitions of for.11 in
Figure 6 and of for.11 in Figure 6a - the cycle times may show (with a positive
probability) values of an arbitrary given size over and over again so that transition

1.  The time a token needs to cycle around one times.
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S12.receive.16 will be enabled at these times. Thus, the liveness of transition
S12.receive.16 depends on “time structure” and parameters of the involved delays.

A solution of this problem provides the following approach: Using the measured delays
and probabilities, those parameters are determined by controlled simulation experiments
which ensure the required liveness, throughput, utilization and delay properties of the
process system under consideration.

Which types of delay structures may arise in the fc-modules will be shown in more detail
in the next section.

6.2  Quantitative Structural Abstraction by Delays with DDP-
Distributions

The findings 1. to 5. stated above form the basis for a quantitatively evaluable abstraction
from the internal structure of fc-modules. In particular, the (one-entry/one-exit) control
structures of the sequential parts of parallel programs which have formed the focus of our
attention are fc-modules (so far, even "state machine" ones) which can be assembled out
of components of the types shown below. This may lead to a considerable reduction in the
complexity of the resulting nets. The structural reduction of the mentioned control
structures is based on the following rules which will be given together with its graphical
net representations.

The basic abstraction (reduction) step is that of sequences of constant delays. A constant
delay has a duration of an integer multiple of a basic time step, which will be denoted in
the following by ∆. Clearly, a composition of a finite number of sequentially ordered
constant delays is again a constant delay. Graphically we will denote all types of constant
delays, including the basic time step, by thick black bars. Moreover, for simplicity of
notation we will denote all possible positive values of delays by τj. Note that τj = nj ∆
always holds.

Constant delay (Const): Fixed number of sequential constant delays: τ = ∑j τj

Here and in the following τ denotes the resulting (generally randomly distributed) delay of
a time object. The symbol P(.) will denote "the probability of".

Immediate transitions are handled similarly: Two immediate transitions in sequence
result again in an immediate one, whereas an immediate transition in a sequential
composition with a non-zero delay transition (constant, geometric or DDP-distributed, see
below) may be omitted.

Zero delay (Immediate transition): Sequence of immediate transitions (

reduces to
τ1 τj τn τ

... ...

reduces to...
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The elementary loop construct whose delay is geometrically distributed, and which is
called geometric delay in shorthand notation, may be considered in the probabilistic sense
as opposite to the constant delay. Note that the construction of a geometric delay requires
two constant delays of identical duration. For a more convenient modelling of loop
constructs we will therefore consider a modified geometric delay which ends with an
immediate transition instead of with a constant delay whose length is identical to the inner
loop delay.1

Modified geometric delay (ModGeo): Geometrically distributed number of identical
constant phases decreased by one phase: P(τ = n τ0) = (1-p) pn, (n = 0, 1, 2,...)

The justification for using the same symbol for the geometric delay (in discrete-time
models as considered here) as for the exponential delay (in continuous-time models) is
their common memoryless property.

As the third basic type of delay we introduce delays with an arbitrary discrete probability
mass function with finite support2. These delays may be represented as alternative
compositions of a fixed number of constant delays:

Delay with an arbitrary probability mass function with finite support (= fixed
number of alternatively chosen constant delays): P(τ = τi) = pi, (j= 1,2,..., n)

Delays of all the types introduced so far may be combined with one another resulting in a
DDP-distributed delay (see /Ciardo 95/). This type of delay will be denoted by the same
symbol as the discrete probability mass function with finite support (though it has infinite
support). Due to the closure property of DDP distributions with respect to finite weighted
summing (positive weights summing up to 1), finite convolution (sum of DDP distributed
random variables) and infinite geometric summing (sum of independent identically DDP-
distributed random variables with a geometrically distributed number of addends), all such

1.  In the following, we will usually not distinguish between geometric delay and modified geometric delay.

2.  Note that the constant delay is a special case of this type of probability distributions, but the geometric delay is not
due to its infinite support.

p

1-p

reduces toτ0

τ

pn

pi

reduces to

p1

τn

τ1

τi

.

.

τ.
.
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compositions of DDP-distributed random variables are again DDP distributed random
variables. As a particular consequence, the symbols and  are also special cases of the
symbol , and all rules for compression given above with the symbol for a constant delay
are also valid with the thick bar replaced by .

Timeless transitions governed by the “may”-firing rule will be represented by square
boxes, i.e. by , as is generally usual in Petri nets without time.

Note: The thick bar symbol as well as the rectangular box with the same shape are also
used in the stochastic Petri net classes GSPN and DSPN, but without reservation of
tokens: i.e. the tokens to be delayed by the timed transitions "wait" on the places before a
timed transition until the delay is over - and may even be "stolen" by transitions in
conflict. In our model, timed transitions carry a token: i.e. all tokens are consumed in the
moment of enabling from the preplaces and fired onto the postplaces after the delay. ♦

As an example of how this step by step abstraction works, consider once more the weakly
reduced net model of the service12 process (see Figure 5).

Before considering this process separately we should remark that due to its non-free-
choice structure, the subnet defined by the set of nodes {S12.receive.10, S12.receive.16,
S2.receive.9, chan1, chan2, S12.begin.wait.8, S2.receive.9} (see Figure 4 and Figure 6, or
Figure 13 - in the latter case the place names S12.begin.wait.8 and S2.receive.9 have to be
replaced by s12 and s2) has to be considered as one basic object with all of its transitions
governed by the “may” firing rule. Here it becomes obvious that for a quantitative
evaluation of the modelled system a common (conditional on the marking of chan1,
chan2, S12.begin.wait.8 and S2.receive.9) probability distribution for the firing of the
transitions of this basic object is necessary. Based on this distribution and on the
parameters for the involved DDP-distributions (both have to be estimated based on
observations and/or code analysis), the cycle times of the service processes and the overall
conditional distribution for the service process can be simulated or computed, the latter
thanks to the analytical possibilities of the DDP distributions. In particular it comes out
that both service processes should be considered in combination, i.e. in one net object with
a common time axis. (There, of course, the necessary delay and probability parameters of
the two service processes should be considered independently.) For the sake of
conciseness, we will consider only the service12 process in more detail here.

As follows from the considerations given above, the delay times from firing of the
transition S12.receive.10 or of the transition S12.receive.16 until the token reaches the
place S12.while.6 again are DDP-distributed. The particular form of these distributions
can be obtained by a systematical abstraction from the weakly reduced net model.
According to general experiences and measurements, only the “do” statements require
significant time (modelled on the lowest level by constant delay transitions) whereas the
time consumption of all other statements (“begin”, “end”, “for”, “if”..., and any
communication statements) can be neglected and therefore be modelled by immediate
transitions. The branching probabilities for leaving the “for.11”-loop and for passing the
“else.19” branch are assumed to be known too. Then we get a net of the form given in
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Figure 11. A second (trivial) reduction step using the reduction rules given above would
yield the net shown in Figure 12.

When the same reduction methodology is also applied to the requests and to the service2
processes, the overall view of the process system will be as shown in Figure 8.

6.3  General Proceeding
An appropriate application of MONs for quantitative analysis of parallel systems, which is
intended as part of the approach presented here, consists of the following steps.

First, decompose the nets generated from the software into free-choice and non-free-
choice objects as described above. Second, obtain the necessary constant delay s and
probabilities by (generally local) testing and monitoring parts of running prototypes or by
estimation. Third, carry out a (preferably parallel) simulation of the complete MON taking
into account the obtained quantitative information. Alternatively, the use of appropriate
numerical iterative methods might be useful.

The desired quantitative parameters are then predicted or assessed on the basis of the
results obtained from the simulation or computation. Advantages of this approach as
compared with the traditional GSPN or DSPN approach are an expected increased
simulation efficiency and doing without a global time axis (in the general case).
Additionally, in the MON models the "problematic" parts of programs and specifications
(characterized by the corresponding non-free-choice objects, especially those causing
confusion) become obvious as a result of the systematic aggregation of the free choice
subnets into delay objects.

In order to guarantee a broad range of methods, thus permitting comparisons of their
efficiency and accuracy, our approach intends to include the use of "conventional" tools
such as GreatSPN /Chiola 91/ and TimeNET /German 94/ in addition to the "generic"
MON-simulation.

7 Final Remarks
Petri nets provide an adequate common basis for a general workstation that extensively
supports different methods of dependable parallel software engineering. Petri nets are a
suitable intermediate representation for

• different languages,

• different phases of the software development cycle, and

• different validation methods.

Our investigations are greatly influenced by the goal of providing a workbench which can
be applied by an engineer engaged more in software quality assurance than in Petri net
theory. However, a thorough software validation is expensive and requires an adequate
mathematical foundation.
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In our opinion, the level of practicability of a method like this is strongly influenced by the
level of engineer-like preparation of the tool kit provided. To fill the gap between theory
and application, a lot of work is still to be done to support engineers in handling the
underlying model in an effective and easy way. An ongoing prototype implementation of a
graphic-oriented tool kit supporting the proposed validation methodology is pursuing
these objectives.

The Petri net based software validation as an analytical approach suffers from the
disadvantage that it is always done a posteriori. Independent of the validation success, the
following advantages of the approach are seen.

• Any validation method directs the programmer towards a rethink of the program
design.

• The lessons learned trying the validation can be turned into useful hints on how to
construct parallel programs in general, and help us to better understand the problems
inherent in parallel programs.

We claim these to be useful steps towards extending the so-called theory of structured
programming (of sequential systems) to a theory of structured programming of
(dependable) parallel systems, providing a discipline to design a priori distributed
programs with certain useful properties. But any design discipline can guarantee proper
properties only if it is applied properly. So finally, a thorough validation process including
excessive testing is still necessary.

The application of the method presented here to a realistically sized example /Lewerentz
95/ is in preparation. This case study aims at Petri-net based development and step by step
validation of the control software of a production cell. The cell consists of seven loosely
coupled machine controllers acting independently of each other to a high degree. The
qualitative validation is outlined in /Heiner 95/. Based on these results, we are now going
to evaluate time-dependent properties.
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Figure 1: Overview of the net-based methodology
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Figure 2: Basic Petri net components used by the Petri net Generator.

simple_statementjump_statement
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end.if.#
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Figure 3: Source text skeleton of the running example.

1 main() /* requests process */
2 {
3 message chan1, chan2; /* communication objects */
4 int k, l;
5
6 while(1)
7 {
8 produce_k();
9 send k to chan1; /* chan1!k */

10 produce_l();
11 send l to chan2; /* chan2!l */
12 }
13 }

1 main() /* service12 process */
2 {
3 message chan1, chan2; /* communication objects */
4 int x, i;
5
6 while (1)
7 {
8 wait event /* alternative waiting */
9 {

10 receive x from chan1: /* chan1?x */
11 for (i=x; i>0; --i)
12 {
13 for_action();
14 }
15 break;
16 receive x from chan2: /* chan2?x */
17 if (x)
18 then_action();
19 else
20 {
21 else_action1();
22 else_action2();
23 }
24 }
25 }
26 }

1 main() /* service2 process */
2 {
3  message chan2; /* communication object */
4  int x, y, i;
5
6  while(1)
7  {
8 calculate_x();
9 receive y from chan2; /* chan2?y */

10 evaluate_y();
11 for (i=1; i<x; ++i)
12 {
13 if (y)
14 then_action();
15 else
16 {
17 else_action1();
18 else_action2();
19 }
20 }
21 }
22 }

while.6

begin.while.7
end.while.25

WHILE

Figure 4: Fine-grained control structure model of the service12 process.
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chan2chan1

service12(1)
NAP: 4

while.6

begin.wait.8

receive.10

for.11

do.13

begin.for.12 end.for.14

break.15

receive.16

if.17

do.18

then.18 else.19

do.21

do.22

end.if.23

end.wait.24

begin.while.7

do.13 do.18 do.21

do.22

break.15

end.if.23

end.wait.24

Figure 5: Statement skeleton of the service12 process.
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Figure 6: a) Statement skeleton
of the service2 process.
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Figure 6: b) Statement skeleton
of the requests process.
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Figure 7: Top level of the hierarchically structured statement skeleton of the system.

Figure 8: Communication skeleton of the process system.
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Remark: The steps and states arising in the example are represented with bold lines.

chan2

chan1

Figure 9: Strongly reduced system net.
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Figure 10: Reduction steps and its interrelations.
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Figure 11: The service12 process after a first delay abstraction step.

do.21+do.22

receive.16receive.10

chan2chan1

do1 do.18

end.wait.24

while.6

if.17for.11

break.15

break.15 end.if.23

end.if.23

end.wait.24

Figure 12: The service12 process after a second delay abstraction step.
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Figure 13: The overall net structure for combined quantitative and qualitative evaluation


